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RAPID COMMUNICATIONS

Band and filling-controlled transitions in exactly solved electronic models

PHYSICAL REVIEW B, VOLUME 63, 12110&R)

Fabrizio Dolcini and Arianna Montorsi
Dipartimento di Fisica and UnitdNFM, Politecnico di Torino, 1-10129 Torino, ltaly
(Received 12 January 2001; published 7 March 2001

We describe a general method to study the ground-state phase diagram of electronic models on chains whose
extended Hubbard Hamiltonian is formed by a generalized permutator plus a band-controlling term. The
method, based on the appropriate interpretation of Sutherland’s species, yields under described conditions a
reduction of the effective Hilbert space. In particular, we derive the phase diagrams of two new models; the
first one exhibits a band-controlled insulator-superconductor transition at half-filling for the unusually high
value U.=6t; the second one is characterized by a filling-controlled metal-insulator transition between two
finite regions of the diagram.

DOI: 10.1103/PhysRevB.63.1211XX PACS num(ger 71.10.Pm, 05.36:d, 71.27+a

Metal-insulator and insulator-superconductor transitiondJ >0 (U being the on-site Coulomb repulsigron the con-
in chain systems of interacting electrons have recently betrary, no BC transition takes place fok>0. More recently,
come a matter of great interest for the physics of new comsome modelgRefs. 3 and #were solved in which a BC
pounds and devicésAlthough many experimental data are insulator-superconductor transition occurs at half-filling at
nowadays at our disposal, an important open question of thiinite values ofU>0, while the usual FC metal-insulator-
issue is to determine the Hamiltonian that could fairly de-metal transition takes place for=1 andU>U,.
scribe these kinds of transitions. The task is particularly dif- To the best of the authors’ knowledge, no detailed inves-
ficult just owing to the low dimensionality, which causes tigation has been devoted to either of the following issues:
usual mean-field and perturbative approaches to often fail ifior the BC transitions it has not been pointed out yet what
providing  reliable  predictions.  Fortunately,  one interaction terms are relevant to tune the critical vallyeat
-dimensionality(1D) allows us to exploit exact analysis tech- which the transition occurs: this is quite important because
niques which can provide —although only for some particu-U, can assume different values according to the chemical
lar cases— rigorous information on the structure of thestructure of the material. Second, for the FC transitions, all
ground state and on low-energy excitations. For this reasonthe above models provide an insulating state only at half
probative test for theoretical models is the comparison befilling; on the contrary, doped materials exhibit an insulating
tween experimental results and theoretical predictions on thphase for dinite region of filling values. In this rapid com-
ground-state phase diagram. munication we examine the above subjects providing the ex-
The ground state is usually given as a function of theact ground-state phase diagram of some 1D electronic mod-
filling n, i.e., the number of effective carriers, and of a bandels. In particular, we obtain rigorous results which allow us
parameter, which indicates the intrinsic unit of energy of theto both discuss the dependencel&f of BC transitions on
system(its actual definition depends on the theoretical ap-the Hamiltonian parameters, and to find a FC metal-insulator
proach envisaged, see belovdne can thus distinguish be- transition between two finite regions of the phase diagram.
tween filling-controlled(FC) and band-controlle¢BC) tran- We consider here a quite general one-band extended iso-
sitions, according to which kind of parameteérumber of  tropic Hubbard model preserving the total spin and number
carriers or energy scale respectively tuned to let the tran- N of electrons, which reads
sition occur. Both kinds of transitions are very important in
practical applications: BC transitions are relevant, for in- ,, A - - - +
stance, in Vanadium oxides, where one can modify the band-"" _<]-%(, [E= XN, F M=) + XN oMk~ 1€ 0 Cor
width through hydrostatic pressure on the sample; FC tran-

sitions are frequent in perovskitelike materials such as A a \4 ~a
R, _xA,Ti O3 (R=rare-earth ion, and=alkaline-earth ioh + U; NNt 3 <%> Mj Nk
as well as in hole-doped compounds like;LaSr,Cu G; 5.

In order to describe these materials, at least as far as their W Fot

low energy excitations are concerned, where single band pic- + 2 2 €j.oC,'Ci.o" Chor

ture are often reliable, the class of extended Hubbard models (k.00

provides an interesting starting point. For these models, bt AA A

which involve strong electronic correlations, the band pa- +Y<%> Ci,TCi,LCk,iCk,T“LP(%) NNy, Nk

rameter is usualftaken to be the on-site Coulomb repulsion '

(U), instead ofw=4t (t = hopping amplitudg the latter A A A A

being typical in mean-field approaches. A number of exact + 2 <%> URLUBLS LA (2)
results have been obtained in termsrofand U. For the

ordinary Hubbard model, a FC metal-insulator-metal transiin Eq. (1) C}L’,,,Cj’,, are fermionic creation and annihilation
tion has been shown to occur at half filling=€1) for any  operators on a one-dimensional chain with sites, o
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e{1.1}, ﬁj,a=CjTUCj,m ﬁjzgaﬁj’m and (j, k) stands for (1) Under the conditions preciseq beIO\_/v, a generalizeq
neighboring sitest represents the hopping energy of the Permutator between physical states is equivalent to an ordi-
electrons(henceforth we set=1), while the subsequent Nary permutator between the so-called Sutherland’s species
terms describe their Coulomb interaction energy in a narrovySS- The latter do not need to be identified with the physical
band approximationt) parametrizes the on-site repulsion, SPeciesSPS of the states. Indeed, the number of PS is deter-
is the neighboring site charge interactiok,is the bond- ~Mined by the nature of the probletm our cases they are
charge interactionWV is the exchange term, and is the  always the foure,), while the number of SS is determined
pair-hopping term. Moreover, additional many-body cou-PY thestructureof the GP entering the Hamiltonian. In par-
pling terms have been included in agreement with ReK 5: ticular, it may happen that different PS constitute a single

correlates hopping with on-site occupation number, &nd SS, so that the number of the latter 354, leading to a

and Q describe three- and four-electron interactions. In thereduction of the din_wensionality_ .Of .the effective Hilbert,
following we shall identify the four physical statés), || ), space. Through a suitable identification of the Sutherland’s

0) and|| 1) at each lattice site with the canonical basjs species, the first term of ER) can be rewritten in the form:
of C*, and denoten;=N;/L; n=N,/L; n,=N,/L; n;;
=N,;,/L the densities of these four species of physical Ho=—> PaNaa— > 0agPas, (4)
states. A A=B
In Ref. 6 it has been shown that, by fixing all the couplingwhere p,=+1 determines the nature of th&th species,
constants of Eq(1) to appropriate values, one can rewre  even €)/odd () for +1/—1; Na4 is the number of neigh-
as ageneralized permutataiGP) between neighboring sites poring sites occupied by the same spediesnd ® g per-
(minus some constant t(AerDszHere we add to the latter a mytes objects of specigsandB that occupy two neighbor-
further arbitrary termJX;n;;n;,, which is easily proved to ing sites, otherwise it gives zero. Theyg are signs. For a
commute with the GP. In matrix representation, the Hamil-given GP, the SS are to be identified through the sulssats
tonian (1) that we consider reads of AY. In practice, the reduction to Sutherland’s species is
possible if (@) ¢5,=p; Va,BeS; and (b) 62,=0y,Va
_ _ €S ,VBeS,, wherei#]j.
H= gﬁ Map + UNy, — constterms, @ (2) In the case where Ed4) hasoag=+1 VA Be&,
ando g independent oB for Be O andA € £ (Sutherland’s
wherell ,; acts as a GPI (see belowwhenever two neigh-  Hamiltonian, it is possible to reduce the number of even
boring sites of the chain are occupied &y andeg, other-  species down to only one. Indeed in this case the ground-
wise it gives zero. The constant terms are of the formstate energy of Hamiltoniatd) for a system withx even
UN; +uN+cl, whereU,u andc are fixed values. species ang odd species is equal to that of the same hamil-
The purpose of this letter is to show how to investigatetonian acting on a system with the same number of odd
the ground-state phase diagram of B).as a function of the ~species but just one even species collecting all the previous
band parameted and the filling of the carriers. ones(as implied by a simple extension of Sutherland’s theo-
Let us first recall some basic properties of the GP’s. Withrem, see Ref. )7
respect to an ordinary permutator, a generalized permutator Remark For a given GP, the fulfillment of the conditions
can either permute or leave unchanged the states of the twgiven at pointg1) and(2) depends also on the normalization
neighboring sitegincluding a possible additional sigrex-  chosen to define the basis vectors. It is worth emphasizing
plicitly, that some GP, though apparently violating the above require-
ments, can be brought to fulfill them through a mere redefi-
1T (e,@ep)= 005 (e,8€5) + 02, (e528,), (3 nition of the phase of a given physical speciesi.e., |e7);
d o ) —(—1)'|ey); . We shall make use of this remark in the fol-
whered,,; and 6, are two discrete value®, -1 or ) func- lowing.
tions determining ol the positions and the signs of the  Tq jllustrate how the above observations can be exploited,
diagonal and off-diagonal entries respectively. Al§d,and e start with a known case, the AAS modekhich differs
6° are “complementary,” i.e.|6%,/=1—[6%, so thatll  from the ordinary Hubbard model only for a correlated-
has only one nonvanishing entry for row or column. More'hopping term K=1;X=V=W=Y=P=Q=0). This model

over, 0 ;= 63, , hencell is a symmetric matrix. The set of is of the form(2), with U= —4, u=2, andc=—1. Its GP

- - d - I} - I} — &y - .
Cg”pleS_Of SUbSCI’IptSa(,,[? for which ¢ 67&2 (respectively,  oqyces to Eq(4) by identifying the following two Suther-
0,57 0)is (ggnoted by.A (respectlgely,A ). It is eas’|ly land’s species: A={|1),|1)} (odd and B={|0),|| 1)}
seen thatd ™ is always of the formA®=U; 5 X§;, theS’s  (even. In this formalism the model is nothing but a free

being disjoint subsets of the s8¢{1,2,3,4. By varying the  gpjinless fermion model, and its energy per site is given by
functions 69 and 6° one obtains different kinds of GP’s.

In order to determine the ground-state phase diagram of 2 _ -
Eq. (2), the difficult task is to calculate the contribution to €=2np—1-—sin(7mn,) +(U-U)n; —un—c, (5)
the energy of the first term. To solve this issue, one can
reconduct it to a problem defined in a smaller Hilbert spacewheren,=n;+n, . The phase diagram as a function of the
Indeed it can be seen that filling n=N/L andU can be easily derived by exploiting the

a
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10 5 eta-pairs i.e., [¥o)=(7!)V?0), where »_==e'“Icl.c|
U.l metal 2 metal =34CkiC{_y With pair momentume=0,. In the caser
_— @ - =+1 we have 0 pairs, Wher_easaf_z -1 the pairs haver
6 = - momentum. The latter case is particularly important because

SC the 7 pairs (and not O pairsare expected to survive as the
] 0 N oe constraintX=1 is relaxed(see Ref. & In region II, delim-

2 P ited by U,.,;, =2—4 cosgm), we have the simultaneous

presence of empty@), singly occupied(®), and doubly
occupied @) sites; this is calledmixed region and the
ground state i$W )= (7)) U =), where|U=cc) are the
eigenstates of th&) =« Hubbard modet. In both region |
and Il the two-particle reduced density matrix exhibits long-
- 2 range correlatiof, i.e., g(i,j)=<‘lfo|cmci1cuc”|‘1'0>—AO
n (filling) for |i—j|— +, and the ground state is superconducting.
_ Finally, the region lll-a (B=n=<1) is made of singly occu-
FIG. 1. Ground-state phase diagram of the modell;X=(1  pied and empty sites; in this region the ground state of the
—0);Y=—0;P=-1;Q=2. The model exhibits a BC transition U =o Hubbard model is eigenstate of the Hamiltonian and is
insulator-superconductor transitionrat1, for U.=6. The dashed metallic. The region lll-b ((n<2) is the particle-hole
line is the EKS model, and the dotted line corresponds to the AASransformed of Ill-a, and the metallic carriers are holes. One
model. can show that at half-filling the system is an insulator with
gapA=U-6.
With respect to the AAS model we observe that the pair-
(nae[0n] for 0=n=1 and n,e[0,2-n] for 1<n<2) hopping term has two main effects: first it removes the de-

and coincides with that derived in Ref. 4. We also notice tha@&N€racy ing in this region(only ¢=0 or m survive, ac-

. ~ . cording to the signr of Y), and this implies a restoring of
the model withX=1X=2,V=W=Y=P=Q=0 has the o qherconducting order in regions | and Il of the phase
Same energy as AAS' In fact, using thje abmarkand diagram, absent in the AAS mod¥l;second, it raises the
cr:z\i(tafilgltnhge tfrc‘)? W??)Siitxif]tgtls;% ng;1;s| lATA>\JS it can be o derline of such region upwards, as one could expect also

The method just outlined allows the solution of a Widefrom mean-field treatmentswhere a pair-hopping term re

o duces to an effective attraction<(—|Y|) renormalizing the

6
class of models whose Hamiltonian has the fof)” In Coulomb repulsiord. The superconducting region Il of our
" h Vi h dv of similar. b Cmodel is enhanced also with respect to that of the EKS
transitions, here we apply it to the study of similar, but new, o Indeed, although the pair-hopping term is also

models _in which further terms are included,. yielding 4present in the EKS modéthe borderlines of region | coin-
c_h_ange in the va_lue of the paramet_ers charqctenzmg the tra ide), its effect is strongly reduced near half-filling due to the
SItIOE. We consider the model with coupling constaMts Coulomb attraction term between neighboring sit&&=(
=1;X=(1-0);Y=—0;P=-1,Q=2 whereo==*1. The  _1) which is known to compete with the formation of on-
resulting Hamiltonian has the forn2) with U=—-2, u  site pairs.

=2, c=—1 in both casesr=*1. Il has diagonal entries As a consequence, the BC insulator-superconductor tran-
characterized by the subse$s={1,2}, S,={3}, S;={4},  sition occurring at half-filling corresponds to the maximum
and off-diagonal entrieg2,=+1VaeS,, Be S, and 62, critical value U'®=6, higher than for all other exactly
=oVaeS; or S,, BeS;. Both conditions(a) and (b) to  Solved models. This is important because the higher the
identify Sutherland’s species are thus fulfilled, and the spebigher the expected critical temperature of the superconduct-

cies readA={|1),|])} (which is “odd” because6g3= —1  ing phase. _
; . “ " Because of the particle-hole symmetry of the models we
if @,8e8;) ; B=|0) (“even” becausefl,=+1) andC P Yy y

have considered so far, the insulating phase can exist just at
half filling. In order to investigate FC transitions between
finite metal-insulator regions of the phase diagram, we now
iscuss a simple model not particle-hole invariant, describing
a competition between tHg = Hubbard mode(excluding
: double occupangy and the pair-hoppingfavoring the for-
ground-state energy per site has the same form as E5), . .
in which againn; | =(n—n,)/2, and it has to be minimized m.at.lon of Ea'r$’ modulated by the band paramewr(ex-
with respect tan, . For the caser= — 1, before using Suth- Plicilly X=X=1; Y=0; V=W=P=Q=0). It is easy to
erland’s theorem, one has to apply again Remark chang- ~ "€alize thatfup to the application of th&emark this model
ing |1 1);—(—1)!|11);. The expression o is identical. can be set in the forr®) (U=—-2, u=2, andc=—1). The
The phase diagram is given in Fig. 1; the lower regionGP is now equivalent to an ordinary permutation between the
| is characterized byn,=0, so that only doubly oc- two Sutherland’s speciesA={|1),[]),|[T)} (which is
cupied or empty sites are present in the ground state; in thisodd” because 0§ﬁ= -1 if a,e85,={1,2,4); B=|0)
region the ground stafel o) is made of the so-callepure  (“even” because#$,=+1). The ground-state energy per

identity n, = (n—n,)/2 and minimizinge with respect ta

=[11) (“even” becausef?,=+1). For the caser=+1
one can straightforwardly apply Sutherland’s theorsme
point 2)] to reduce the number of even species to 1, endin
up with a free spinless fermion problem, where occupie
sites are represented Byand empty sites b8 andC. The

121103-3



RAPID COMMUNICATIONS

FABRIZIO DOLCINI AND ARIANNA MONTORSI PHYSICAL REVIEW B 63 121103R)
45 raises up topositive valuesof U for 1<n=<2. The mixed
U metal insulator region Il is entered as the double occupancy begins to
[I-a mb °° decrease from its maximum value, yielding the increase

of the local magnetic momeni 0=3/4L‘1EJ-(\IfO|(ﬁJ-'T
—n;,)?|Wo)=3/4[27 tarccos¢-U/2)—n]. The value of
n,, reaches its minimum fol,,,;, = —2cos@m) whenn
=<1, and forU_;,=2 whenn=1. Correspondingly, re-
gions lll-a and lll-b are entered. The former is metallic, the
ground state is that of th&J=o Hubbard model, and the
system behaves like a Tomonaga-Luttinger liquid. The most
interesting feature is that region lll-b is fanite insulating
1 region. More precisely, at exactly half filling the gapAs
n (fiIIing) =U-2, while for_ 1<n=2 no empty site i_s present, a_nd _thg
model behaves like the Hubbard model in the atomic limit.
FIG. 2. Ground-state phase diagram of the mogeiX=1; Y Her_1ce ht_ere the FC tr_ansition Fakes place betvv_een two fini_te
=} V=W=P=Q=0. A FC metal-insulator transition takes place €9i0Ns, in analogy with experlmgntal observations on chain
for U=2 between twdinite regions, Ill-a and IlI-b. hole-doped compounds. Interestingly, for the special value
U =2, our model and th&J-supersymmetric model coincide.

o As a consequence, our ground-state energy in this case is
site is st_lll given by Eq(5), where. nown; =n-—np, . The equal to that obtained in Ref. 11.
phase diagram —obtained by minimizirgat fixed n with In this Rapid Communication we have presented exact
respect ta, in the rangen/2<n,<min(n,1)—is presented ground-state phase diagrams of two electron models, and
in Fig. 2, and exhibits again four regions. However, due t0sydied their BC and FC transitions. Our analysis supports
the absence of particle-hole invariance, the shape is not syne relevance of the pair-hopping term in raising the critical
metric around half-filling. _ _ value of U for BC superconducting-insulator transitions, as

In region I (just doubly occupied and empty sifesnly \ye|| as the importance of particle-hole not invariant terms in

the' Y andU terms act: the model behaves like a spin isotro-the appearance of a finite insulating region. The method we
pic XX model § =cf.cl|, S =c; ;) with the U term  used can be implemented on all those models described by
acting as a magnetic field; it is well known thatldt=0 the  Hamiltonian(2) in which the GP verifies condition®) and
correlation function has a power-law decay(i,j)]i (b). We stress that such GPs all correspond to integrable
—j| Y2 whereagy is not known for nonvanishing magnetic models® i.e., they are solutions of the Yang-Baxter equation
field. However, as far abl<2, long-range order arises for (consistency equation for factorizabilityThe Hamiltonians
any nonzero value of anisotropy. The borderline of this re-exhibit therefore a set of conserved quantities mutually com-

oo [ X0JXe)
II
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