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Impact of Correlated Mobility on Delay-Throughput
Performance in Mobile Ad-Hoc Networks

Delia Ciullo ∗, Valentina Martina ∗, Michele Garetto †, Emilio Leonardi ∗
∗ Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy
† Dipartimento di Informatica, Università di Torino, Torino, Italy

Abstract—We extend the analysis of the scaling laws of wireless
ad hoc networks to the case of correlated nodes movements, which
are commonly found in real mobility processes. We consider a
simple version of the Reference Point Group Mobility model,
in which nodes belonging to the same group are constrained
to lie in a disc area, whose center moves uniformly across the
network according to the i.i.d. model. We assume fast mobility
conditions, and take as primary goal the maximization of per-
node throughput. We discover that correlated node movements
have huge impact on asymptotic throughput and delay, and can
sometimes lead to better performance than the one achievable
under independent nodes movements.

I. INTRODUCTION AND RELATED WORK

In the last few years the store-carry-forward communication
paradigm, which allows nodes to physically carry buffered data
as they move around the network area, has opened an entire
new area of research with many promising applications in the
context of delay-tolerant networking [1].

In their seminal work [2], Grossglauser and Tse have
shown that mobile nodes employing the store-carry-forward
paradigm can achieve constant throughput even when the
number of nodes grows to infinity, in contrast to the severe
throughput decay (like 1/

√
n) incurred in fixed networks

[3]. The basic requirement of their 2-hop scheme is that
nodes uniformly visit the entire network space according to
an arbitrary, stationary and ergodic mobility process with
independent trajectories.

When considering also the delay performance, the specific
details about how nodes move become important. Several
papers have analyzed throughput-delay trade-offs for various
mobility models, ranging from the simple reshuffling model
(also referred to as i.i.d. model) [4], [5], [6], to the Brownian
motion [7], and variants of random walk and random way-
point [8], [9]. The impact of limited buffers has been con-
sidered in [10]. In all these works, the mobility of the nodes
has always been assumed to be uncorrelated (i.e. independent
from node to node) and uniform over the area.

Some works have already considered the impact on the
capacity of restricted mobility models (i.e. relaxing the as-
sumption that nodes uniformly visit the network area) [11],
[12], [13], still maintaining the independence assumption on
the nodes mobility process.

To the best of our knowledge, no work has been done
so far to investigate the impact of correlation among nodes
movements on the asymptotic throughput and delay of large
mobile networks. This is rather surprising in light of the
fact that real mobility processes (of pedestrians, vehicles,

animals) exhibit significant degrees of correlation, as observed
in several traces [14], [15], [16], [17].

The goal of our work is to study, for the first time, the
scaling laws of capacity and delay for large mobile net-
works including correlated nodes movements. To this aim, we
consider a very simple model of correlated mobility based
on the popular Reference Point Group Mobility (RPGM)
model introduced in [18]. Nodes are organized into several
groups, and the mobility of nodes belonging to the same
group is confined within a disc area. Each group has a logical
center, which moves around the network according to the i.i.d.
mobility model, dragging behind all nodes belonging to it.
Notice that in the long run each node visits uniformly the entire
network space, however the trajectories of individual nodes are
not independent because they are constrained to jointly follow
their respective groups. By changing a few parameters, our
model allows to explore various degrees of correlation in the
node mobility process.

We propose novel scheduling-routing schemes whose pri-
mary goal is to maximize the per-node throughput. As a
secondary goal, we also seek to minimize the packet de-
livery delay. Our main finding is that node correlation has
a strong impact on both throughput and delay performance.
Interestingly, correlated mobility can lead both to better and
to worse performance with respect to the case in which node
movements are independent.

Prior to our work, the impact of correlated node movements
on existing and novel routing protocols has been extensively
investigated by simulation. In the context of traditional store-
and-forward networks, [19] analyzed the effect of various
mobility models, including correlated movements, on classical
routing protocols (DSR, AODV), while in [20] the authors
have proposed a novel routing protocol, called LANMAR,
which directly exploit group mobility patterns to improve
routing efficiency. Similarly to our scheme, they propose a
hierarchical approach in which data are first routed at the
group level, and then routed within the group containing
the destination. A similar idea is proposed in [21] for the
store-carry-forward communication paradigm. In particular, a
history-based approach similar to PRoPHET [22] is adopted
at the group level. Like us, the authors of [21] also employ
a replication strategy to improve the delivery delay. We
emphasize that previous work relied entirely on simulations
to evaluate the performance of the proposed schemes, without
analyzing asymptotic scaling laws nor the optimality of the
proposed solutions in terms of system throughput and delay.
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II. SYSTEM ASSUMPTIONS

A. Mobility Model

We consider an extended network comprising n nodes
moving over a square region O of area n with wrap-around
conditions (i.e., a torus), to avoid border effects. Note that,
under this assumption, the overall node density over the area
remains constant and equal to 1, as we increase n.

We assume that nodes are partitioned into m groups, with
m = Θ(nν), ν ∈ [0, 1). For simplicity, we assume that each
group comprises an integer number q = n/m of nodes. Note,
however, that our results would not change, in scaling order,
if the cardinality of the groups were not exactly the same, as
long as each group contains Θ(n/m) = Θ(n1−ν) nodes.

Time is divided into slots of equal duration, which is
normalized to 1. Nodes belonging to the same group move
over the network area in a correlated fashion. To model this
behavior, we assume that, at any given slot, all nodes of a
group have to reside concurrently within a same portion, of
area o(n), of the total network space. In the following we
will refer to such a portion as the cluster-region or simply the
cluster, associated to the group.

We assume that each cluster-region has a circular shape of
radius R. We can explore various degrees of correlation in the
node mobility process by letting R scale with n as well, as
R = Θ(nβ), with β ∈ [0, 1/2). Notice that β = 0 corresponds
to the extreme case in which each group occupies a constant
fraction of the network area (just as if all nodes of a group
were located at a single point), irrespective of the number of
nodes in it.

We have yet to specify how nodes actually move over the
network area from one slot to another. The mobility process
of a given node i belonging to group j is described by the
combination of two movements: i) a group movement (i.e.,
the shift of the cluster-region associated to group j during a
slot); ii) a node movement (i.e., the change of position of node
i within the cluster-region of group j).

For what concerns the group movement, we assume that
each cluster-region has a center point, whose position is
updated at each time slot by choosing a new location uniformly
at random in the network area, independently for each group.
This is similar to the so-called reshuffling model, or bi-
dimensional i.i.d. mobility model, considered in previous work
[4], [5], [6], however here we adopt this model only to update
the positions of the cluster centres. The mobility processes of
individual nodes are not independent in our model because,
once the new position of a cluster centre has been selected, all
nodes belonging to the corresponding group have to move to a
place close to it (i.e., inside a region of area R2 = o(n) around
the cluster centre). We observe that the degree of correlation
in the node mobility process increases as we either i) reduce
the area of each cluster-region (smaller values of β); ii) reduce
the number of groups (smaller values of ν).

For what concerns the movement of nodes within their
cluster-regions, we consider two extreme cases i) the reshuf-
fling model, according to which each node, independently of
others, in the next slot moves to a position chosen uniformly
at random in the cluster-region; ii) the crystallized model,
in which nodes belonging to the same group maintain their

relative positions within the cluster-region indefinitely, starting
from an initial configuration in which they are placed uni-
formly at random in the cluster-region. More realistic models
of node movements inside their cluster-region would produce a
mobility degree in between the two cases above (as suggested
in [23]), hence our model allows to identify the feasible range
of system performance as we vary the mobility degree of nodes
within a cluster-region.

B. Communication Model

To account for interference among simultaneous transmis-
sions, we adopt the protocol model introduced in [3] and
widely used in the literature1. According to the protocol model,
nodes employ a common range r for all transmissions which
occur in the same time slot (r can be different from slot to
slot); equivalently, they employ a common power level in each
slot. A transmission from node i to node j using transmission
range r can be successfully received at node j if and only if
the following two conditions hold:

1) the distance between i and j is smaller than or equal to
r, i.e., dij(t) ≤ r.

2) for every other node k simultaneously transmitting,
dkj(t) ≥ (1 + Δ) r, being Δ a guard factor.

Transmissions occur at fixed rate which is normalized to 1.
Moreover, we consider fast mobility conditions, according to
which data can be transmitted over just one hop during any
slot2.

C. Traffic Model

Similarly to previous work we consider permutation traffic
patterns in which every node is origin and destination of
a single traffic flow of rate λ. Hence there are n source-
destination (S-D) pairs in the network.

III. SUMMARY OF RESULTS AND PAPER ORGANIZATION

Recall that the primary goal of our schemes is to maximize
the system throughput. As a secondary goal, we seek to
minimize delay. Hence we do not explore the full range of
possible capacity-delay trade-offs. However, we are able to
prove the optimality of our schemes under the considered
goals, and we can conclude that correlated mobility can have
a remarkable positive impact on network performance.

Depending on the values of β and ν two different regimes
are possible. When ν + 2β < 1 the sum of all cluster areas
mR2 is o(n). This means that at any time clusters cover
only a negligible fraction of the entire network area. Actu-
ally they form several small, disconnected and highly dense
regions (the node density within a cluster is n

mR2 = ω(1))
floating over a huge empty space. Spatial overlaps between
different clusters are sporadic. We refer to this regime as
the cluster sparse regime. In this case, the optimal per-
node throughput, which can be achieved by our scheme both
in the reshuffling and in the crystallized model, is λ =
Θ(mR2/n). Concerning the delay, in the reshuffling model

1Our results would not change under the physical model defined in [3],
provided that the power loss exponent is larger than 2.

2We leave to future work the extension of the analysis to the slow mobility
case, in which multi-hop transmissions can be performed during the same
slot.
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D = Θ
(
max

{
n

R2 , mR4

n

})
, whereas in the crystallized model

D = Θ
(
max

{
n

R2 ,mR2 log n
})

. We emphasize that in all
cases our schemes always make use of transmission ranges
O(1); thus they do not need to scale up the transmission power
as n increases.

When ν + 2β > 1 the sum of all cluster areas mR2 is
ω(n). This means that clusters cover the entire network area.
Moreover, they are largely overlapped. We refer to this regime
as the cluster dense regime. In this case we get λ = Θ(1) and
D = Θ(n), like in the original Grossglauser-Tse scenario with
independent node movements.

Figures 1 and 2 provide a graphical representation of our
results on the throughput-delay plane for the reshuffling and
the crystallized model, respectively. Shaded regions denote
all optimal operating points that are obtained as we vary
the parameters β and ν of our model. The grey scale is
related to the degree of correlations in the mobility process:
higher correlation, which results from reducing either β or ν,
corresponds to lighter grey.

On both plots we have reported the line D = nλ2 which
denotes (neglecting logarithmic factors) the best possible
throughput-delay trade-offs that can be obtained under inde-
pendent reshuffling of all nodes (and fast-mobility conditions),
according to [5], [6]. 3

We observe that in the reshuffling model there are points
above the line D = nλ2. This means that in our correlated
mobility model it is possible to obtain significant better
performance than that achievable under uncorrelated mobility.
On the contrary, all points in the crystallized model are below
the line D = nλ2. We have also reported on the plots a few
curves that are obtained when we fix one of the parameters of
the model (either β or ν), letting the other vary. We observe
a quite complex range of possible behavior, especially in the
reshuffling model. For large values of β and/or ν, the system
operates in the cluster-dense regime, at the point λ = Θ(1)
and D = Θ(n). As we increase the degree of correlation,
by reducing either β or ν, at some point the system shift to
the cluster-sparse regime. Here, in the case of the reshuffling
model, significant better delays can be obtained with just a
little penalty in system throughput. The best operating point
(marked with P in Figure 1), can be approached when both
β → 1/4 and ν → 1/2. The introduction of additional
correlation in the node mobility process (smaller values of β
and ν) does not help, and eventually brings the system below
the line D = nλ2.

The rest of the paper is organized as follows. We will first
consider the cluster sparse regime, which is more interesting
and challenging to analyze. Indeed, the study of the cluster
dense regime is very simple, since here we can apply the
same strategies developed for nodes uniformly visiting the
entire network space according to i.i.d. patterns. For the cluster
sparse case, we will separately consider the reshuffling model
in Section IV, and the crystallized model in Section V. The
cluster dense regime will be briefly discussed in Section VI for

3Observe that the law D = nλ2 is achievable for the i.i.d. reshuffling
model only when the transmission range is allowed to scale to infinite as n
increases; D = nλ (neglecting poly-log terms) provides the best achievable
trade-offs when the transmission range is constrained to be O(1).

Fig. 1. Throughput-delay scaling for the reshuffling model. The marks on
the axes represent the orders asymptotically in n.

Fig. 2. Throughput-delay scaling for the crystallized model. The marks on
the axes represent the orders asymptotically in n.

both the reshuffling and the crystallized model4. We conclude
in Section VII.

IV. CLUSTER SPARSE REGIME: RESHUFFLING MODEL

We will first introduce the scheduling-routing scheme that
we have developed for this case, describing in particular the
routing scheme in Section IV-A and the associated scheduling
scheme in Section IV-B. Then in Section IV-C we will
analyze the performance of the proposed scheme and prove
its optimality.

A. Routing scheme

We propose a multi-hop routing scheme that generalizes the
2-hop scheme introduced by Grossglauser and Tse [2].

We focus on a particular traffic stream s → d. Let Cs denote
the cluster containing s (i.e., s ∈ Cs) and Cd the cluster
containing d (i.e., d ∈ Cd). We neglect the particular case
in which Cs = Cd, since w.h.p. s and d belong to different
clusters (this is also the more stressful case for the system).

The rationale of our routing scheme is to first reach a node
within the destination cluster Cd in the most efficient way,

4We leave for future investigations the special case in which ν + 2β = 1
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Fig. 3. Illustration of the 4-hop routing scheme

and then to forward the packets5 within Cd up to the final
destination d. We anticipate that the system throughput is
bottlenecked in the first phase of the route, in which data has
to reach the destination cluster. This is due to the fact that
close contacts among nodes belonging to different clusters are
rare, since they occur only when two clusters overlap in space.

The same principles that inspired the 2-hop scheme of
Grossglauser and Tse suggest that the most efficient way to
bring a message within the destination cluster is to adopt a 2-
hop relaying scheme (at the cluster level), in which each packet
transits through a random intermediate cluster Cr. This allows
transmitters to exploit all contacts with nodes belonging to a
different cluster.

Once the packet arrives within the destination cluster, we
can exploit well-known schemes developed for mobile network
with uniform, uncorrelated mobility patterns. Indeed, notice
that, under the reshuffling model, each cluster can be regarded
as a micro-universe of nodes forming a classical mobile
network in which nodes move uniformly according to the i.i.d.
model. Since the throughput is bottlenecked in the previous
part of the route, it turns out that, within the destination cluster,
it is convenient to adopt a replication strategy, in which the
packet is first broadcasted to all nodes falling within a suitable
transmission range, and then one of the copies is delivered to
the final destination in one more hop. This replication strategy
allows to reduce the packet delivery delay without negatively
impacting the overall system throughput.

Figure 3 graphically illustrates the routing scheme outlined
so far. There are 4 hops and 3 intermediate relays. In the
first hop, source node s sends the message to a relay node
n1 belonging to an arbitrary cluster Cr different from Cs. In
the second hop, node n1 forwards the message to a node n2

belonging to Cd. In the third hop, the message is replicated by
n2 through a single transmission to several nodes belonging
to the same cluster Cd, exploiting the intrinsic broadcast
capability of the wireless channel. In the fourth hop, one of

5In this paper the terms packet and message are interchangeable

...

...

...... di

ri

ri

Mi

Ti

(Δ+1)ri

Ai

Fig. 4. Illustration of the scheduling scheme in the case of Δ = 2.

the nodes holding a copy of the message (let it be node n3)
delivers the message to the final destination.

B. Scheduling scheme

To implement the above described routing scheme, each
node is equipped with: i) one queue storing its own generated
packets (i.e., packets at hop 1); ii) m− 1 parallel queues, one
per cluster, storing packets at hop 2; iii) one queue for packets
at hop 3; iv) n/m − 1 parallel queues, one for each possible
destination within its own cluster, for packets at hop 4. The
service discipline is First Come First Served (FCFS) at all
queues.

The scheduling scheme is in charge of selecting, at any time
slot, a set of transmitter-receiver pairs which can communicate
successfully according to the protocol model. Recall that the
protocol model requires the adoption of the same transmission
range for all communications occurring in the same slot; on the
other hand, it is convenient to employ different transmission
ranges for the various hops of the routing scheme. For this
reason, each slot is devoted only to the transmission of
packets which are at the same hop of the route. This can be
equivalently done in a round-robin or in a probabilistic fashion.
Following a round-robin approach, we identify every slot by
a sequence number t, and in the generic slot t we allow only
the transmission of packets at hop i = |t|4 + 1, where | · |m
denotes the modulus-m operation.

One simple way to completely eliminate interference among
concurrent transmissions, as required by the protocol model,
is the following. Let ri be the transmission range of packets at
hop i (i = 1, 2, 3, 4). In any slot devoted to hop i, domain O is
divided into squarelets {Ak

i }k of area Ai and edge length ri. A
subset of squarelets, regularly spaced, is selected, and at most
one node is allowed to transmit in each squarelet belonging to
the selected subset. Figure 4 illustrates this construction for a
protocol model having Δ = 2. Shaded squarelets represent one
possible subset of regularly spaced squarelets. Domain Mi

around one of the squarelet denotes the maximum-size region
where we can find a receiver for an arbitrary transmitter falling
in the squarelet. Domain Ti denotes instead the region where
we cannot have any other receiver belonging to a different
communication pair. By spacing the selected squarelets with
step di = (Δ + 2)ri we can assure that one transmitter per
squarelet can be enabled to transmit without generating any
conflict, irrespective of the locations of transmitters within

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.



their squarelets.

C. Performance analysis

To evaluate the performance of our scheme, we proceed
in three steps. In Section IV-C1 we compute the maximum
theoretical throughput of the system. At this stage, we assume
that all queues are constantly backlogged with packets, and
we compute the maximum saturation throughput achieved by
inter-cluster communications, i.e., the aggregate service rate
of all queues storing packets to be transmitted to nodes in
different clusters. This quantity is simpler to analyze, because
it requires only geometric considerations.

In Section IV-C2 we show that nodes’ queues can be loaded
in such a way that the actual system throughput, taking into
account also traffic and queuing effects, is in order sense the
same as the saturation throughput.

Then, having set the parameters of our scheme so as to
maximize the system throughput, we compute in Section
IV-C3 the resulting end-to-end delivery delay, showing that we
cannot achieve any superior performance in terms of delay (as
a secondary goal), given that we take throughput maximization
as the primary goal.

1) Saturation throughput analysis: To evaluate the maxi-
mum throughput achievable in the system, we first consider
the amount of data that can be simultaneously transferred
in one slot between nodes belonging to different clusters.
We emphasize that we are considering here arbitrary pairs
of communicating nodes, with the only constraint that for
each pair the transmitter and the receiver belong to different
clusters.

We have the following result:
Theorem 1: In the cluster sparse regime, the optimal trans-

mission range to be used for inter-cluster communications is
Θ(R

√
m/n). With this optimal choice, the amount of data

that can be transferred in one slot among nodes belonging to
different clusters is Θ(mR2).

Proof: The proof is reported in Appendix A.
As immediate consequence of Theorem 1, we obtain:
Corollary 1: No scheduling-routing scheme can achieve a

system throughput larger (in order sense) than mR2.
Proof: Notice that we can neglect flows established

between nodes belonging to the same cluster. Hence we can
assume that all flows require at least one inter-cluster commu-
nication. A simple upper bound to the maximum achievable
throughput in the system is to assume that sources have to just
perform a single inter-cluster communication to an arbitrary
node belonging to a different cluster, in order to deliver their
packets to the destination. Let r∗ be the transmission range
used to perform this single hop (at any time slot). For any
value of r∗, the scheduling scheme illustrated in Figure 4 is
optimal, since it allows to pack (in order sense) the maximum
possible number of concurrent transmissions over the network
area. Then, according to Theorem 1, the best choice is to
set r∗ = Θ(R

√
m/n), which allows to achieve an aggregate

throughput Θ(mR2).

2) Maximum achievable throughput: We are now ready to
derive our main result on the maximum throughput achievable
by our scheme:

Theorem 2: The maximum sustainable throughput of our
scheme is Λ = Θ(mR2) by employing a transmission range
ri = Θ(R

√
m/n) for i = 1, 2 and ri = Θ(1) for i = 3, 4.

The corresponding per-node throughput is λ = Θ(mR2/n).
Proof: First, we observe that by adopting the optimal

transmission range ri = Θ(R
√

m/n) for inter-cluster commu-
nications, in saturated conditions, we can sustain a throughput
Θ(mR2) both at the first and second hop. Indeed, at the first
hop packets are sent by construction to any node belonging to
an arbitrary different cluster. In the second hop, instead, nodes
have packets to transmit to nodes belonging to any cluster they
come in contact with (recall that each node has m− 1 queues
associated to the second hop, one for each destination cluster).

Second, we note that: 1) the network of queues modeling
the system is an acyclic network of FIFO queues (this because,
by construction, every packet along its path traverses queues
in increasing order of associated hop). 2) by symmetry with
respect to all of the nodes, our scheme uniformly distribute
the traffic among all the nodes/queues, so that all queues in
the network storing packets at hop i are subject to the same
ingress packet arrival rate. As a consequence of 1) and 2) all
queues storing packets at hop i = 1, 2 are jointly stable under
an arrival rate that is strictly below the service rate evaluated
in saturated conditions (i.e. the saturation throughput of inter-
cluster communications).

Once a packet arrives in its destination cluster, we can
exploit well known schemes developed for networks with i.i.d.
mobility. In principle, we could get an optimal per-node intra-
cluster throughput Θ(1) by employing the 2-hop scheme of
Grossglauser and Tse [2], using the same transmission range
ri = Θ(R

√
m/n) adopted in previous hops, which well

matches the node density within a cluster. However, this is
a bad choice, because by so doing the throughput would be
anyway bottlenecked by the previous hops, while we would
pay excessive intra-cluster delays for nothing. Therefore in the
destination cluster the optimal choice is to exactly match the
throughput achievable in the previous hop, trading off capacity
and delay. Indeed it is possible to enlarge the transmission
range within the destination cluster up to ri = Θ(1) without
affecting the overall system throughput. This allows to adopt a
replication scheme according to which the packet is forwarded
in the third hop to Θ( n

mR2 ) nodes (all nodes falling within
transmission range r3 = Θ(1) of the sender) with a single
broadcast transmission. Then the first node holding a copy of
the message that arrives within transmission range r4 = Θ(1)
of the destination, eventually delivers the packet in hop 4. By
so doing, the per-node throughput achievable at hop i = 3, 4
is reduced to Θ(mR2

n ), for effect of the reduced spatial reuse,
however the delay performance of the scheme is greatly
improved thanks to replication (as better explained in the
following delay analysis).

Combining Corollary 1 and Theorem 2, it immediately
descends:

Corollary 2: Our proposed scheduling-routing scheme is
in order sense throughput-optimal.

3) Delay Analysis: Turning our attention to the delay
performance of our scheme, we focus on a particular packet
belonging to a generic flow s → d (we can assume that s
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and d belong to different clusters) and evaluate the different
components of its end-to-end delivery delay, denoted by D.
Let Di be the total delay experienced by the packet at hop i.
We have D =

∑4
i=1 Di.

Our first step is to compute the average service time (i.e.,
the access delay) of the queues associated with the four hops
done by the packet. Let Da

i be the average service time of
hop i. As shown in Appendix B, we have

Da
1 = Θ

(
n

mR2

)
; Da

2 = Θ
(

n
R2

)
Da

3 = Θ
(
1
)

; Da
4 = Θ

(
mR4

n

) (1)

We observe that, at each queue, the total delay would be
equal to the access delay in the absence of any contention
with other packets in the network (both in the same queue
and in the queues of other nodes competing for the wireless
medium access). Similarly to previous work, we can shown
that, at any hop, contention with other packets in the network
does not change the order of magnitude of the total delay with
respect to the access delay. As a result,

Theorem 3: In the cluster sparse regime, the delay perfor-
mance of our scheme for the reshuffling model satisfies

D = Θ
(

max
{

n

R2
,
mR4

n

})
(2)

Proof:
Considering the first two hops, we observe that contention

among different queues (i.e., different transmitter-receiver
pairs) within the same squarelet can be neglected, since by
construction only a finite number of such pairs fall w.h.p. in the
squarelet. Furthermore, the queuing delay at each queue is of
the same order of the access delay, because the whole system
is a stable acyclic network of FIFO queues. For the analysis
of the third and fourth hops, instead, we can apply previous
results obtained for networks in which node movements are
i.i.d [6] (recall once more that relative movements of the nodes
within a cluster are i.i.d.) and claim that D3 = Θ(Da

3) and
D4 = Θ(Da

4) under the condition that the injected traffic is
strictly less than the saturation throughput. Since Di = Θ(Da

i )
for all i, we have D = Θ(

∑4
i=1 Da

i ), and the result follows
applying the expressions in (1).

We observe that similar arguments have been applied in [7],
[9], [4], [6] in the case of uncorrelated i.i.d. mobility, showing
that the end-to-end delay equals, in order sense, with the
sum of the access delays whenever the traffic injected in the
network is strictly less than the saturation throughput.

Moreover we can prove the following result, which shows
that our scheme achieves optimal delay performance among
the class of schemes maximizing the throughput:

Theorem 4: Any scheduling-routing scheme that achieves
an aggregate throughput Λ = Θ(mR2) necessarily induces a

delay D = Ω
(
max

{
n

R2 , mR4

n

})
.

Proof: To achieve throughput Λ = mR2 it is necessary
to employ a transmission range Θ(R

√
m/n) for inter-cluster

communications, as a consequence of Theorem 1. Notice that
using this transmission range it is not possible to get any
delay gain (in order sense) by employing packet replication

during inter-cluster communications (only Θ(1) nodes can
simultaneously receive the message). Thus necessarily a delay
D = Ω(Da

2) must be paid, by message m to reach the destina-
tion cluster Cd, since the last relay along its path that does not
belong to Cd, necessarily, has to come in contact with some
node in Cd before it can transmit m. Within the destination
cluster we can apply the general trade-off D = Ω(nλ2)
derived in [5], [6] for networks with i.i.d mobility. Using
q = n/m in place of n in this trade-off formula, and plugging

in λ = mR2/n, we obtain a delay D = Ω(mR4

n ) due to intra-
cluster communications. Combining to above two constraints
on D due to inter- and intra- cluster communications, we get
the assertion.

V. CLUSTER SPARSE REGIME: CRYSTALLIZED MODEL

We describe our scheduling-routing strategy for the crys-
tallized model by adapting the scheme previously defined for
the reshuffling case. In particular, we will replace the 2-hop
replication technique previously adopted within the destination
cluster with a multi-hop communication similar to the one
developed for static nodes by Gupta-Kumar [3]. Indeed, notice
that in the crystallized model each cluster can be regarded as a
micro-universe in which nodes are still (the relative positions
of nodes within a cluster are fixed).

Let λM and DM be the throughput and the delay achievable
by the multi-hop communication phase performed within the
destination cluster. Applying standard results for a random
network of q static nodes [3], [7], a maximum per-node
throughput λ̂M =

√
1/(q log q) can be sustained within the

destination cluster (as long as sources and destinations are
chosen irrespective of their locations in the cluster area),
using a transmission range r̂M = R

√
log q/q, at the expense

of a delay D̂M =
√

q/ log q. Moreover, by increasing the
transmission range it is possible to achieve capacity-delay
trade-offs characterized by the law DM = Θ(qλM ) [7].

Similarly to the reshuffling model, the optimal design princi-
ple is to match the throughput achievable within the destination
cluster with that provided by the inter-cluster communications
performed in the previous hops, i.e., λM = λ = mR2/n.

Depending on the system parameters, two cases are possi-
ble. If λ̂M = Ω(mR2/n), which occurs for β ≤ (1−ν)/4, the
intra-cluster multi-hop phase can sustain a throughput higher
than or equal to the maximum system throughput λ = mR2/n.
In this case, by properly selecting the transmission range
within the destination cluster we can obtain λM = mR2/n,
and from the trade-off law DM = Θ(qλM ) we get a cor-
responding delay DM = Θ(R2). Since Da

2 = Θ(n/R2) =
ω(R2) for the considered range of values of β, the overall
end-to-end delay is dominated by the second hop, and we
have D = Θ(n/R2) = Θ(m/λ).

If (1 − ν)/4 < β < (1 − ν)/2 (recall that we are in the
cluster sparse regime, in which β < (1 − ν)/2), we have
λ̂M = o(mR2/n), i.e., the last multi-hop phase, as described
so far, cannot sustain the maximum throughput λ = mR2/n
achievable by previous hops. In this case the optimal scheme
is a bit trickier, as it requires to modify also the forwarding
strategy of the second hop. Indeed, notice that we can increase
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throughput λM beyond λ̂M by reducing the number of mul-
tiple hops to be performed within the destination cluster, in
such a way that the resulting intra-cluster throughput perfectly
matches the throughput achievable in previous hops. To obtain
this, we need to modify the forwarding rule of the second hop,
forcing the relay node n1 to send messages destined to d only
to those nodes n2 ∈ Cd which fall within a proper distance
RM = o(R) from d. By so doing, we reduce the length of
the routes traversed by packets within the destination cluster,
increasing the throughput λM that can be sustained by the
multi-hop phase6. In particular, to achieve λM = λ = mR2/n,

we need to select RM = Θ
(√

q
R2 log q

)
. We observe that this

change in the forwarding rule of the second hop requires to
modify also the internal architecture of the nodes, providing
each node with n − m different FIFO queues, one for each
destination belonging to a different cluster, in which to store
packets at hop 2. Indeed, in this way we can still guarantee
(in saturated traffic conditions) that, in slots devoted to hop
2, whenever a node n1 ∈ Ca comes in proximity of a node
n2 ∈ Cb, with Ca �= Cb, it can always find a packet at the
head of one queue devoted to hop 2, whose corresponding
destination d lies within Cb at a distance not greater than RM

from n2. In this way nodes can exploit all contacts with other
nodes belonging to a different cluster, hence no throughput
reduction occurs at hop 2 due to the modified forwarding rule.

Turning our attention to the delay of this modified scheme,
the access delay of the second hop is increased to Da

2 =
Θ(n/R2

M ), because a tagged packet can be forwarded only
to those nodes within the destination cluster Cd which lie in
a circle of radius RM centered at the destination7. The delay
component due to the multi-hop phase is instead equal to the
number of hops RM/r̂M = Θ

(
q/(R2 log q)

)
. In the consid-

ered range of values for β, the end-to-end delay is always
dominated by the second hop, hence D = Θ(mR2 log n) =
Θ(nλ log n).

At last, we would like to emphasize that using similar
arguments as for the reshuffling model, it can be proved that no
scheme can achieve better delay performance in order sense,
while guaranteeing the optimal throughput λ = mR2/n.

VI. CLUSTER DENSE REGIME

In the cluster dense regime, which occurs when ν+2β > 1,
clusters are highly overlapped at any point of the network area.
Indeed, applying standard results borrowed from the theory of
random geometric graphs [24], it can be shown that every
point of the network area is w.h.p. covered by a number of
clusters Θ(mR2/n) = Θ(nν+2β−1). This implies that nodes
are almost uniformly distributed over the network domain,
hence the typical distance at which one node finds the node
closest to it is Θ(1). Such closest node, however, belongs
w.h.p. to a different cluster. To see this, note that the density of
nodes within a cluster is q

πR2 = o(1), resulting into a typical
distance ω(1) between nodes belonging to the same cluster.

6To sustain a throughput mR2/n = ω(1/ log n), it is necessary that relay
n1 delivers the packet directly to the final destination d.

7The access delay Da
2 is Θ(n/r̂2

M ) when packets have to be delivered
directly to the final destination at hop 2.

This fact dramatically limits the degree of freedom that we
have in the design of a scheduling-routing scheme specifically
targeted at maximizing the system throughput. Indeed, any
scheme requiring at some stage that packets are transferred
between nodes belonging to the same cluster must adopt a
transmission range ω(1) for such intra-cluster communica-
tions, resulting into a per-node throughput λ = o(1).

On the contrary, a simple 2-hop scheme similar to the
one proposed by Grossglauser-Tse [2], according to which
packets are sent from source s to destination d though a single
relay node that does not belong neither to Cs nor to Cd, can
effectively employ a transmission range as short as Θ(1) (only
inter-cluster communications are required), thus achieving a
per-node throughput λ = Θ(1), at the expense of a delivery
delay D = Θ(n). Such throughput-optimal scheme works for
both the reshuffling and the crystallized model.

VII. CONCLUSIONS

Correlated nodes movements have huge impact on the
throughput and delay performance of mobile ad hoc networks.
In this paper we have provided a first characterization of
the scaling laws of networks with correlated node mobility,
devising novel scheduling-routing schemes which maximize
the per-node throughput as primary goal. Being the first
analysis of this kind, we have considered a simplified group
mobility model, yet flexible enough to explore various degrees
of correlation in the nodes mobility process. Our study reveals
the existence of a wide range of correlated node movements
which can lead to significant better performance than that
achievable under independent nodes movements.
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APPENDIX A
PROOF OF THEOREM 1

Let ri be the transmission range used in a generic slot i
devoted to inter-cluster communications among arbitrary nodes
belonging to different clusters. We first observe that, according
to the scheduling scheme illustrated in Figure 4, at most one
communication can be enabled in each square of area d2

i .
Hence we can express the average number E[Ni] of packets
that can be transmitted over the entire network during a slot
devoted to inter-cluster communications as

E[Ni] =
n

d2
i

P(active squarelet | i) (3)

where P(active squarelet | i) is the probability that for a
generic squarelet Ak

i and n
d2

i
is the number of squarelets , we

can find: i) a transmitting node a residing in the considered
squarelet; ii) a receiving node b at distance at most ri from a
(given the location of a), and belonging to a different cluster
than the one of a. Let P(a|i) and P(b|a, i) denote the occur-
rence probability of the two events above, respectively. Since
the positions of nodes belonging to different clusters are in-
dependent, we have P(active squarelet | i) = P(a|i)P(b|a, i).

To evaluate P(a|i), we distinguish two cases. If ri = Ω(R),
a transmitting node is surely found in Ak

i provided that at least
one cluster centre falls within it. Hence

P(a|i) = 1 −
(

1 − r2
i

n

)m

for ri = Ω(R) (4)

The above expression can be approximated as
P(a|i) ∼ mr2

i /n when r2
i = O(n/m). Otherwise, for

r2
i = ω(n/m), P(a|i) saturates to 1.

If ri = o(R), probability P(a|i) can be approximated by the
joint occurrence of the following two events: i) Ak

i is entirely
covered by one cluster8; ii) given the occurrence of event i),
at least one node belonging to the covering cluster is found in
Ak

i . Condition i) above occurs when at least one cluster centre

8a transmitter could be found in Ak
i even if the squarelet were partially

covered by a cluster. This approximation does not affect the results, in order
sense, as one can show by considering Ak

i entirely covered by a cluster even
if just a corner of it is touched by the cluster.

R

√
Ai

Qa

a

ca

R − ri/
√

2

Fig. 5. The shaded disk denotes the region where a cluster center must fall
so that the selected squarelet is completely covered by the cluster containing
transmitting node a.

falls within a disk of radius R − ri/
√

2 around the squarelet
(see disk Qa in Figure 5). While, condition ii) above occurs

with probability 1 −
(
1 − r2

i

R2

)q

. It follows,

P(a|i) =

[
1 −

(
1 − (R − ri/

√
2)2

n

)m]
·

·
[
1 −

(
1 − r2

i

R2

)q]
for ri = o(R) (5)

The expression above can be approximated as P(a|i) ∼ r2
i

when qr2
i = O(R2). Otherwise for qr2

i = ω(R2) we have
P(a|i) ∼ mR2/n.

We observe that in all cases P(a|i) increases linearly with
r2
i until it reaches a saturation value.

To evaluate P(b|a, i) in the cluster sparse regime, we again
distinguish two cases. If ri = Ω(R) a candidate receiver is
surely found within distance ri from a if at least one cluster
center (different from the one of a) falls within a disk of radius
ri centered at a. Hence,

P(b|a, i) = 1 −
(

1 − r2
i

n

)m−1

for ri = Ω(R) (6)

The above expression can be approximated as P(b|a, i) ∼
mr2

i /n when r2
i = O(n/m). Otherwise, for r2

i = ω(n/m),
P(b|a, i) saturates to 1.

If ri = o(R), probability P(b|a, i) can be approximated9 by
the joint occurrence of the following two events: i) the disk of
radius ri centered at a is entirely covered by a cluster different
from the one of a; ii) given the occurrence of event i), at least
one node belonging to the covering cluster is found in Ak

i .
Condition i) above occurs when at least one out of m − 1
cluster centres falls within a disk of radius R− ri centered at
a (see disk Qb in Figure 6). On the other hand, condition ii)

9The approximation does not affect the result, in order sense, for reasons
analogous to our approximation of P(a|i).
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R − ri

ri

R

Qb

cb

a
b

Fig. 6. The shaded disk denotes the region where a cluster center must fall
so that the disk of radius ri around transmitter a is completely covered by
the cluster containing receiver b.

above occurs with probability 1 −
(
1 − r2

i

R2

)q

. We obtain

P(b|a, i) =

[
1 −

(
1 − (R − ri)2

n

)m−1
]
·

·
[
1 −

(
1 − r2

i

R2

)q]
for ri = o(R) (7)

The expression above can be approximated as P(b|a, i) ∼ r2
i

when qr2
i = O(R2). Otherwise for qr2

i = ω(R2) we have
P(b|a, i) ∼ mR2/n.

We observe again that P(b|a, i) increases linearly with r2
i

until it reaches a saturation value.
Given that d2

i = Θ(r2
i ), putting things together we obtain:

E[Ni] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(mri)
2

n ri = Ω(R) , ri = O(
√

n/m)
n
r2

i
ri = Ω(R) , ri = ω(

√
n/m)

nr2
i ri = o(R) , ri = O(R

√
m/n)

m2R4

nr2
i

ri = o(R) , ri = ω(R
√

m/n)
(8)

From (8) we conclude that if ri = Ω(R) we can obtain at
most E[Ni] = m by choosing ri =

√
n/m. This corresponds

to using a transmission range equal to the typical distance
between cluster centers. Instead, if ri = o(R) it is possible to
achieve at most E[Ni] = mR2 by selecting ri = R

√
m/n.

This corresponds to using a transmission range which is
strictly related to the density of nodes within clusters, which
is equal to n/(mR2). In particular, with this choice ri is equal
to the typical distance between nodes belonging to the same
cluster.

APPENDIX B
COMPUTATION OF THE ACCESS DELAYS

Since we are interested to an order sense evaluation of the
access delay of each hop, we can ignore all factors whose
effect on the access delay can be bounded by a multiplicative
constant, such as: i) the fact that only one slot out of four is

devoted to transmission of packets at a given hop; ii) only a
subset of squarelets can be activated in a given slot.

In the first hop, the tagged packet has to wait until the source
node s gets in contact with a node n1 belonging to an arbitrary
different cluster Cr (Figure 3). In a slot devoted to hop 1, the
probability P(n1|s, 1) that a generic node n1 belonging to a
cluster Cr different from Cs gets in contact with s (i.e., lies at
distance at most r1 from s) is analogous to quantity P(b|a, i)
in (7) (see Figure 6). Since we use r1 = R

√
m/n, we have

P(n1|s, 1) ∼ R2m/n.
The packet access delay at s, expressed in number of slots,

follows a geometric distribution Geom(P(n1|s, 1)), since the
positions of all nodes regenerate from slot to slot. Hence the
average access delay at the fist hop is:

Da
1 = Θ

( n

mR2

)
The access delay in the second hop is similar to the one

of the first hop, however in this case n1 can transmit the
tagged packet only when it gets in contact with a node n2

belonging to the specific cluster containing the destination. In
a slot devoted to hop 2, the probability P(n2|n1, 2) that n1

gets in contact with a generic node n2 belonging to cluster
Cd can be computed as:

P(n2|n1, 2) =
(R − r2)2

n

[
1 −

(
1 − r2

2

R2

)q]

Since we use r2 = R
√

m/n, we have P(n2|n1, 2) ∼ R2/n.
Again, the packet access delay at n1, expressed in number
of slots, follows a geometric distribution Geom(P(n2|n1, 2)),
thus:

Da
2 = Θ

( n

R2

)
Note that Da

2 always dominate Da
1 .

To compute Da
3 and Da

4 we can apply standard results [7],
[9], [6], [5] obtained for the i.i.d mobility model, since relative
movements of nodes within each cluster area are i.i.d.

In particular, we have Da
3 = Θ(1), since n2 can broadcast

the packet in any slot devoted to the third hop without any
other requirement.

After the third hop, a number Θ( n
mR2 ) of nodes within the

destination cluster hold a copy of the tagged packet, hence
Da

4 corresponds to the average time that it takes before the
first one of these nodes arrive at distance r4 = Θ(1) from
the destination. In a slot devoted to hop 4, the probability
P(n3|d, 4) that at least one node holding a copy of the tagged
packet falls within transmission range r4 from d is given by

P(n3|d, 4) = 1 −
(

1 − r2
4

R2

) n
mR2

= Θ
( n

mR4

)
Since the access delay of the fourth hop follows a geometric
distribution Geom(P(n3|d, 4)), we have:

Da
4 = Θ

(
mR4

n

)

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.


