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Response Variability of High-Speed Interconnects via Hermite Polynomial Chaos

Igor S. Stievano, Flavio G. Canavero
Dip. Elettronica, Politecnico di Torino, Italy (igor.stievano@polito.it)

Abstract

This paper focuses on the stochastic analysis of dynamical cir-
cuits via the Hermite Polynomial Chaos theory. The proposed
approach facilitates the inclusion of external uncertainties, like
tolerances or process variations, in the circuit analysis. The me-
chanics of the method amounts to expanding the output vari-
ables into a sum of a limited number of orthogonal basis func-
tions and generating an extended matrix for the modified nodal
analysis. The advocated method, while providing accurate re-
sults, turns out to be more efficient than the classical Monte
Carlo technique in determining the circuit response sensitivity
to parameters variability. A realistic application example in-
volving a coupled-line structure concludes the paper.

1 Introduction

The availability of simulation techniques for the stochastic anal-
ysis of high-speed digital links in the early design phase is
highly desirable. Even if a circuit equivalent of the link is avail-
able, the effects of the possible uncertainties in the circuit pa-
rameters due to the manufacturing process or the temperature
variation need to be taken into account for the realistic predic-
tion of the system performance.

Within this framework, the typical resource allowing to collect
some quantitative information on the statistical behavior of the
circuit response is based on the application of the brute-force
Monte Carlo (MC) method, or possible complementary meth-
ods based on the optimal selection of the subset of model pa-
rameters in the whole design space [1]. Theses methods, how-
ever, are computationally expensive, thus preventing their ap-
plication to the analysis of complex realistic structures.

Recently, an effective solution that overcomes the previous lim-
itation has been proposed. It focuses on the polynomial chaos
theory [2, 3, 4] and on the representation of the stochastic so-
lution of a dynamical circuit in terms of orthogonal polynomi-
als [5, 6]. This idea allows to readily extend the basic tools for
the circuit analysis like the modified nodal analysis (MNA) and
to describe the stochastic behavior of the circuit responses with
arbitrary distribution by means of an analytical formula.

In this paper, the proposed approach is illustrated by means of
a simple example and its strength is shown on a realistic inter-
connect structure.

2 Hermite polynomial chaos

This Section provides a quick overview of the mathematical
background allowing to understand the application of the pro-
posed method to the stochastic analysis of a dynamical circuit.

The idea underlying the polynomial chaos resides in the repre-
sentation of a stochastic process via the sum of orthogonal basis

functions. Within this framework, a generic stochastic process
Y can be approximated by means of the following truncated
series

Y (ε) =

P∑
k=0

Yk · φk(ε) (1)

where {φk} are Hermite polynomials expressed in terms of the
standard Gaussian variable ε with zero mean and unit variance
and {Yk} are the linear coefficients of the expansion. As an
example, the first three polynomial terms are φ0 = 1, φ1 =
ε, φ2 = (ε2−1)where φ0 accounts for the deterministic behav-
ior of Y .

For a given process, approximation (1) is defined by the number
of terms P (limited within the range 2 ÷ 5 for practical appli-
cations) and by the expansion coefficients that are computed
via the projection of Y onto the orthogonal components φ0, φ1,
. . . . The orthogonal relation of the Hermite polynomials takes
the form

< φk, φj >=< φ2
k > δkj (2)

where δkj is the Kronecker delta and < ·, · > denotes the inner
product in the Hilbert space of the variable ε defined by

< φk, φj >=

∫ +∞

−∞

φk(ε)φj(ε) exp(−ε2/2)/(
√

2π)dε. (3)

Readers are referred to [2, 3, 4] and references therein for a
comprehensive and formal discussion of polynomial chaos, in-
cluding the generalization of (1) to multiple random variables.

3 Stochastic analysis of a dynamical circuit

This section discusses the modification of the basic MNA tool
allowing for the analysis of a dynamical circuit that includes
the effects of the statistical variation of circuit parameters via
the polynomial chaos theory.

For the sake of simplicity, the discussion is based on the simple
RC circuit shown in Fig. 1. In this example, both the conduc-
tance and the capacitance are assumed to be Gaussian random
variables defined by

{
G = G0 + G1ε
C = C0 + C1ε

(4)

where ε is a the standard normal distributionwith zero mean and
unit variance (G0 = 1 S, C0 = 1 F, G1 = 1/5 S, C1 = 1/10 F;
scaled values are used for demonstration purposes).
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If needed, equation (4) can be suitably modified to account for
non-gaussian stochastic distributions via (1) as well as for the
dependence of the circuit parameters to multiple random vari-
ables.
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Figure 1: Tutorial example for the illustration of stochastic anal-
ysis application to dynamical circuits.

Frequency-domain analysis. For the deterministic case, the
MNA equation in the Laplace domain for the example of Fig. 1
is

(G + sC)X(s) = U(s) (5)

whereX = [V1(s) V2(s) Ie(s)]
T ,X = [E(s) 0 0]T and

G =

⎡
⎣ G −G 0
−G G 1
0 1 0

⎤
⎦ ; C =

⎡
⎣ C 0 0

0 0 0
0 0 0

⎤
⎦ . (6)

The inclusion of stochastic variations (4) and the expansion of
the unknown variables of X in terms of second-order Hermite
polynomials, leads to a modified version of (5)

(G0 + G1ε + sC0 + sC1ε)(X0(s)+

+X1(s)ε + X2(s)(ε
2 − 1)) = U(s)

(7)

where the interpretation of the new matrices is straightforward.

Projection of (7) on the first three Hermite polynomials leads to
the following augmented system, where the random variable ε
does not appear,

([
G0 G1 0
G1 G0 2G1

0 2G1 2G0

]
+ s

[
C0 C1 0

C1 C0 2C1

01 2C1 2C0

])[
X0

X1

X2

]
=

[
U

0

0

]
. (8)

The above equation belongs to the same class of (5) and can be
solved in the frequency domain via direct matrix inversion, thus
effectively providing the expansion coefficients of the stochas-
tic approximation of the circuit of Fig. 1.

It is worth noticing that the proposed method involves the solu-
tion of the augmentedMNA problem (8), which is (P +1) times
larger than the deterministic system (5). However, for small
values of P (as typically occurs in practice) the additional over-
head due to matrix inversion is much less than the time required
to run a large number of MC simulations. What is more impor-
tant, the solution of (8) via matrix inversion allows to compute
the quantitative information on the spreading of the circuit re-
sponses, and the related probability density function (PDF).

Figure 2: Bode plots (magnitude and phase) of the transfer
function H(s) = V1(s)/E(s) for the example of Fig. 1. Solid
black line: deterministic response; dashed lines: 3σ tolerance
limit of the second order polynomial chaos expansion (9); solid
gray lines: 100 responses obtained bymeans of theMCmethod.

As an example, Fig. 2 shows the Bode plot (magnitude and
phase) of the transfer functionH(s) = V1(s)/E(s) where

V1(s) = V1,0(s) + V1,1(s)ε + V1,2(s)(ε
2 − 1) (9)

is the second order polynomial chaos expansion of the unknown
voltage V1, according to (7); the coefficients V1,0, V1,1 and V1,2

are obtained from the solution of (8). The dashed curves of
Fig. 2 represent the numerically-computed±3σ interval of the
transfer function. For comparison, the deterministic response
with nominal values of the circuit elements is reported in Fig. 2
as a solid line; also, a limited set of MC simulations (100, in
order not to clutter the figure) are plotted as gray lines. Clearly,
the dashed curves of Fig. 2 provide only a qualitative informa-
tion of the spread of responses due to parameters uncertainty. A
better quantitative prediction is only possible from the knowl-
edge of the actual PDF of network responses. This fact can
be clearly appreciated in Figure 3, by comparing the PDF of
|V1(jω)| computed for ω=1 rad/s over a very large number of
MC simulations, and the distribution obtained form the analyti-
cal expansion (9). The good agreement between the two curves
and, in particular, the accuracy in predicting the left tail of the
reference distribution, confirms the potential of the proposed
method. In addition, for this simple example, it is also clear that
a polynomial chaos expansion with three terms seems already
accurate enough to capture the dominant statistical information
of the system response.

Time-domain analysis. In order to compute the transient re-
sponse of a dynamical circuit that includes the stochastic varia-
tion of parameters, two possible approaches are available. The
simplest approach is the direct conversion of equation (8) in
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Figure 3: Probability density function of |V1(jω)|, ω = 1 rad/s.
The two distributions correspond to the reference curve ob-
tained via 40000MC simulations and via the second order poly-
nomial chaos expansion (9) (PC).

Figure 4: Transient response of the voltage v1(t) for the cir-
cuit of Fig. 1. Solid black line: deterministic response; dashed
lines: 3σ tolerance limit of the second order polynomial chaos
expansion; solid gray lines: 100 responses obtained with the
MC method.

time domain and the application of well established integration
techniques for the solution of differential-algebraic equations
(e.g., the Matlab© function ode23t). It goes without say-
ing that the applicability of this approach is limited to linear
circuits. On the other hand, the recent literature proposes an
effective solution consisting in the following steps [5]:

(i) convert the continuous-time constitutive relations of the circuit el-
ements into a discrete-time form via the trapezoidal integration
rule (for instance, the capacitor equation i(t) = Cdv/dt be-
comes i(k) = (2C/T )v(k) − [(2C/T )v(k − 1) + i(k − 1)],
being t = kT and T the time step);

(ii) recast the discrete-time constitutive relations by using the poly-
nomial chaos expansion of the voltage and current sequences, the
description of the variations of circuit parameters and the inner
product defined by (3);

(ii) write the classical MNA formulation, including possible nonlin-
ear components, by using the above-modified constitutive rela-
tions.

Figure 5: Probability density function of v1(t), t = 1 s. Of the
two distributions, the one marked MC refers to 40000MC sim-
ulations, and the one marked PC refers to the transient voltage
response obtained via second order polynomial chaos expan-
sion.

As already done for the frequency-domain case, the RC circuit
of Fig. 1 is used as a simple test case for the first application of
the time-domain stochastic analysis. Figures 4 and 5 show the
response of the transient current v1(t) and the PDF of the volt-
age signal computed for t = 1 s, thus confirming the feasibility
of the proposed method.

For completeness, Table 1 collects the standard deviation values
of voltage v1(t), for t = 1 s, computed for an increasing number
of responses obtained via MC simulations. The error of the
computed standard deviation, reported in the third column of
Table 1 indicates that a large number of simulations is required
to obtain a good estimation with a small error. On the other
hand, the second order polynomial chaos description of voltage
v1(t) produces a standard deviation value of 4.0194e-2, that is
a very close to the value attainable with a very large number of
MC simulations.

Table 1: Standard deviation σ of the voltage v1(t), t=1 s and
its relative error computed via an increasing number N of MC
simulations (the reference value for the error determination is
assumed to be 4.02e-2, obtained with 40,000 MC runs).

N σ error
20 3.2821e-2 V 18 %
200 4.1062e-2 V 2 %
2,000 4.1065e-2 V 2 %
20,000 4.02e-2 V 0 %

4 Application

In this Section, the proposed method is applied to the simula-
tion of the realistic interconnect structure shown in Fig. 6. The
two receivers in Fig. 6 are represented by the shunt connection
of a 500 Ω resistor and a 10 pF capacitance, and the drivers by
the series connection of an ideal voltage source and a 30 Ω re-
sistor. The coupled line is a 5 cm-long PCB microstrip structure
modeled as a lossless LC line, whose nominal parameters are
given in [7]. In this example, the elements of the per-unit-length
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inductance and capacitance matrices are assumed to be Gaus-
sian random variables with a standard deviation corresponding
to 5% of their nominal value.

quiet
(low)

coupled interconnect
(microstrip)

Figure 6: Application test case.

Figure 7 shows the predicted deterministic far-end transient
voltage responses on the active and quiet lines, the ±3σ in-
terval, and the responses of 100 MC simulations. The curves
confirm the results obtained with the simple RC circuit. In ad-
dition, Fig. 8 shows the PDF of the crosstalk voltage response
for t=2 ns computed via MC simulations and by means of the
second order polynomial chaos expansion. The good matching
in Fig. 8 confirms that low-order polynomial chaos expansions
are sufficient to capture the non-Gaussian distribution of the sta-
tistical responses of this class of circuits.

5 Conclusions

This paper concentrates on the application of the Polynomial
Chaos theory to the stochastic analysis of interconnect struc-
tures. The proposed method is based on the description of
the circuit elements, randomly dependent on a parameter (e.g.,
physical dimension or process variation), in terms of Hermite
polynomials. The use of such orthogonal basis functions, com-
bined with standard methods for the analysis of dynamical cir-
cuits (as the MNA method in this paper), allows us to devise
a powerful procedure for the simulation of circuits both in fre-
quency and time domain with the inclusion of a quantitative
prediction of the parameters variability on the circuit responses.
The strengths of the approach has been demonstrated on a real-
istic interconnect structure, for which the variability of crosstalk
consequent to parameters indetermination is shown.
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Figure 7: Far-end transient voltage responses on active (top
panel) and quiet (bottom panel) lines of the structure of Fig. 6.
Solid black line: deterministic response; dashed lines: 3σ tol-
erance limit of the second order polynomial chaos expansion;
solid gray lines: 100 responses obtained with the MC method.

Figure 8: Probability density function of the crosstalk response
of Fig. 7 (bottom panel) for t = 2 ns. Of the two distributions,
the one marked MC refers to 40000 MC simulations, and the
one marked PC refers to the transient voltage response obtained
via second order polynomial chaos expansion.
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