

POLITECNICO DI TORINO Repository ISTITUZIONALE

MicroRadarNet: a Network of Weather Micro Radars for the Estimation of Local High-Resolution Precipitation Pattern and Rainfall Amount

Original

MicroRadarNet: a Network of Weather Micro Radars for the Estimation of Local High-Resolution Precipitation Pattern and Rainfall Amount / TURSO S; ZAMBOTTO M; R. NOTARPIETRO; ORIONE F; GABELLA M; PERONA G. - (2010). ((Intervento presentato al convegno EGU 2010 tenutosi a Wien, Austria nel Maj 2-7, 2010.

Availability:

This version is available at: 11583/2364071 since:

Publisher:

Published DOI:

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Geophysical Research Abstracts Vol. 12, EGU2010-9448-1, 2010 EGU General Assembly 2010 © Author(s) 2010

MicroRadarNet: a Network of Weather Micro Radars for the Identification of Local High-Resolution Precipitation Patterns

Stefano Turso, Marco Zambotto, Riccardo Notarpietro, Fiammetta Orione, Marco Gabella, and Giovanni Perona Politecnico di Torino, Dipartimento di Elettronica, Torino, Italy (Stefano.turso@polito.it, +39 011 5644 200)

MicroRadarNet (MRN) is a network of high-resolution, low-cost, low-power consumption micro radars for continuous, unattended meteorological monitoring. The MRN project started in the framework of the European INTER-REG IIIB Alpine Space Programme (within the FORALPS project) since 2004 and was developed and operated by the Remote Sensing Group at the Politecnico di Torino from its early design stages. MRN is currently under its final pre-release testing and validation stage, cooperating with professional weather operators (e.g. civil protection offices) to run extensive on-field tests.

The key aspects of MRN are a short range strategy (about thirty kilometers) and the implementation of an effective sensor network approach. Raw spatial and temporal data is processed on-board in real-time, yielding a consistent evaluation of the information from the sensor and compressing the data to be transmitted. Network servers receive and merge the data sets coming from each unit yielding a synthetic, high resolution plot of meteorological events (updated every minute). This networked approach implies in turn a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range C-band approach. An ever-growing database of meteorological events is being collected, thus providing a real-data test bench to refine assessment and data enhancement algorithms. Assessment techniques have been adopted for the estimation of precipitation, based on systematic rain gauges comparisons. Efforts were also devoted to the design and implementation of specific decluttering algorithms. New techniques to mitigate the effect of co-channel interference sources are also under testing. It is shown how these enhancement algorithms further improve the assessment process raising the overall data quality.

A consistent amount of case studies clearly shows that MicroRadarNet has enough potentialities to act as a fastreacting weather monitoring tool. The proposed strategy, based on a network of short range radars, shall effectively perform high resolution monitoring while lowering the overall operational costs. This could prevent, by design, the volumetric resolution loss at higher ranges, as well as the need for atmospheric corrections and the shielding shortcomings which typically occur in orographically complex areas.