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Abstract

Different sufficient conditions for stochastic comparisons between random vectors have

been described in the literature. In particular, conditions for the comparison of random

vectors having the same copula, i.e., the same dependence structure, may be found in

Müller and Scarsini (2001). Here we provide conditions for the comparison, in the usual

stochastic order sense and in other weaker stochastic orders, of two time transformed

exponential bivariate lifetimes having different copulas. Some examples of applications

are provided too.

AMS Subject Classification: 60E15, 60K10.

Key words and phrases: Multivariate Stochastic Orders, Positive Dependence Orders,

Bivariate Lifetimes, Survival Copulas, Archimedean Copulas, TTE Models.



1 Introduction and preliminaries

Let X = (X1, X2) be a pair of exchangeable lifetimes. The vector X is said to be defined

via a Time Transformed Exponential Model (shortly, TTE model) if its joint survival

function F can be written as

F (t, s) = W (R(t) +R(s)), t, s ≥ 0, (1.1)

for a suitable one-dimensional, continuous, convex and strictly decreasing survival func-

tion W and for a suitable continuous and strictly increasing function R : [0,+∞) →

[0,+∞) such that R(0) = 0 and limt→∞R(t) = ∞. We will write in this case that

X ∼ TTE(W,R). Observe that, for a TTE model, the marginals X1 and X2 are ex-

changeable and have survival functions G(t) = F (t, 0) = W (R(t)), t ≥ 0.

TTE models have been recently considered in literature as an appropriate way to

describe bivariate lifetimes (see Bassan and Spizzichino (2005b) and references therein):

their main characteristic is that they ”separate”, in a sense, dependence properties (based

onW ) and aging (based on R). TTE models include relevant cases of dependent bivariate

lifetimes, like independent or Schur constant laws (take W (x) = Wλ(x) = exp(−λx) and

R(t) = t, respectively), and can be derived for example from frailty models (see Marshall

and Olkin, 1988, or Oakes, 1989). In fact, in the frailty approach it is assumed that X1

and X2 are independent conditionally on some random environmental factor Θ, having

conditional survival marginals Gθ(t) = IP[Xi > t|Θ = θ] = H(t)θ for some survival

function H. Thus, for this model,

F (t, s) = E[H(t)ΘH(s)Θ] = E[exp(Θ(lnH(t))) exp(Θ(lnH(s)))]

= W (− lnH(t)− lnH(s)) = W (R(t) +R(s)), t, s ≥ 0,

where W (x) is the Laplace transform of the density of Θ, i.e.,

W (x) = E[exp(−xΘ)], x ≥ 0, and R(t) = − lnH(t), t ≥ 0. (1.2)

In this paper we will provide simple conditions to compare, in different stochastic ways,

two bivariate lifetimes X ∼ TTE(WX, RX) and Y ∼ TTE(WY, RY). These conditions

are essentially based on comparisons, again in some stochastic sense, between WX and

WY (or, better, between the univariate variables X∗ and Y ∗ having survival functions

WX and WY, respectively). Thus, in contrast to the results presented in Müller and

Scarsini (2001), we will provide here simple conditions for the stochastic comparison

between bivariate lifetimes having different copulas. Some examples of applications will

be also provided.

Some preliminary definitions and results should be recalled in order to describe the

main statements.

First, we recall that the copula of a random vector X = (X1, X2) is an useful tool to

describe the structure of dependence between its components, and it is defined by

C(u, v) = F (G−1(u), G−1(v)), u, v ∈ [0, 1],
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where G is the cumulative distribution function of the marginals Xi. We also recall the

notion of survival copula, that similarly describes the dependence between the compo-

nents of the random vector, but considering the survival function G of the marginals Xi

instead of their cumulative distribution G:

K(u, v) = F (G
−1
(u), G

−1
(v)), u, v ∈ [0, 1].

Further details, properties and applications of these two notions may be found in Nelsen

(1999).

Among copulas, particularly interesting is the class of Archimedean copulas: a copula

is said to be Archimedean if it can be written as

C(u, v) = φ−1(φ(u) + φ(v)) ∀u, v ∈ [0, 1] (1.3)

for a suitable decreasing and convex function φ : [0, 1] → [0, 1] such that φ(1) = 0

(and similarly for survival copulas). The function φ is usually called the generator of

the Archimedean copula C. As pointed out in Nelsen (1999), many standard bivariate

distributions (such as the ones in Gumbel, Frank, Clayton and Ali-Mikhail-Haq families)

are special cases of this class. We also refer the reader to Müller and Scarsini (2005) or

Bassan and Spizzichino (2005a), and references therein, for details, properties and recent

applications of Archimedean copulas.

It is interesting to observe, and easy to verify, that if X ∼ TTE(W,R) then

K(u, v) = W (W−1(u) +W−1(v)),

i.e., its survival copula K is Archimedean with generator W−1. Viceversa, bivariate

survival functions F̄ that admit a (strict) Archimedean survival copula can be written

in the form as in (1.1), i.e., they can be defined via a TTE(W,R) model for suitable

functions W and R.

Also, considered the vector Xt = [(X1 − t,X2 − t)|X1 > t,X2 > t] of the residual

lifetimes at time t ≥ 0, then Xt ∼ TTE(Wt, Rt), i.e., it has joint survival function

F t(x, y) given by

F t(x, y) = Wt(Rt(x) +Rt(y)) (1.4)

where

Wt(x) =
W (2R(t) + x)

W (2R(t))
, (1.5)

and where

Rt(x) = R(t+ x)−R(t), (1.6)

for t, x ≥ 0.

Thus, the survival copula of Xt is defined by

Kt(u, v) = Wt(W
−1
t (u) +W−1

t (v)), u, v ∈ [0, 1],
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where Wt is defined as in (1.5).

Now we recall the definitions of the stochastic orders considered throughout the paper.

Further details, equivalent definitions and applications may be found in Shaked and

Shanthikumar (2007) and Kaas et al. (2001).

Definition 1.1. Let X and Y be two nonnegative random variables. Then

a) X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if

E[φ(X)] ≤ E[φ(Y )] for all increasing function φ : R→ R for which the expectations

exist, or, equivalently, if FX(t) ≤ F Y (t) for all t ∈ R, where FX and F Y are the

survival functions of X and Y , respectively..

b) X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y )

if they both are absolutely continuous and the ratio fY (t)
fX(t)

is an increasing function

in t, where fX and fY are the density functions of X and Y , respectively.

c) X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if

the ratio FY (t)

FX(t)
is an increasing function in t.

d) X is said to be smaller than Y in the increasing convex [increasing concave] or-

der (denoted by X ≤icx [icv] Y ) if E[φ(X)] ≤ E[φ(Y )] for all increasing convex

[increasing concave] functions φ : R→ R for which the expectations exist.

Definition 1.2. Let X and Y be two random vectors. Then

a) X is said to be smaller than Y in the usual multivariate stochastic order (denoted

by X ≤st Y) if E[φ(X)] ≤ E[φ(Y)] for all increasing function φ : Rn → R for

which the expectations exist.

b) X is said to be smaller than Y in the upper orthant order (denoted by X ≤uo Y)

if FX(x1, . . . , xn) ≤ F Y (x1, . . . , xn) for all x = (x1, . . . , xn), where FX and F Y are

the survival functions of X and Y, respectively, or, equivalently, if E[
∏n

i=1 gi(Xi)] ≤

E[
∏n

i=1 gi(Yi)] for every collection {g1, . . . , gn} of univariate nonnegative increasing

functions for which the expectations exist.

c) X is said to be smaller than Y in the lower orthant order (denoted by X ≤lo

Y) if FX(x1, . . . , xn) ≥ GY (x1, . . . , xn) for all x = (x1, . . . , xn), where FX and

FY are the distribution functions of X and Y, respectively, or, equivalently, if

E[
∏n

i=1 hi(Xi)] ≥ E[
∏n

i=1 hi(Yi)] for every collection {h1, . . . , hn} of univariate non-

negative decreasing functions for which the expectations exist.

d) X is said to be smaller than Y in the upper orthant-convex order (X ≤uo−cx Y)

if E[
∏n

i=1 gi(Xi)] ≤ E[
∏n

i=1 gi(Yi)] for every collection {g1, . . . , gn} of univariate

nonnegative increasing convex functions, for which the expectations exist.
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e) X is said to be smaller than Y in the lower orthant-concave order (X ≤lo−cv Y)

if E[
∏n

i=1 hi(Xi)] ≤ E[
∏n

i=1 hi(Yi)] for every collection {h1, . . . , hn} of univariate

nonnegative increasing functions such that hi is concave on the union of the supports

of Xi and Yi, i = 1, . . . , n, for which the expectations exist.

We recall that the multivariate usual stochastic order implies all the orders ≤uo,

≤lo,≤uo−cx and ≤lo−cv, but not viceversa.

We also recall a positive dependence notion that will be mentioned along this paper

(see again Shaked and Shanthikumar, 2007, for details).

Definition 1.3. A random vector X = (X1, . . . , Xn) is said to be conditionally increasing

in sequence (CIS) if, for i = 2, . . . , n,

[Xi|X1 = x1, . . . , Xi−1 = xi−1] ≤st [Xi|X1 = x′1, . . . , Xi−1 = x′i−1]

for all xj ≤ x′j, j = 1, . . . , i − 1, where [Xi|X1 = x1, . . . , Xi−1 = xi−1] denotes the

conditional distribution of Xi given X1 = x1, . . . , Xi−1 = xi−1 for all x1, . . . , xi−1 ∈ R.

Note that, in the bivariate case, X = (X1, X2) is CIS if [X2|X1 = u1] ≤st [X2|X1 = u2]

for all u1 ≤ u2 (i.e., if X2 is stochastically increasing in X1). One of the reasons of interest

in the CIS property is due to the following statement (Shaked and Shanthikumar, 2007,

Theorem 6.B.4).

Lemma 1.1. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two n-dimensional random

vectors. If either X or Y is CIS and

a) X1 ≤st Y1,

b) [Xi|X1 = x1, . . . , Xi−1 = xi−1] ≤st [Yi|Y1 = x1, . . . , Yi−1 = xi−1] for all xj, j =

1, . . . , i− 1,

then X ≤st Y.

Conditions for a random vector X having an Archimedean copula (or survival copula)

to be CIS may be found in Müller and Scarsini (2005).

Finally, we remark that random variables having log-convex densities play a crucial

role in the next section. Log-convexity and log-concavity are popular concepts both

in reliability and in economics (see for example Shaked and Shanthikumar, 1987, or

An, 1998). Moreover, most of the Archimedean copulas considered in the applications,

like the Clayton, the Gumbel-Barnett or the Ali-Mikhail-Haq copulas, are such that

their corresponding functions W , inverses of their generators, are survival functions of

variables having log-convex densities, thus satisfy the assumptions of the main results in

Section 2.
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Some conventions that are used in this paper are the following. By “increasing” and

“decreasing”, we mean “nondecreasing” and “nonincreasing”, respectively. The relation

=st stands for equality in law. For any random vector X, or random variable, we denote

by [X|A] a random vector, or random variable, whose distribution is the conditional

distribution of X given A.

In the next section we will state and prove the main results, while Section 3 deals with

examples of applications.

2 Results

Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY) be two bivariate

lifetimes described by two different time-transformed exponential models, i.e, letX andY

be two bivariate random vectors with survival functions FX(t, s) = WX(RX(t) +RX(s))

and FY(t, s) = WY(RY(t) + RY(s)), respectively, for two suitable univariate survival

functions WX and WY and for two suitable continuous and strictly increasing functions

RX, RY : [0,+∞)→ [0,+∞) such that RX(0) = RY(0) = 0 and

lim
t→∞

RX(t) = lim
t→∞

RY(t) = +∞.

Note that, in this case, ḠX(t) = WX(RX(t)) and ḠY(t) = WY(RY(t)) are the univariate

marginal survival functions of X and Y, respectively, i.e., the survival functions of Xi

and Yi, respectively.

Let us denote with X∗ and Y ∗ the univariate lifetimes whose survival functions are

WX and WY, respectively.

A first immediate sufficient condition one can prove to get stochastic comparisons

between X and Y is the following.

Theorem 2.1. Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY).

If: (i) RX = RY ≡ R and (ii) X∗ ≤st Y
∗, then X ≤uo Y.

Proof. It is enough to observe that

FX(t, s) = WX(R(t) + R(s)) ≤ WY(R(t) + R(s)) = FY(t, s)

for all s, t ≥ 0, where the inequality follows from X∗ ≤st Y
∗.

An immediate question one can consider is if, under the same assumptions, it is possible

to get stronger comparisons between X and Y. Actually, the answer to this question

is negative, as shown in Counterexample 2.1 below. However, under some additional

assumptions it is possible to get X ≤st Y, as shown in the following statement.

For it, let us denote with wX and wY the density functions of the random variables X∗

and Y ∗, i.e., let wX(x) = −W
′
X(x) and wY(x) = −W

′
Y(x).

5



Theorem 2.2. Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY),

and assume that the derivatives W ′
X and W ′

Y exist. If: (i) RX = RY ≡ R, (ii) X∗ ≤lr Y
∗

and (iii) X∗, or Y ∗, has log-convex density, then X ≤st Y.

Proof. Let us suppose that X∗ has density function wX that is log-convex. Then by

Proposition 1 in Averous and Dortet-Bernadet(2004), it follows that X is CIS. Thus, by

Lemma 1.1 in order to prove that X ≤st Y it is sufficient to verify that: (a) X1 ≤st Y1,

and (b) [X2|X1 = u] ≤st [Y2|Y2 = u] for all u ∈ R+.

By assumption (ii) it holds X∗ ≤st Y
∗, and therefore, clearly, WX(R(t)) ≤ WY(R(t))

for all t ≥ 0, i.e., X1 ≤st Y1.

With straightforward computations it is easy to verify that

F [X2|X1=u](t) =
wX(R(t) +R(u))

wX(R(u))

for all u, t ≥ 0 (and similarly for the survival function of [Y2|Y1 = u]).

Now observe that [X2|X1 = u] ≤st [Y2|Y2 = u] for all u if, and only if,

F [X2|X1=u](t) ≤ F [Y2|Y1=u](t) ∀t ≥ 0

i.e., if, and only if,

wX(R(t) +R(u))

wX(R(u))
≤

wY(R(t) +R(u))

wY(R(u))
∀t ≥ 0.

This inequality is clearly verified if wY(x)
wX(x)

is an increasing function in x, that is equivalent

to X∗ ≤lr Y
∗, which is satisfied again by assumption (ii).

Note that the assumption (ii) in the above theorem can not be replaced by a weaker

one, like a comparison between X∗ and Y ∗ in the usual stochastic or the hazard rate

order, as shown in the following counterexample.

Counterexample 2.1. Let X ∼ TTE(WX, R) and Y ∼ TTE(WY, R), with

WX(x) = exp{1− ex}, WY(x) =
1

1 + x
,

(inverses of the generators of the Gumbel-Barnett copula and of the Clayton copula,

respectively) and

R(t) =
et − 1

2
.

It can be easily verified with straightforward calculations that Y ∗ has log-convex density

and that inequality X∗ ≤hr Y ∗ holds, while X∗ ≤lr Y ∗ does not hold. It can also be

observed that it holds X ≤uo Y, but not X ≤lo Y. In fact, for example, taking t0 = 0.1

and s0 = 0.2, it is FX(t0, s0) ≤ FY(t0, s0) (as one can verify with a direct computa-

tion). Thus, it can not be X ≤st Y. Moreover, since the hazard rate order implies the

usual stochastic order, this example also shows that the usual univariate stochastic order

between X∗ and Y ∗ does not imply the usual multivariate stochastic order between the

corresponding bivariate lifetimes.
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The previous statement can be generalized to the case where RX and RY are different

functions.

Corollary 2.1. Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY),

and assume that the derivatives W ′
X and W ′

Y exist. If: (i) RX(t) ≥ RY(t) for all t ≥ 0,

(ii) X∗ ≤lr Y
∗ and (iii) X∗, or Y ∗, has log-convex density, then X ≤st Y.

Proof. Let Z be a bivariate random vector with survival function FZ(t, s) = WX(RY(t)+

RY(s)). By Theorem 2.2, it follows that Z ≤st Y.

On the other hand, X and Z have the same copula, and marginals ordered in the usual

stochastic order. Thus it follows X ≤st Z (see Müller and Scarsini, 2001).

Combining X ≤st Z and Z ≤st Y, it follows X ≤st Y.

Under a quite stronger assumption on the functions RX and RY it is possible to obtain

the comparison between the residual lifetimes of X and Y at any time t ≥ 0.

Corollary 2.2. Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY),

and assume that the derivatives W ′
X,W

′
Y, R

′
X and R′Y exist. If: (i) R′X(t) ≥ R′Y(t) for all

t ≥ 0, (ii) X∗ ≤lr Y ∗, (iii) X∗ has log-convex density, (iv) Y ∗ has log-concave density,

then Xt ≤st Yt for all t ≥ 0.

Proof. As pointed out in the previous section, for any fixed t it holdsXt ∼ TTE(WXt
, RXt

)

and Yt ∼ TTE(WYt
, RYt

), where

RXt
(x) = RX(t+ x)−RX(t), x ≥ 0,

and WXt
is the survival function of a variable X∗

t̃X
= [X∗ − t̃X | X∗ > t̃X ] where

t̃X = 2RX(t), being

WXt
(x) =

WX(2RX(t) + x)

WX(2RX(t))
=

WX(t̃X + x)

WX(t̃X)

(and similarly for RYt
and WYt

).

Now observe that, since X∗ ≤lr Y ∗, by Theorem 1.C.6 in Shaked and Shanthikumar

(2007) it follows that X∗
t̃X
≤lr Y

∗
t̃X
. On the other hand, since X∗ has log-convex density

then also X∗
t̃X

has log-convex density (since clearly log-convexity of wX(x) implies log-

convexity of wXt
(x)). Moreover, since Y ∗ has log-concave density, it holds Y ∗

t̃X
≤lr Y ∗

t̃Y

(being t̃X = 2RX(t) ≥ 2RY(t) = t̃Y ). Thus X∗
t̃X
≤lr Y ∗

t̃Y
. Finally, since R′X(t) ≥ R′Y(t)

for all t ≥ 0, then

RX(t+ x)−RX(t) ≥ RY(t+ x)−RY(t)

for all t, x ≥ 0, i.e., RXt
(x) ≥ RYt

(x) for all x ≥ 0. Thus the assertion follows by

application of Corollary 2.1.

In a similar manner, it is possible to get conditions for negative bivariate aging of the

bivariate lifetime X, in the sense described in the following statement.
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Corollary 2.3. Let X = (X1, X2) ∼ TTE(WX, RX), where WX and RX are such that

both W ′
X and R′X exist. Suppose that X∗ has log-convex density and RX is concave. Then

Xt ≤st Xt+s for all t, s > 0.

Proof. Fix t, s > 0, and denote t̃+ s = 2RX(t + s) and t̃ = 2RX(t). Since X∗ has

log-convex density, it follows that X∗
t̃+s
≥lr X

∗
t̃
, where X∗

t̃+s
has survival function

WXt+s
(x) =

WX(2R(t+ s) + x)

WX(2R(t+ s))
=

WX(t̃+ s+ x)

WX(t̃+ s)
, x ≥ 0,

while X∗
t̃
has survival function WXt

defined as in the previous proof. Moreover, since X∗

has log-convex density, then also X∗
t̃
has log-convex density.

On the other hand, if RX is a concave function, then RXt+s
(x) = R(t+s+x)−R(t+s) ≤

R(t+x)−R(t) = RXt
(x) for all x ≥ 0. Thus, by Corollary 2.1, the assertion follows.

Note that the statement of Corollary 2.3 generalizes Theorem 3.2 in Mulero and Pellerey

(2010), where conditions for bivariate aging are considered. It is also strictly related to

Theorem 4.3 in the same paper, where a comparison between Xt+s and Xt in the weaker

≤lo order is obtained under weaker conditions on WX .

In the following results is considered the case where X∗ and Y ∗ are comparable in a

stochastic sense that is weaker than≤st. Even in this case it is possible to get comparisons

between X and Y, but, obviously, in a stochastic sense that is weaker than ≤uo.

Theorem 2.3. Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY).

Let g1(x) and g2(x) be two nonnegative and increasing functions. Let g1, or g2, be convex

[concave]. If: (i) RX = RY ≡ R is a concave [convex] function, and (ii) X∗ ≤icx [≤icv

] Y ∗, then E[g1(X1)g2(X2)] ≤ E[g1(Y1)g2(Y2)], provided the expectations exist.

Proof. We give here the proof of the statement without the bracket, the other being

similar. Assume that g2(x) is a nonnegative increasing convex function. Let g(X) =

(g1(X1), g2(X2)) be a random vector with survival function F̄g(X)(t, s). Then, for all

t ≥ g1(0) and s ≥ g2(0),

F̄g(X)(t, s) = P [g1(X1) > t, g2(X2) > s]

= P [X1 > g−11 (t), X2 > g−12 (s)]

= F̄ (g−11 (t), g−12 (s))

= W (R(g−11 (t)) +R(g−12 (s))),

where g−1i (t) = sup{x : gi(x) ≤ t}, i = 1, 2.

Now, let h1(u) = g1(R
−1(u)) and h2(v) = g2(R

−1(v)), where u, v ≥ 0. It is easy to see

that, by the assumptions, h1 is an increasing function and h2 is an increasing and convex

function. Moreover, with straightforward calculations it is easy to verify that

E[g1(X1)g2(X2)] =

∫ ∞

0

(
∫ ∞

0

WX(u+ v)dh2(v)

)

dh1(u),
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and that
∫ ∞

0

WX(u+ v)dh2(v) =

∫ ∞

u

(
∫ ∞

v

d(1−WX(z))

)

dh2(v)

=

∫ ∞

u

(
∫ z

u

dh2(v)

)

d(1−WX(z))

=

∫ ∞

u

[h2(z)− h2(u)]d(1−WX(z))

=

∫ ∞

0

Hu(z)d(1−WX(z)) = E[Hu(X
∗)],

where Hu(z) = [h2(z)−h2(u)] ·1[u,∞)(z). Since h2 is non-negative, increasing and convex,

it follows that also Hu is increasing and convex, whatever u ≥ 0 is. Thus, for all u ≥ 0,
∫ ∞

0

WX(u+ v)dh2(v)−

∫ ∞

0

WY(u+ v)dh2(v) = E[Hu(X
∗)]− E[Hu(Y

∗)] ≤ 0,

where the inequality follows from assumption (ii). It follows

E[g1(X1)g2(X2)] − E[g1(Y1)g2(Y2)]

=

∫ ∞

0

(
∫ ∞

0

WX(u+ v)dh2(v)−

∫ ∞

0

WY(u+ v)dh2(v)

)

dh1(u) ≤ 0,

being h1 increasing.

Using the same arguments as in the proof of the previous result, a similar statement

can be proved. Here the functions g1 and g2 are assumed to be decreasing instead of

increasing.

Theorem 2.4. Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY).

Let g1(x) and g2(x) be two nonnegative and decreasing functions where g1(x) or g2(x)

is convex [concave]. If: (ii) RX = RY ≡ R is a convex [concave] function, and (ii)

X∗ ≥icv [≥icx] Y
∗, then E[g1(X1)g2(X2)] ≥ E[g1(Y1)g2(Y2)], provided the expectations

exist.

As immediate consequences of previous theorems one gets the following statements.

Corollary 2.4. Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY).

If: (i) RX(t) ≥ RY(t) for all t ≥ 0 and RY, or RX, is a concave [convex] function, and

(ii) X∗ ≤icx [≤icv] Y
∗, then X ≤uo−cx [≤lo−cv] Y.

Proof. The proof is for the case that RY is concave (the other case is similar). Let

Z = (Z1, Z2) be a bivariate random vector with survival function FZ(t, s) = WX(RY(t)+

RY(s)). Since X and Z have the same copula and marginals ordered in the usual stochas-

tic order, by Theorem 4.1 in Müller and Scarsini (2001) it follows that X ≤st Z, which

in turns implies X ≤uo−cx Z and X ≤lo−cv Z. Moreover, from Theorem 2.3 easy follows

that

E[g1(Z1)g2(Z2)] ≤ E[g1(Y1)g2(Y2)]
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for all univariate nonnegative increasing convex [concave] functions g1 and g2, i.e., that

Z ≤uo−cx [≤lo−cv] Y holds. Combining the two stochastic inequalities the assertion is

obtained.

Corollary 2.5. Let X = (X1, X2) ∼ TTE(WX, RX) and Y = (Y1, Y2) ∼ TTE(WY, RY).

If: (i) RX(t) ≥ RY(t) for all t ≥ 0 and RY, or RX, is a concave [convex] function, and

(ii) X∗ ≤icx [≤icv] Y
∗, then E[X1X2] ≤ E[Y1Y2].

Proof. By taking g1(x) and g2(x) both the identity function, the result follows immedi-

ately from Corollary 2.4.

Note that all the results stated in this section can be easily generalized to the case

where X and Y are vectors of non exchangeable variables, as well as to the case of

conditioned residual lifetimes of the kind X(t1,t2) = [(X1 − t1, X2 − t2)| X1 > t1, X2 > t2]

instead of Xt = X(t,t) = [(X1 − t,X2 − t)| X1 > t,X2 > t].

3 Examples of applications

Some possible applications of the results presented in Section 2 follow immediately from

the properties of the usual stochastic order. For example, from Theorem 2.2 it follows

that, if its assumptions are satisfied, then h(X) ≤st h(Y) for every increasing function h.

Thus, in particular, the sums X1+X2 and Y1+Y2, or the maximum and the minimum of

{X1, X2} and {Y1, Y2}, are ordered in usual stochastic order. Also, for example, an order

between the Values-at-Risk, of any order α ∈ (0, 1), for two risk positions aX1 + bX2

and aY1 + bY2, a, b ∈ R, follows from Theorem 2.2 (see Embrechts et. al., 2003, for

applications in risk management of comparisons between Values-at-Risk of this kind).

Some other simple examples are illustrated in this section.

3.1 Bounds for expected values

Bounds for expected values, based on comparisons with respect to the independent case,

can be provided making use of the results described in the previous section. Usefulness

of these bounds is of course due to the fact that, in general, expectations are easier to

compute under independence.

Let for example X ∼ TTE(WX, RX) be such that X∗ ≤lr Zλ, where Zλ is exponentially

distributed with mean 1/λ, i.e., let wX(x) ≤ wX(0) exp(−λx) for all x ≥ 0. Since Zλ

has log-convex density, then for every increasing function h one has E[h(X)] ≤ E[h(Z)],

where Z = (Z1, Z2) has independent components having survival functions GZ(t) =

exp(−λRX(t)). Note that under the same assumptions we also have

FX1+X2
(t) ≤

∫ s

0

GZ(t− s)dGZ(s), for all t ≥ 0,
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since X ≤st Z.

Assume now that X∗ possesses the HNBUE (Harmonically New Better than Used in

Expectation) property (see Klefsjö, 1983, or Pellerey, 2000, for properties and applica-

tions of this aging notion and its dual notion HNWUE). Then X∗ ≤icx Zλ, where Zλ

is exponentially distributed with mean E[X∗] = 1/λ. Moreover, let RX be a concave

function. Then for every pair of functions g1 and g2 that are increasing and convex

we have E[g1(X1)g2(X2)] ≤ E[g1(Z1)]E[g2(Z2)], where Z = (Z1, Z2) is defined as before

(with λ = 1/E[X∗]).

3.2 Frailty models

In the frailty approach, WX is a Laplace transform. Thus, its corresponding density

wX is always log-convex (see, e.g., An, 1998) and therefore assumption (iii) of Theorem

2.2 is always satisfied. Let now X and Y be two vectors defined as in Section 1, mix-

tures of conditionally independent variables with respect to two environmental random

parameters ΘX and ΘY, respectively, i.e., let

FX(t, s) = E[H(t)ΘXH(s)ΘX ] and FY(t, s) = E[H(t)ΘYH(s)ΘY ]

for some survival function H. By Theorem 2.2 and Theorem 1 in Bartoszewicz and

Skolimowska (2006), it follows that a sufficient condition for X ≥st Y is the inequality

ΘX ≤lr ΘY.

Moreover, let ΘY = θ a.s., so that Y = (Y1, Y2) has independent components, with

survival function GY(t) = H(t)θ. If H is DFR, so that RX is concave, from Theorem 2.3

it follows E[g1(X1)g2(X2)] ≥ E[g1(Y1)]E[g2(Y2)] for all increasing and convex functions

g1 and g2, being X∗ with log-convex density and therefore also HNWUE.

3.3 Portfolio optimization

In actuarial and financial literature it is a common assumption that utility functions

are increasing and concave. In particular, exponential utilities are often considered in

portfolio theory (see, e.g., Kaas et al., 2001). Thus, let us consider the case of an

exponential utility u defined as u(t) = c(1−e−αt), with c, α > 0. Let X ∼ TTE(WX, RX)

and Y ∼ TTE(WY, RY) be two different pairs of assets. Assume that RX = RY = R,

where R is convex and consider the two portfolios SX = X1 +X2 and SY = Y1 + Y2. By

Theorem 2.4 it follows that if X∗ ≥icv Y
∗ then E[u(SX)] ≤ E[u(SY)]. In fact:

E[u(SX)] = c(1− E[exp(−αX1) exp(−αX2)])

≤ c(1− E[exp(−αY1) exp(−αY2)]) = E[u(SY)]

being g(t) = exp(−αt) decreasing and convex.
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Let now Z = (Z1, Z2) ∼ TTE(WZ, RZ), where WZ(x) = exp(−x/E[X∗]), so that Z1

and Z2 are independent, and let RX = RZ = R be concave. Assume that X∗ is HNBUE,

which can be rewritten as X∗ ≥icv Zλ where Zλ is exponentially distributed with mean

E[X∗]. Then one can get the following upper bound for the expected utility E[u(SX)]:

E[u(SX)] ≤ E[u(SZ)] = c[1− (E[e−αZ1 ])2]

where Z1 has survival function GZ(t) = exp(−R(t)/E[X∗]).

3.4 Stochastic ordering of mixtures

Consider a family {Xθ, θ ∈ T ⊆ R} of bivariate lifetimes where Xθ ∼ TTE(Wθ, R) with

Wθ(x) = [W (x)]θ, ∀x ∈ R+, θ ∈ T , (3.1)

for some suitable convex survival function W . Nelsen (1997) call the families of Archime-

dean copulas of this kind as α families, and this is the case, for example, of Clayton

copulas (where W (x) = (1 + x)−1 and T = (0,+∞)) and Gumbel-Barnett copulas

(where W (x) = exp(1− ex) and T = (0,+∞)).

Let now W be such that the corresponding variable X∗ has log-convex density (like

for the two examples above), then X∗
θ also has log-convex density. It is easy to verify

that X∗
θ1
≤lr X∗

θ2
whenever θ1 ≥ θ2 (here X∗

θi
has survival function Wθi(x) = [W (x)]θi ,

i = 1, 2). It immediately follows, by Theorem 2.2, that in this case Xθ is stochastically

decreasing in θ, which means that Xθ1 ≤st Xθ2 whenever θ1 ≥ θ2.

Assume now that the parameter θ describes some environmental factor, related to the

degree of dependence between the components of Xθ, and consider two different random

environmental parameters Θ1 and Θ2, assuming values in T . Thus, consider the two

vectors XΘ1
and XΘ2

defined as mixtures of an α family {Xθ, θ ∈ T ⊆ R}, defined as

above, and the random parameters Θ1 and Θ2. The following holds.

Proposition 3.1. Let {Xθ, θ ∈ T ⊆ R} be an α family having the survival function W

as inverse of the basic generator of the copula, and let −W have log-convex derivative.

Then Θ1 ≥st Θ2 implies XΘ1
≤st XΘ2

.

Proof. As pointed out before, from the assumptions and Theorem 2.2 it follows that

Xθ is stochastically decreasing in θ. Therefore, for all increasing functions φ it holds

E[φ(Xθ1)] ≥ E[φ(Xθ2)] whenever θ1 ≤ θ2, provided the expectations exist. Thus Ψ(θ) =

E[φ(Xθ)] is a decreasing function in θ. On the other hand, from the condition Θ1 ≥st

Θ2, it follows that E[h(Θ1)] ≤ E[h(Θ2)] for all decreasing functions h, provided the

expectations exist. In particular, since Ψ(θ) is a decreasing function in θ, then

E[φ(XΘ1
)] = E[Ψ(Θ1)] ≤ E[Ψ(Θ2)] = E[φ(XΘ2

)]

for all increasing functions φ, and this yields the stated result.
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As already stated, Clayton and Gumbel-Barnett copulas satisfy the assumptions of

Proposition 3.1. Furthermore, it is possible to prove also the above result dealing with

the Frank family of copulas which is not an α family.

Proposition 3.2. Let Xθ ∼ TTE(Wθ, R) with Wθ(x) = −
1
θ
log[e−x(e−θ−1)+1] (inverse

of the generator of the Frank copula) and let Θ1 and Θ2 be two nonnegative random

variables. If Θ1 ≥st Θ2, then XΘ1
≤st XΘ2

.
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