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ABSTRACT 

Two physiological factors are assumed in this paper to mainly determine the myoelectric 

manifestations of fatigue: 1) the decrease of the conduction velocity (CV) of motor unit action 

potentials (MUAP) (peripheral fatigue), and 2) the increase of MU synchronization by the central 

nervous system (central fatigue). To describe separately the peripheral and central components of 5 

the myoelectric manifestations of fatigue, we investigated the following indexes: 1) mean spectral 

frequency – MNF, 2) median spectral frequency – MDF, 3) root mean square – RMS, 4) average 

rectified value – ARV, 5) estimation of muscle fiber conduction velocity – ECV, 6) percentage of 

determinism – %DET , 7) spectral indexes defined as the ratio between signal spectral moments – 

FIk, 8) MNF estimated by autoregressive analysis – MNFAR, 9) MNF estimated by Choi-Williams 10 

time-frequency representation – MNFCWD, 10) MNF estimated by continuous wavelet transform – 

MNFCWT, 11) signal entropy – S, 12) fractal dimension – FD. The indexes were tested with a set of 

synthetic EMG signals, with different CV distribution and level of MU synchronization. The 

indexes were calculated on epochs of 0.5 s. It was observed that ECV is uncorrelated with the level 

of simulated synchronization (promising index of peripheral fatigue). On the other hand FD was the 15 

index least affected by CV changes and most related to the level of synchronism (promising index 

of central fatigue). A representative application to some experimental signals from vastus lateralis 

muscle during an isometric endurance test supported the results of the simulations. The vector 

(ECV, FD) is suggested to provide selective indications of peripheral and central fatigue. The 

description of EMG fatigue by a bi-dimensional vector opens new perspectives in the assessment of 20 

muscle properties, with potential application in both clinical and sport sciences.  
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1. INTRODUCTION 

Despite the fact that fatigue is an experience of our daily life, its definition is very complex, not 

unique and controversial. In common language, fatigue may be described as a feeling or sensation 

of weakness or muscle pain or a decrement of performance, not easily suitable for quantification or 

measurement. Since the original work of Piper (1912), it was shown that during an isometric 5 

constant effort, albeit in absence of mechanical manifestations of fatigue, a number of modifications 

in surface EMG signal occur, generating the so-called myoelectric manifestations of fatigue. In such 

a way, fatigue can be assessed since the very beginning of a muscle effort. 

Myoelectric manifestations of fatigue are induced by two main physiological factors: 1) the slowing 

of motor unit action potential (MUAP) during their travelling along muscle fibers, that is a variation 10 

of their conduction velocity (CV), and 2) the synchronization of motor units (MUs) by the central 

nervous system to increase the mechanical output when the whole MU pool is recruited. These two 

factors have different origins and affect the EMG signal in different ways (Merletti and Parker, 

2004).  

CV decrease during sustained isometric contractions is associated to a decrease in blood pH 15 

(Bouissou et al., 1989; Brody et al., 1991; Lindstrom et al., 1970; Komi et al., 1979). Lactate was 

largely considered the primary cause of the oxygen debt following exercise, a major cause of 

muscle fatigue, and a key factor in acidosis-induced tissue damage. Accumulation of lactic acid, 

however, was recently recognized as a process aimed to retarding the acidosis (Gladden et al., 2004; 

Robergs et al., 2004)  instead of causing it. On the contrary, the lack of oxygen (Hogan et al., 2004; 20 

Russ et al., 2003) was considered as the main factor generating acidosis, in association with the 

accumulation of H
+
 as a consequence of the ATP consumption.  

The reduction of muscle fiber CV reflects in the frequency-domain as a scaling of the power density 

function (PDF) of the EMG signal towards lower frequencies (Lindstrom and Magnusson, 1977). 

As long as EMG signal can be considered a wide sense stationary (WSS) process (isometric 25 

constant force contractions segmented into epochs of 0.5-1 s) it is possible to compute the power 
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density function and extract spectral variables such as the mean or median frequencies (MNF and 

MDF) of the PDF, as suggested in early works (Chaffin, 1973; Lindstrom et al., 1970; Lindstrom 

and Magnusson, 1977; De Luca, 1984). 

 In the last decades a number of authors investigated the rate of change of EMG parameters such as 

estimated conduction velocity (ECV), MNF, MDF, root mean square (RMS), and average rectified 5 

value (ARV) during isometric fatiguing contraction. These variables correlate with fiber type 

distribution of the muscle (Kupa et al., 1995; Sadoyama et al., 1988; Komi et al., 1979; Gerdle et 

al., 1991; Mannion et al., 1998); they are also predictive of endurance time (i.e. the time for which a 

subject is able to maintain the requested mechanical task (Merletti and Roy, 1996)); they change as 

a function of the muscle position with respect to the electrodes on the skin (Rainoldi et al 2000) and 10 

in relation to limb position (Farina et al., 1999); they are related to age (Merletti et al., 2002), and to 

pathological conditions such as: neck pain (Falla et al., 2003), anorexia nervosa (Melchiorri and 

Rainoldi, 2006), hypobaric hypoxia (Casale et al., 2004), back pain (Roy et al., 1997), and other 

conditions (Drost et al., 2006). 

Recently, new methods such as recurrence quantification analysis (RQA), ratio between spectral 15 

moments, continuous wavelet transform (CWT), time frequency representations (TFR), 

autoregressive (AR) analysis, signal entropy (S) were proposed to estimate myoelectric 

manifestations of fatigue (Filligoi and Felici, 1999; Farina et al., 2002; Dimitrov et al., 2006; 

Karlsson et al., 2000). As indicated in (Farina et al. 2002), separating the contribution of 

synchronization from other myoelectric manifestations of fatigue could be important to get insight 20 

into the muscle changes during fatigue and to distinguish among groups of subjects and/or muscles. 

The objective of this work is to compare different approaches, highlight their differences and 

limitations, and assess their sensitivities to CV and MU synchronization variations with special 

attention to the possibility of discerning between the two phenomena.  
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2. METHODS 

The indexes listed in Table 1 were tested on simulated signals to assess estimators of myoelectric 

manifestations of muscle fatigue. A brief description of each fatigue index is provided in the 

Appendix. 

Table 1 about here 5 

2.1 Simulated Signals  

A set of signals was simulated in order to evaluate the sensitivity of different indexes to central and 

peripheral fatigue. The three plane layer model (skin, fat, muscle) proposed by Farina and Merletti 

(2001) was used to simulate surface EMG signals. Muscle tissue was considered anisotropic while 

the other layers were isotropic (conductivities: σskin = 1 S/m, σfat = 0.01 S/m, σlong = 0.5 S/m, σtransv 10 

= 0.1 S/m). The thickness of the skin was 1 mm. The thickness of the fat layer was 1-3-5 mm in 

three sets of simulations. The source was represented as a spatio-temporal function (analytical 

model from Rosenfalck, 1969) which describes generation, propagation, and extinction of the intra-

cellular action potential at the end-plate, along the fiber, and at the tendons, respectively. The model 

is shown in Figure 1.  15 

Figure 1 about here 

Finite length fibers (140 mm long) symmetrical with respect to the innervation zone were simulated 

with density of one fiber per 4 mm
2
. A single fiber action potential (SFAP) was used to simulate a 

MUAP, approximating the smoothing due to the spread of the innervation zone and tendon endings 

(8 mm) by a time convolution with a Gaussian window function. In this way, a fiber was considered 20 

as representative of a MU. Three libraries of 216 single differential (SD) SFAPs of fibers 

distributed uniformly within the muscle were simulated, each library corresponding to different 

values of the subcutaneous tissue thickness. From each of these libraries of SFAPs, different 
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libraries of MUAPs were built, considering different random distributions of MU sizes (number of 

fibers belonging to the MUs distributed as an exponential function with ratio of innervation 

numbers between the largest and the smallest units equal to 20 (Enoka and Fuglevand, 2001) and 

different CV Gaussian distributions, with mean varying across different simulations and standard 

deviation equal to 0.3 m/s. Each MUAP library was considered as corresponding to a simulated 5 

“subject”.  

MUs were recruited according to the exponential function proposed by Fuglevand and collaborators 

(1993), with range of recruitment thresholds equal to 75% of the maxima voluntary contraction 

(MVC). The discharge statistics were modelled assuming minimum and maximum discharge rates 

of 8 and 35 pulses per second (pps), linear relation between force and discharge rate (0.5 10 

pps/%MVC for all MUs), and Gaussian distribution of the interpulse interval variability with 

coefficient of variation (COV) 0.2 considered (Farina et al., 2002)(Fuglevand et al., 1993). The 

MUs were recruited from lower to higher CV (Andreassen and Arendt-Nielsen, 1987).  

A high contraction level of force (80% of MVC) was simulated in order to reduce the number of 

confounding factors. In this way all MUs were recruited and both load sharing between synergic 15 

muscles and possible recruitment/de-recruitment of MUs were not considered (Fuglevand et al., 

1993).  

The simulated signals were detected by an array of 8 rectangular electrodes, 4 mm long and 1 mm 

thick. The interelectrode distance was 5 mm. The electrode array was aligned to the direction of the 

muscle fibers and placed between the innervation zone and one of the tendons. The signals were 20 

detected in single differential (SD) configuration. 

2.2 Simulation of fatigue 

Two factors were simulated as manifestations of peripheral and central fatigue, respectively: 1. 

reduction of CV; 2. increase of MU synchronization (Holtermann et al., 2008). 
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Synchronization was simulated as proposed by Yao and collaborators (2000). Two parameters are 

used to set the level of synchronization: 1. the percentage of firings in each MU train synchronized 

with the firings of the other MUs (%F); 2. the number of firings synchronized together for each 

synchronization event, expressed as a percentage of the total number of MUs (%M) (Yao et al., 

2000; Farina et al., 2002). For this application, it was assumed %F=%M and this percentage 5 

indicated the level of synchronization.  

For the simulation of non stationary signals CV distribution changed linearly in time towards lower 

value of CV (the mean of the distribution changing from 4 m/s to 3 m/s in 30 s, with constant 

standard deviation) and synchronization increased linearly from 0% to 20%.  

2.3 Assessment of estimation variance 10 

The signals of twenty “subjects” were simulated in two conditions.  

Simulation 1. Stationary signals were considered, i.e. with constant Gaussian CV distribution with 

mean 4 m/s and standard deviation 0.3 m/s and no synchronization (neither peripheral nor central 

fatigue was simulated).  

 Simulation 2. Non stationary signals were considered (CV decreasing from 4 m/s to 3 m/s in 30 s, 15 

synchronization increasing from 0% to 20% in 30 s).  

Simulated signals (7 channels, SD, 30 s long) were divided into adjacent, non overlapping epochs 

(0.5 s long) for a total number of 60 epochs for each signal. Each index was applied on every epoch 

of the simulated signals. For methods working on single channels, the (spatial) average of the 

estimates from each channel was computed. The COV of the 60 estimates corresponding to the 60 20 

epochs was evaluated for stationary signals, for each simulated signal and each index. In case of 

non stationary signals the slope (normalized with respect to the initial value) of the regression line 

for each estimated index was considered.  

2.4 Assessment of sensitivity to peripheral and central fatigue 
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The sensitivity in detecting myoelectric manifestations of muscle fatigue was assessed applying the 

fatigue indexes to signals with different mean values of CV distribution and different levels of 

synchronization. Forty “subjects” were simulated.  

Simulation 3. For each “subject”, signals of duration 0.5 s with constant mean of CV distribution in 

the range 3-5 m/s, with 11 steps of 0.2 m/s, and synchronization level (%F = %M) in the range 0-20 5 

%, with 11 steps of 2 %, were simulated obtaining a set of signals of dimension 11x11 (121 

simulations) for each “subject”. Both variables, mean CV and level of synchronization, were 

normalized by linearly mapping each to the range [0, 1], e.g. the signal simulated with CV = 3 m/s 

and synchronization level of 20% corresponded to the coordinates (0, 1) in the normalized map. For 

each “subject”, fatigue indexes were computed as a function of two parameters: mean CV and 10 

synchronization level. Regression planes were then obtained for each index. The sensitivity of a 

fatigue index to a variation of each of the two parameters (CV and synchronization), was defined as 

the first and second component (respectively) of the unity vector normal to the regression plane.  

2.5 Statistical analysis 

A repeated measures one-way analysis of variance (ANOVA) was performed on the normalized 15 

slope and on the COV of each of the computed EMG indexes. Fat layer thickness (1, 3, and 5 mm) 

was the fixed factor for each ANOVA. Significance was set to p < 0.05.  

2.6 Experimental signals 

Surface EMG signals were recorded from the vastus lateralis muscle of a power trained and an 

endurance trained athlete during an isometric endurance test at 80% MVC. Signals were recorded 20 

using an adhesive array of 8 electrodes (5 mm interelectrode distance) aligned with the muscle 

fibers (data from Rainoldi et al., 2008 were used). 

3. RESULTS 
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COV of the fatigue indexes (listed in Table 1) was estimated from Simulation 1 (60 epochs of 

stationary signals). Figure 2 shows the mean and standard deviation of the COV of the estimates of 

each index for a set of 20 simulated “subjects” with stationary EMG, in the case of 3 mm thickness 

of the fat layer. One-way ANOVA did not show statistically significant dependency of the COV of 

any of the EMG indexes on fat layer thickness. 5 

Figure 2 about here 

Figure 3 shows the mean and standard deviation of the 20 slopes (normalized with respect to the 

intercept) of the indexes estimated from 20 simulated “subjects”, in the case of 3 mm thickness of 

the fat layer (results of Simulation 2). One-way ANOVA did not show statistically significant 

dependency of the normalized slope of any of the EMG indexes on fat layer thickness. 10 

Figure 3 about here 

Figure 4 shows the sensitivity of some of the fatigue indexes to a variation of CV or 

synchronization. The two components of the vectors normal to the regression plane of the estimates 

obtained from Simulation 3 were defined as explained in the Methods section for each of the 40 

simulated “subjects”. The vectors of each index were normalized with respect to the mean of the 15 

modulus across different subjects. ECV showed the minimum angle, close to 0°, indicating very 

high sensitivity to CV changes and very low sensitivity to synchronization, while FD showed the 

maximum angle, about 75°, indicating low sensitivity to CV changes and high sensitivity to 

synchronization). The indexes not shown (ARV, MDF, MNFCWT, MNFCWD, MNFAR, FI3, FI4, FI5, 

%DET, S) showed behaviour similar to that of MNF, showing lower selectivity to central and 20 

peripheral fatigue. The vector (ECV, FD), referred in the following as fatigue vector, was then 

chosen to provide a quantitative indication of myoelectric manifestation of fatigue, with the first 
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and second component giving predominantly indication of peripheral and central fatigue, 

respectively.  

Figure 4 about here 

Figure 5 shows the comparison between MNF and FD with different values of fat layer. Each plot 

shows the values of mean and standard deviation (across 40 simulated “subjects”) of MNF and FD 5 

computed from epochs of stationary signals with mean of CV distribution in the range 3-5 m/s and 

levels of synchronization 0% - 10% - 20% (simulation 3). The fat layer thickness was set to 1 mm 

and 5 mm (with 3 mm thickness providing intermediate results).  

Figure 5 about here 

Figure 5 shows that MNF decreases when fat layer thickness increases (as documented in the 10 

literature). Furthermore, MNF is affected by both CV and MU synchronization. On the contrary, FD 

is weakly affected by either CV (refer also to Figure 4) or fat layer thickness. FD is indeed mainly 

affected by the level of MU synchronization. This allows distinguishing between synchronization 

levels of 0% and 20%, in all the simulated conditions, while such information cannot be extracted 

from the values of MNF.  15 

Figure 6 shows the ECV, FD and MNF obtained from the signals recorded on vastus lateralis 

muscle of A) a power trained subject and B) an endurance trained subject during an isometric 

contraction at 80% MVC. For the power trained subject, the rate of change of ECV is high, but FD 

does not have a clear trend, indicating that the level of synchronism does not change. For the 

endurance trained subject, the rate of change of ECV is lower than in the case of the power trained 20 

subject, but FD decreases during the task, indicating that the level of synchronism increases as an 

adaptation to muscle fatigue. 

Figure 6 about here 
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4. DISCUSSION  

Fatigue indexes provide a quantitative measure of the variation of the properties of the surface 

EMG signal during a fatiguing contraction. Such properties are: 1) amplitude, 2) spectral features, 

3) muscle fiber CV, 4) non linear features of the signal. Different indexes of each of these 

properties show different performances, depending on the contraction type (more or less fatiguing, 5 

isometric or dynamic). Different fatigue indexes have been applied in this study to the same set of 

surface EMG signals simulated by a structure based model, with the purpose of comparing them 

and of identifying indexes giving a selective estimate of either peripheral or central manifestations 

of fatigue.  

 10 

4.1 Limitations of the simulation model 

Interpretation of the results cannot disregard the limitations of the model of simulation, which is 

based on a number of assumptions and approximations. Simulating the myoelectric manifestations 

of fatigue is indeed very complicated and is still an open research issue. Our simulated signals are 

based on assumptions which could be questionable. Simple hypotheses were made in order to focus 15 

only on some of the main aspects of the problem, as including all the physiological manifestations 

of fatigue in a model is not possible at the moment. Only two manifestations of muscle fatigue were 

simulated: CV variation and MU synchronization. Other manifestations of muscle fatigue are the 

recruitment of different MUs and the interplay of firing rate and recruitment (these manifestations 

are reduced in the case of the high simulated contraction level, but cannot be excluded in 20 

experiments). If more muscles are active on the same joint, variations of load sharing can take 

place. The assumption that the force and the MU pool are strictly constant during the contraction is 

not reasonable in real experiments. In addition, muscle fatigue could induce changes in the shape of 

the intracellular action potential (observed in vitro experiments on animals and modelled in many 

publications (Arabadzhiev et al., 1991), even though there is no data from in vivo experiments in 25 

humans and it is not possible to choose properly the supposed enlargement of the negative after-
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potential). CV distribution was assumed to be Gaussian and only the mean of the distribution was 

varied in different simulations of fatigue, even if muscle fibers of different types present different 

variations of CV during a fatiguing contraction. Different methods have been proposed in the 

literature to model the physiological mechanisms involved in MU synchronization. Since no 

consensus was found about the best method, we adopted the algorithm proposed by Yao and 5 

collaborators (2000). Furthermore, we assumed no synchronized motor unit at the beginning of the 

contraction. Nevertheless, the results are based on percentage changes of indexes with respect to the 

initial value. As far as the variation of the indexes with the level of synchronism is approximately 

linear, the results can be considered valid also to the case in which the initial level of synchronism 

in different from 0%. 10 

 

4.2 Fatigue indexes applied in the literature 

All investigated indexes, with the exception of S, have been already applied in the literature to 

estimate fatigue due to both peripheral and central phenomena. The spectral indexes proposed by 

Dimitrov and collaborators (indicated with FIk) were applied to both M-waves (Dimitrova et al., 15 

2005) and interference signals (Dimitrov et al., 2006), as well as to simulated and real signals. A 

high sensitivity to myoelectric manifestations of fatigue was shown. Spectral variables estimation 

with periodogram and AR based methods were investigated in (Farina and Merletti, 2000). AR 

methods performed slightly better in case of short epochs or non stationary conditions. It was 

shown in (Farina et al., 2002) that %DET is sensitive to both CV changes and synchronization of 20 

MUs, giving higher relative variations than spectral variables. However, the computation of %DET 

requires careful tuning of parameters and a time consuming set of attempts by trial and error. 

Different TFR methods were compared in (Karlsson et al., 1999) (static contractions) and in 

(Karlsson et al., 2000) (dynamic contractions) indicating that the wavelet transform has the best 

accuracy and precision in estimating changes of surface EMG signals. However, our findings show 25 

that this approach, as well as approaches based on spectral changes, does not differentiate between 
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changes of CV and of degree of synchronization. It was pointed out that FD of surface EMG signal 

is highly correlated to the force level (Gitter and Czerniecki, 1995). Some EMG spectral parameters 

related to fractals were studied in the case of voluntary isometric contractions of biceps brachii 

muscle (Ravier et al., 2005). The proposed fractal indicator was sensitive to different force levels, 

but insensitive to fatigue. The behaviour of FD index was assessed in a recent study (Troiano et al. 5 

2008) during isometric contractions of upper trapezius muscle. The results indicate that FD of 

signals recorded during short, non fatiguing contractions is not affected by different force levels. On 

the other hand, FD estimated during an endurance contraction at 50% MVC is sensitive to fatigue 

and is predictive of endurance time. 

 10 

4.3 Reliability of fatigue indexes 

A preliminary analysis of reliability of the fatigue indexes based on simulated signals was 

performed in this study. The COV was estimated on 20 stationary signals. MNF had a higher level 

of reliability, compared to amplitude estimations. The spectral index FIk showed a high variation 

between epochs, indicating low reliability. Non linear properties measured by %DET, extracted 15 

from RQA analysis, also had a high COV. This could be related to the choice of the parameters, 

which were fixed after searching for the best values on a small subset of simulated signals. On the 

contrary, S had a very low COV and FD showed a COV of the same order of MNF. ECV resulted 

as the variable which can be estimated with the lowest error when computed with a multi-channel 

approach.  20 

Different distributions of MUs within the muscle and different fat layer thicknesses were simulated 

assuming fibers parallel to the skin and to the electrode array. These configurations could be 

interpreted as corresponding to different subjects. For the same fat layer thickness, all parameters in 

the simulations (CV distribution, anatomy) remained constant except when MU locations change. 

This situation resembles also the experimental case of placing the electrode array in a different 25 

position over the same muscle of the same “subject”, as the MUs contributing to the recorded signal 
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are different, but the anatomy remains the same. This means studying the problem of constancy 

(that is the assessment of estimate variation in different time or position) (Viitasalo and Komi, 

1957). 

ECV (when estimated by a multi-channel algorithm) was observed to be the least sensitive but the 

most robust index, with respect to both MU distribution and fat thickness variation. All other 5 

indexes were affected by such anatomical factors, except for FD, which is weakly affected by fat 

layer thickness.  

 

4.4 Global estimation of fatigue  

The methods were also applied to non stationary signals, characterised by CV decrease and MU 10 

synchronization increase in time. The variation of the normalized slope of the indexes for different 

MU distributions was assessed, expressing the capability of giving a global estimation of fatigue. 

The spectral indexes FIk and %DET were sensitive to a variation of simulated CV and level of 

synchronism, with the indexes FIk giving the highest normalized slope, but they had the highest 

variance because were the most sensitive to MU distribution, limiting the possibility of comparing 15 

EMG fatigue in different subjects. Amplitude and frequency indexes had a comparable sensitivity 

both to the simulated EMG fatigue condition and to MU distribution. S showed a very low 

sensitivity to myoelectric manifestations of fatigue, possibly due to the opposite effects of CV 

decrease and synchronization increase on S (see Appendix). Also FD showed a low variation. This 

is likely due to the fact that FD is sensitive primarily to central fatigue and not to peripheral fatigue. 20 

CV provided a high sensitivity to the simulated manifestation of fatigue, being also robust to MU 

distribution in the muscle. It is to note that most of the factors that are known to introduce biases in 

ECV and to decrease its reliability (motion artefacts, local inhomogeneities, array misalignments, 

etc see (Farina and Merletti, 2004) for a complete list) were not simulated in this work.  

 25 

4.5 Selective estimation of fatigue  
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The capability of the indexes to provide selective information on either peripheral or central 

myoelectric manifestation of fatigue was assessed. It was observed that ECV is uncorrelated to the 

level of simulated synchronization, and it is the most promising method for the estimation of 

peripheral fatigue. On the contrary, FD is the index least affected by CV changes and by fat layer 

thickness, and mostly related to the level of synchronism, and therefore being the most promising 5 

index of this manifestation of central fatigue. All other fatigue indexes gave a global estimation of 

EMG fatigue, being sensitive to both variations of CV and MU synchronization. 

It is suggested that myoelectric manifestations of fatigue can be better described if two distinct 

measures of peripheral and central fatigue are used rather than a single index. The representative 

example of application to experimental signals from athletes of different disciplines (a power 10 

trained and an endurance trained athlete to create a large contrast in fiber type composition, see 

Figure 6) shows that the fatigue vector can provide useful information to distinguish between 

different recruitment strategies and peripheral adaptations to fatigue.  

As shown in Figure 4, the vector (ECV, FD) resulted promising from this simulation study. 

Nevertheless, further studies are suggested to support this choice of the two components of the 15 

fatigue vector. The main problem is the assessment of repeatability of the two components, which is 

in general of paramount relevance for the clinical daily use of surface EMG. To reach this goal it is 

necessary to define the minimum change of the observed variables that may reflect physiological 

variations and not random fluctuations. This assessment is a precondition to demonstrate the 

potential clinical usefulness of the new surface EMG technique proposed. Several works on 20 

repeatability of surface EMG variables on many different muscles, such as elbow flexors, 

quadriceps, back, and respiratory muscles, can be found in the literature of the last decade (Bilodeau 

et al., 1994; Linssen et al., 1993; Merletti et al., 1998; Ng and Richardson, 1996; Rainoldi et al., 

1999; Rainoldi et al., 2001; Dedering et al., 2000; Kollmitzer et al., 1999). They similarly 

concluded that ECV is the variable which can be estimated with the lowest error and that MNF is 25 

the variable which can be estimated with the highest level of repeatability within subjects. The 
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repeatability of FD is still to be assessed. A further open issue is the behaviour of these indexes in 

dynamic contractions and their sensitivity to muscle shifts under the electrode array. 

5. CONCLUSIONS 

Although the concept of fatigue vector extracted from surface EMG is not new (Merletti et al., 

1991), the description based on the relative role of both peripheral and central fatigue was not 5 

previously suggested. A two dimensional vector can give a more detailed description of the 

myoelectric manifestation of fatigue than a scalar index. The vector (ECV, FD) is suggested in this 

study, as it is constituted by two independent indexes of predominantly peripheral (decrease of CV) 

and central fatigue (increase of synchronization), respectively. The description of EMG fatigue by a 

bi-dimensional vector opens new perspectives in the assessment of muscle properties, with potential 10 

application in both clinical and sport sciences. As a future perspective, myoelectric manifestations 

of muscle fatigue other than the decrease of CV and the increase of MU synchronization could be 

investigated and other indexes, providing selective information to specific manifestations of fatigue, 

could be suggested. 

 15 

 

APPENDIX 

Simulated signals were divided into 0.5 s long epochs. From each epoch, the fatigue indexes 

described in the following were estimated: mean frequency – MNF; median frequency – MDF; root 

mean square – RMS; average rectified value – ARV; estimated conduction velocity – ECV, and 20 

recently proposed methods based on recurrence quantification analysis – RQA; spectral indexes 

proposed by Arabadzhiev and collaborators (Arabadzhiev et al., 1991); time-frequency 



 17 

representations – TFR; continuous wavelet transform – CWT; entropy - S, and fractal dimension – 

FD. 

Classical methods 

Variables traditionally used for information extraction from surface EMG signals are those 

providing indication on global amplitude, spectral content, and conduction velocity. As surface 5 

EMG is non stationary, signals are divided into epochs of short duration where the WSS can be 

assumed. 

EMG average amplitude increases as the muscle undergoes fatigue, reflecting the decrement in CV, 

the possible recruitment of new MUs, the increment of firing rate, the increasing synchronization of 

MUs. The amplitude measurements that we considered are the following 10 
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In order to reduce the estimation variance, amplitude was estimated after whitening (i.e., 

decorrelating the samples of the EMG signal; the method (Clancy and Farry, 2000) is based on the 

cascade of a non adaptive whitening filter, an adaptive Wiener filter, and an adaptive gain 

correction).  15 

During fatiguing contractions, the power spectral density PSD, evaluated for each epoch of the 

EMG signal (periodogram), moves progressively toward lower frequencies. This phenomenon is 

indicated as spectral compression, even though the PSD is not simply scaled during fatigue. For this 

reason, different spectral variables provide different information. Two spectral variables were 

considered in this study, MNF and MDF, defined below 20 
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where sf  is the sampling frequency.  
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An alternative method with respect to the Fast Fourier transform (FFT) for the estimation of PSD is 

based on a parametric approach (autoregressive analysis – AR; autoregressive moving average – 

ARMA, see Merletti and Parker, 2004). The signal is considered as the output of a linear time 

invariant (LTI) filter with white noise as input. AR analysis was considered in this study. The 

general transfer function of an AR model of order q 5 
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k

jk

k

j eaeH
0

)(            (3) 

is determined by estimating the parameters ka  from the EMG signal. PSD is obtained as the 

squared magnitude of H and spectral indexes can be estimated from (2).  

Muscle fiber CV is a physiological parameter related to fiber type and diameter, ion concentration, 

pH, muscle temperature and MU firing rate (Andreassen and Arendt-Nielsen, 1987; Arendt-Nielsen 10 

and Zwarts, 1989; Brody et al., 1991). Different methods for CV estimation have been proposed in 

the literature (Farina and Merletti, 2004). The multi-channel approach proposed by Farina and 

collaborators (Farina et al., 2001), was adopted in this paper using double differential (DD) signals.  

Advanced methods 

1. RQA 15 

Nonlinear tools have been recently introduced for fatigue assessment from single channel surface 

EMG signals. The neuromuscular system is considered as a dissipative dynamical system governed 

by a set of D non linear, first order, ordinary differential equations, where D is the number of state 

variables. The system dynamics can be studied from a single time series (Takens et al., 1981), i.e. a 

single output of the system (which is the sampled EMG signal for the problem at hand). The signal 20 

is embedded into a D-dimensional space. Each state of the dynamical system is represented by a D-

dimensional vector v(n) obtained lagging the data by an integer number  . A binary recurrence 

map (with values ON / OFF) is obtained by assigning value ON to the entry (i,j) if the euclidean 

distance between the i
th

 and the j
th

 vector is larger than a threshold TH (expressed as a percentage of 

the maximum distance), and value OFF otherwise. Different indexes can be extracted from the 25 
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recurrence map (Webber and Zbilut, 1994). An index which was shown to be promising for the 

detection of muscle fatigue is the percentage of determinism - %DET (Farina et al., 2002), defined 

as the percentage of points that form upward lines parallel to the diagonal of the recurrence map 

(with length higher than a cutoff value L) with respect to the total number of entries with value ON.  

2. New spectral indexes 5 

In recent studies (Dimitrov et al., 2006; Dimitrova et al., 2000), Dimitrov and collaborators 

proposed new fatigue indexes, defined as the ratio between the signal spectral moment of order (-1) 

and those of order 2-5 
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where f1 and f2 define the bandwidth of the EMG signal (f1=20 Hz and f2=500 Hz in this study).  10 

3. TFR and CWT 

Specific tools have been developed to study non-stationary signals such as (TFR). The distribution 

of the energy of the signal is represented in the time-frequency domain. A spectral variable (e.g., 

MNF, MDF) can be estimated by averaging in the frequency space, obtaining the instantaneous 

value of the variable as a function of time. An example of linear TFR is the short time Fourier 15 

transform (STFT) 
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where x is the signal to be transformed, w is the window (usually Gaussian) selecting the time 

interval of interest (Gabor, 1946). The square magnitude of the STFT is the spectrogram. Another 

linear TFR is the wavelet transform  20 
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 20 

where   is the mother wavelet, a  is the scale factor (related to frequency by the relation 
a

f
f 0 , 

where 0f  is the central frequency of the spectrum of the mother wavelet), and b  is the translation 

parameter (time shifting). The first derivative of a Gaussian function was chosen as mother wavelet 

in this study (Lo Conte et al., 1994). The square magnitude of the CWT is the scalogram. The 

essential difference between STFT and CWT is the different time-frequency resolution, which is 5 

uniform in the time-frequency domain for STFT, whereas, in the case of CWT, time resolution 

improves at high frequencies and frequency resolution increases at low frequencies (Rioul and 

Vetterli, 1991).  

Quadratic TFR can also be used to estimate time-frequency energy distribution, since energy is a 

quadratic property of the signal. Wigner-Ville distribution is defined as  10 
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As Wigner-Ville operator is quadratic, it is affected by cross-terms. The effect of cross-terms can be 

reduced by trying to attenuate their contribution using a kernel (Cohen class distributions, see 

Cohen, 1989). A possible choice is a Gaussian kernel, which is used in the Choi-Williams 

distribution (CWD)  15 
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where   is a scaling factor which trades off auto-term resolution and cross-term suppression. 

4. Entropy 

In the field of information theory, entropy is introduced as a measure of complexity (it is a non 

linear property). The definition of information entropy is the following 20 
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where ip  is the probability of the i
th

 outcome of the signal considered as a random variable taking N 

possible values (sampled amplitude of the signal within the epoch). Following the idea of Farina 

and collaborators (2006), modified entropy was used, for which the probability density was 

proportional to the energy of the signal. For the epoch and sampling frequency considered, with 

N=1024 samples, the maximum and minimum values of entropy are log2N=10 and 0, respectively. 5 

If all the outcomes are equally likely, the information entropy is maximum. This suggests that S 

should decrease when synchronism increases and should increase when muscle fiber CV decreases. 

Due to these opposite factors the behaviour of S with fatigue is not trivial.  

5. Fractal dimension 

The measure of a one dimensional – 1D - object (a curve) is given by its length, the measure of a 10 

two dimensional – 2D - object (a surface) is quantified by its surface area. It is possible to define 

recursively self-similar curves which have infinite length, but vanishing area (e.g., von Kock’s 

curve). Fractal dimension (FD) is the dimension of the space in which the considered curve has a 

finite, non vanishing measure. It can be defined as the exponent FD in the expression 

FDn   )(             (10) 15 

where )(n  is the minimum number of open sets of diameter   needed to cover the curve. It is 

possible to check that this definition is consistent with that of 1D and 2D (i.e., the fractal dimension 

of a line is 1 and that of a simple surface is 2).  

A signal can be considered as a curve in the time-amplitude space, so that FD of a signal can be 

computed. In general the FD of a signal takes values between 1 (smooth signals) and 2 (stochastic 20 

or deterministic signals filling the whole space). As an example, Brownian motion has FD 1.5. 

Hence, FD gives a quantitative indication of the chaotic behaviour of the signal. It is related to the 

high frequency content of the signal, which is inversely related to the “smoothness” of a signal.  

The box counting method was applied to estimate FD (Gitter and Czerniecki, 1995). A set of square 

boxes are used to cover the signal. When decreasing the side of the boxes in a dichotomic process, 25 

http://mathworld.wolfram.com/OpenSet.html
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the number of boxes required to cover the signal increases exponentially. The range of box size is 

restricted in order to avoid saturation for high and low value of size (Gitter and Czerniecki, 1995). 

Plotting the logarithm of the number of boxes required to cover the signal versus the logarithm of 

the inverse of the box area, an approximately linear relation is obtained. The slope of the 

interpolation line (estimated in the least mean squared sense) is the fractal dimension. As FD of 5 

EMG signals cannot be less than 1, in this paper FD was defined as the excess of the fractal 

dimension with respect to 1, obtaining a number between 0 and 1. The following expression holds: 

1
1

log

log


L

N
FD            (11) 

where N is the number of boxes required to cover the signal and L is the box side, with the ratio 

indicating the slope of the interpolation line. 10 
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Coefficient of Variation; CV: Conduction Velocity; CWD: Choy Williams Distribution; CWT: 

Continuous Wavelet Transform; %DET: Percentage of Determinism; DD: Double Differential; 

EMG: Electromyography; FD: Fractal Dimension; FFT: Fast Fourier Transform; FIk: Fatigue Index 15 

of order k; MDF: Median Frequency of the power spectrum estimated by FFT; MNF: Mean 

Frequency of the power spectrum estimated by FFT; MNFAR: Mean Frequency of the power 

spectrum estimated by AR analysis; MNFCWD: Mean Frequency of the power spectrum estimated 

by CWD; MNFCWT: Mean Frequency of the power spectrum estimated by CWT; MU: Motor Unit; 

MUAP: Motor Unit Action Potential; MVC: Maximal Voluntary Contraction; PDF: Power Density 20 

Function; pps: pulses per second; PSD: Power Spectral Distribution; RMS: RQA: Recurrence 

Quantification Analysis; S: Entropy; SD: Single Differential; SFAP: Single Fiber Action Potential; 

STFT: Short Time Fourier Transform; TFR: Time Frequency Representation; WSS: Wide Sense 

Stationary. 
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 TABLE 1: list of the fatigue indexes  

 

 

Index Acronym Comments/Parameters 

Average Rectified Value ARV Whitening  

Root Mean Square Value RMS Whitening 

Mean Frequency (from periodogram) MNF  

Median Frequency (from periodogram) MDF  

Mean Frequency (from CWD) MNFCWD   

Mean Frequency (from CWT) MNFCWT Mother wavelet: first derivative of a Gaussian function 

Mean Frequency (from AR analysis) MNFAR q=5 

Determinism %DET   = 1 sample, D = 7, L = 10 samples, TH = 20% -  

signal undersampled by a factor 2  

Other spectral indexes FIk k=2, 3, 4, 5 

Entropy S  

Fractal Dimension FD Box size in pixels: 2
3
 < S < 2

11
  

Conduction velocity ECV 6 DD channels, maximum likelihood approach 

 

5 
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FIGURE CAPTIONS 

Figure 1. Non-homogeneous (layered), anisotropic, planar volume conductor model constituted by 

muscle (anisotropic), fat (isotropic), skin (isotropic) layers. The volume conductor is infinite in x 

and z directions and semi-infinite in y direction. Fat layer thickness varies in Simulation 1, 2, and 3. 

Single fibers represent individual MUs. An array of 8 electrodes was placed along the direction of 5 

the MUs. The MUs are symmetric with respect to the innervation zone and are uniformly 

distributed inside a rectangular portion of the muscle layer, with density equal to one MU per 4 

mm
2
 (with a total number of 216 MUs). Fibers are parallel to the skin surface and to the electrode 

array. Conductivities are: σskin = 1 S/m, σfat = 0.01 S/m, σlong = 0.5 S/m, σtransv = 0.1 S/m. 

Figure 2. Coefficient of variation (COV) of the estimates of the indexes listed in Table 1 and 10 

obtained from 60 epochs (0.5 s long) of stationary interference signals (Simulation 1). Mean and 

standard deviation of the COV on a set of 20 simulated “subjects” are shown (3 mm thickness of the 

fat layer). Individual estimates of indexes are obtained as the spatial average of the seven estimates 

from the SD channels of the electrode array. ECV is obtained using the multi-channel technique on 

six DD channels. 15 

Figure 3. Mean and standard deviation of the normalized rate of change of the indexes obtained 

from 20 simulated “subjects” with the methods listed in Table 1 (Simulation 2). For each “subject”. 

The normalized slope was computed from the regression line evaluated from 60 epochs (0.5 s each) 

of a non stationary interference signal (the mean of CV distribution changes linearly in time from 4 

m/s to 3 m/s in 30 s. At the same time, synchronism increases linearly from 0% to 20%). The slope 20 

is either positive or negative, depending on the index chosen. The fat layer is 3 mm thick.  
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Figure 4. Results of Simulation 3. Sensitivity of ECV, RMS, MNF, FI2 and FD to peripheral and 

central fatigue (i.e., to a variation of CV or synchronization, respectively). The sensitivity to these 

manifestations of fatigue is defined as the two components of the vector of the best fit plane of the 

estimates as a function of simulated CV and synchronism. The mean and standard deviation of the 

two components of such a vector obtained from 40 simulated “subjects” are shown (after 5 

normalisation of the unity vectors of each index with respect to the mean modulus across different 

subjects).  

Figure 5. Effect of the fat layer thickness (1 mm in A,C, 5 mm in B,D) on MNF and (A,B) and on 

FD in (C,D). The two indexes MNF and FD are computed on epochs (0.5 s long) of stationary 

signals (mean of CV distribution in the range 3-5 m/s; levels of MU synchronization 0% - 10% - 10 

20%). Mean and standard deviation (across 40 simulated subjects) are shown. 

Figure 6. ECV, FD and MNF from surface EMG signals detected on vastus lateralis muscle during 

an isometric contraction at 80% MCV from a power trained subject A) and an endurance trained 

subject B). 

15 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
e
n

s
it

iv
it

y
to

c
e
n

tr
a
l

fa
ti

g
u

e
(S

y
n

c
h

ro
n

iz
a
ti

o
n

)

FD (    )

ECV (   )

FI2 (   )

RMS (    )

MNF (   )

Sensitivity to peripheral fatigue (CV)



 34 

Figure 5. 
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Figure 6. 
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