

POLITECNICO DI TORINO Repository ISTITUZIONALE

Physics-based Noise Simulation of Semiconductor Devices Under Large-signal Operation

Original Physics-based Noise Simulation of Semiconductor Devices Under Large-signal Operation / G. GHIONE; F. BONANI; DONATI GUERRIERI S (2009). ((Intervento presentato al convegno EDS Mini-Colloquium on Advanced Electron Devices Modelling and Technology tenutosi a Dublin, Ireland nel 1 May 2009.
Availability: This version is available at: 11583/2283239 since:
Publisher:
Published DOI:
Terms of use: openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright
(Article begins on next page)

EDS Mini-Colloquium On Advanced Electron Devices modelling and Technology

Friday 1st May 2009. Admission is free University College Dublin, Ireland

(Engineering Building (no 49 on the campus map)

Sponsored by

IEEE Electron Devices Society, IEEE UKRI (AP/ED/Photonics/MTT) Societies Joint Chapter

09:15 – 09:50 Registration

09:50 – 10:00 Welcome Remarks: Prof Tom Brazil, University College Dublin

10:00 Opening Remarks: Prof Ali A Rezazadeh, Chair IEEE UKRI (AP/ED/Photonics/MTT) Societies Joint Chapter, University of Manchester, UK.

10:10 <u>IEEE EDS Activities</u>: Prof J J Liu (Central University of Florida, USA)

10:30 – 12:45 SESSION I

Chair: Prof. Giovanni Ghione

10:30 – 11:15: Roadmap for 22 nm and Beyond, Prof Hiroshi Iwai (Tokyo Institute of Technology, Yokohama, Japan

11-15 – 12:00: Small- and Large-Signal Modelling of GaAs- and GaN-based Transistors Prof Tom Brazil (University City Dublin, Ireland)

12:00 – 12:45: Advanced electrostatic discharge (ESD) protection solutions in BiCMOS/CMOS technologies, Prof J J Liu (University of Central Florida, USA)

12:45 – 2:00: **Lunch Break**

02:00 - 02:30: PhD Research Students Poster Session

02:30 - 04:20: SESSION II

Chair: Prof Tom Brazil

02:30 – 03:15: Physics-based Noise Simulation of Semiconductor Devices Under Large-signal Operation, Prof Giovanni Ghione, Fabrizio Bonani and Simona Donati Guerrieri (Politecnico di Torino,Italy)

03-15 – 04:00: Passive 3D multilayer microwave components for development of compact multifunctional MMICs, Prof Ali A. Rezazadeh (University of Manchester, UK)

04:00 – 04:20: <u>Closing Remarks</u>: Prof Hiroshi Iwai (Tokyo Institute of Technology, Japan)

For further information, please contact Prof. Tom Brazil, +353-1-716 1929, tom.brazil@ucd.ie

Physics-based Noise Simulation of Semiconductor Devices Under Large-signal Operation

G. Ghione, F. Bonani, S. Donati Guerrieri

Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy

UCD 1/5/2009 1/3

Outline

- Motivation
- Overview on numerical noise modelling
 - Small-signal (stationary)
 - Forced <u>large-signal</u> (cyclostationary)
 - Autonomous large signal
- Modeling low frequency noise
- Evaluating the Large Signal working point
- Case studies
- Conclusions

UCD 1/5/2009 2/3²

Motivation

- Low-noise circuits important in RF & microwave telecommunication systems
 - Linear circuits (e.g., low noise amplifiers)
 - "Nonlinear" circuits (e.g., mixers, frequency multipliers, oscillators)
- Physics-based simulation is a powerful tool for:
 - TCAD Device design and optimization
 - Development of compact, circuit-oriented model with sound physical basis
 - Understanding exotic noise mechanisms (1/f?)

UCD 1/5/2009 3/34

Some facts about physics-based numerical noise modelling - I

- Microscopic (carrier velocity or population) fluctuations are a small perturbation of
 - DC steady-state → Small-signal, stationary noise
 - Large-signal (quasi) periodic steady state
 → LS (quasi)-cyclostationary noise
 - LS steady-state of autonomous system → LS (oscillator) stationary (?) noise

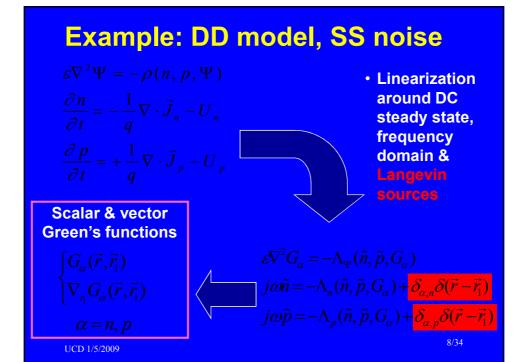
UCD 1/5/2009 4/34

Some facts about physics-based numerical noise modelling - II

- Terminal (v,i) fluctuations are evaluated through a (linear) Green's function approach from (spatially uncorrelated) microscopic (charge or current density) fluctuations distribuited in the device volume
 - SS conditions → Superposition + Filtering of microscopic noise source spectra
 - LS conditions → Superposition + Filtering & frequency conversion

UCD 1/5/2009 5/3

Some facts about physics-based numerical noise modelling - III


- The Green's function (→ "impedance field") can be derived through SS (smallsignal) or SSLS (ss with respect to LS) linearization from any PDE based physical model:
 - Drift-diffusion
 - Energy balance
 - Full hydrodynamic, N moments from BE

UCD 1/5/2009 6/3²

Summary of simulation steps

- 1. Evaluate the noiseless working point
 - Noise sources are switched off
 - Solution is $(\varphi_0, n_0, p_0, n_{t,k0})$
 - The working point depends on the applied generators →
 might depend on time and require mixed-mode
 simulation → CPU-intensive for the large-signal case
- 2. Add (model) the microscopic noise sources
 - The working point is perturbed by fluctuations δα
- 3. Solve the (linear) perturbed system to evaluate the terminal electrical fluctuations (noise generators) through the Green's function approach

UCD 1/5/2009 7/3

Propagating fluctuations to terminals

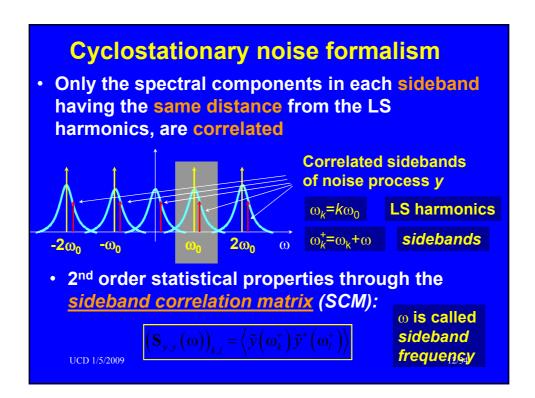
$$= G_{\alpha}(\vec{r}_{D}, \vec{r}_{1}) \delta I_{\alpha}(\vec{r}_{1}) + \nabla_{r_{1}} G_{\alpha}(\vec{r}_{D}, \vec{r}_{1}) \delta \vec{J}_{\alpha}(\vec{r}_{1}) + \nabla_{r_{1}} G_{\alpha}(\vec{r}_{D}, \vec{r}_{1}) \cdot \delta \vec{J}_{\alpha}(\vec{r}_{1})$$

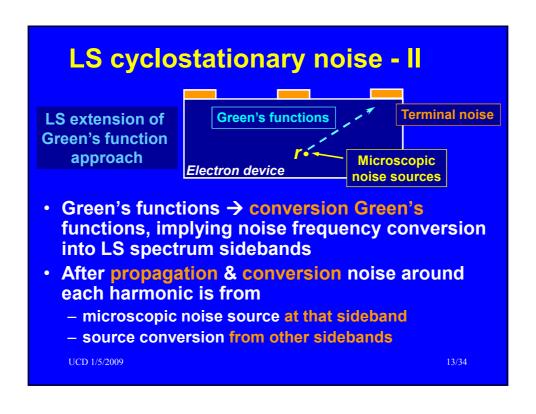
 $\delta I_{\alpha}(\vec{r_1}) \rightarrow \text{e/h } GR \text{ noise source}$ (population fluctuations) $\delta \vec{J}_{\alpha}(\vec{r}_1) \rightarrow \text{e/h diffusion noise source}$ (velocity fluctuations)

UCD 1/5/2009

SS noise power spectra

 Correlation matrix of open-circuit voltage noise fluctuations:


$$\begin{split} S_{\delta V_{i}\delta V_{j}}(\omega) &= \sum_{\alpha=n,p} \int_{\Omega} \vec{G}_{\alpha}(\vec{r}_{i},\vec{r},\omega) \cdot \mathbf{K}_{\delta \vec{J}_{\alpha}\delta \vec{J}_{\alpha}}(\vec{r},\omega) \cdot \vec{G}_{\alpha}^{*}(\vec{r}_{j},\vec{r},\omega) d\vec{r} + \\ &+ \sum_{\alpha,\beta=n,p} \int_{\Omega} G_{\alpha}(\vec{r}_{i},\vec{r},\omega) K_{\gamma_{\alpha}\gamma_{\beta}}(\vec{r},\omega) G_{\beta}^{*}(\vec{r}_{j},\vec{r},\omega) d\vec{r} \end{split}$$


$$\begin{array}{c} \mathbf{K}_{\delta \vec{J}_{\alpha}\delta \vec{J}_{\alpha}} = 4q^{2}\alpha\mathbf{D}_{\alpha} \rightarrow \text{e/h diffusion } \underline{local\ noise} \\ & \underline{source} \\ K_{\gamma_{\alpha}\gamma_{\beta}}(\vec{r},\omega) \rightarrow \text{e/h } GR\ \underline{local\ noise\ source} \end{array}$$

LS cyclostationary noise - I

- Analog applications often require periodic or quasi-periodic LS operation
- In LS operation microscopic noise sources are amplitude modulated by the periodic LS steady-state leading to → cyclostationary microscopic sources with correlated frequency components
- Those are described by the Sideband Correlation Matrix (SCM) formalism

UCD 1/5/2009 11/3

Noise in autonomous systems

- Oscillator noise → object of investigation and debate at circuit and system level
- Alper Demir's approach (system level)
 accounting both for coloured and white noise
 sources → viable way for extension to device
 level
- Work by group of Seoul National University (white diffusion noise sources)

UCD 1/5/2009 15/3

Numerical implementation

- Through standard (e.g. finite box Scharfetter-Gummel) discretization the Green's function is derived from a linear system (← SS or SSLS)
- Efficient evaluation of the Green's functions at device terminals through adjoint and generalized adjoint techniques
- Bottleneck: LS (quasi) periodic solution through Harmonic Balance

UCD 1/5/2009 16/3²

Low frequency noise modelling

- Low-frequency (coloured, 1/f or Lorentzian) noise important in many analog applications (mixers, multipliers, oscillators...) where noise frequency conversion takes place
- Low-frequency noise → superposition of bulk, surface or interface GR noise
- GR trap-assisted noise → theory developed by van Vliet in 1960 → trap level rate equations added to DD model

UCD 1/5/2009 17/3

Model + traps: bipolar drift-diffusion

- N_t traps included
- Device mesh: N_i internal nodes and N_x external nodes on metallic contacts
- Device contacts:
 N_c+1, one
 grounded

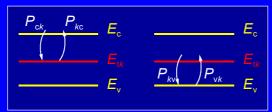
$$\nabla^{2} \varphi = -\frac{q}{\varepsilon} \left(p - n - \sum_{k=1}^{N} n_{t,k} \right)$$

$$\frac{\partial n}{\partial t} = -\nabla \cdot \left(n \mu_{n} \nabla \varphi - D_{n} \nabla n \right) - U_{n} + \gamma_{n}$$

$$\frac{\partial p}{\partial t} = +\nabla \cdot \left(p \mu_{p} \nabla \varphi + D_{p} \nabla p \right) - U_{p} + \gamma_{p}$$

$$\frac{\partial n_{t,k}}{\partial t} = -U_{k} + \gamma_{k} \qquad k = 1, ..., N$$

UCD 1/5/2009 18/


Trap level transition rates

- N (local) trap rate equations →SRH model
- Noninteracting traps considered; superposition → 1/f spectrum

total trap density c=(cross sect.) x v_{th}

$$P_{ck} = c_{n,k} n(N_{t,k} - n_{t,k}), \quad P_{kc} = c_{n,k} n_{1,k} n_{t,k},$$

$$P_{vk} = c_{n,k} p_{1,k} (N_{t,k} - n_{t,k}), \quad P_{tv} = c_{n,k} p_{n,k} p_{n,k} n_{t,k},$$

UCD 1/5/2009

SS - RG local noise source

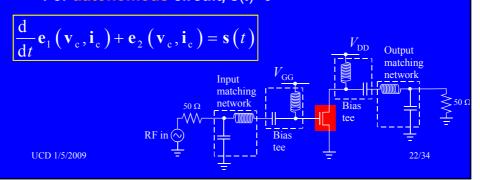
$$\begin{split} K_{\gamma_{n},\gamma_{n}} &= 2 \left(P_{ck0} + P_{kc0} \right), \\ K_{\gamma_{p},\gamma_{p}} &= 2 \left(P_{vk0} + P_{kv0} \right), \\ K_{\gamma_{n},\gamma_{p}} &= 0, \\ K_{\gamma_{k},\gamma_{k}} &= 2 \left(P_{ck0} + P_{kc0} + P_{vk0} + P_{kv0} \right), \\ K_{\gamma_{n},\gamma_{k}} &= -2 \left(P_{ck0} + P_{kc0} \right), \\ K_{\gamma_{p},\gamma_{k}} &= 2 \left(P_{vk0} + P_{kv0} \right), \\ K_{\gamma_{p},\gamma_{k}} &= 2 \left(P_{vk0} + P_{kv0} \right) \end{split}$$

Trap transition
$$P_{kc} = c_{n,k} n_{1,k} n_{t,k}$$
,

$$P_{ck} = C_{n,k} n(N_{t,k} - n_{t,k}),$$
 ap transition
$$P_{kc} = C_{n,k} n_{1,k} n_{t,k},$$
 probabilities
$$P_{vk} = C_{p,k} p_{1,k} (N_{t,k} - n_{t,k}),$$

UCD 1/5/2009

LS - RG local noise source SCM


- In LS conditions the white microscopic RG noise sources are (quasi) periodically modulated by the working point
- Noise source SCM, e.g.:

$$\left(\mathbf{K}_{\gamma_{n},\gamma_{n}}\right)_{l,m}=2\left(P_{\mathrm{c}k0,l-m}+P_{k\mathrm{c}0,l-m}\right)$$
etc. (*I-m*)-th Fourier component of transition rate

UCD 1/5/2009 21/3

Solving the PB model in LS: the embedding circuit

- Represented, in its simplest form, by a memory relationship between v_c, i_c and the applied generators s(t)
 - For periodic excitation, s(t+T)=s(t)
 - For autonomous circuit, s(t)=0

Solving the PB model in LS: total discretized model & solution

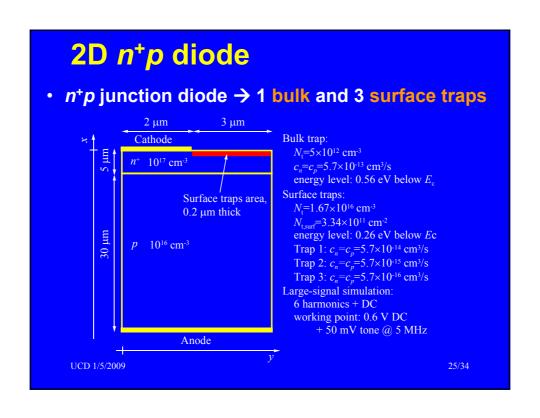
 (Space) discretized PB model + embedding circuit → differential algebraic equation (DAE)

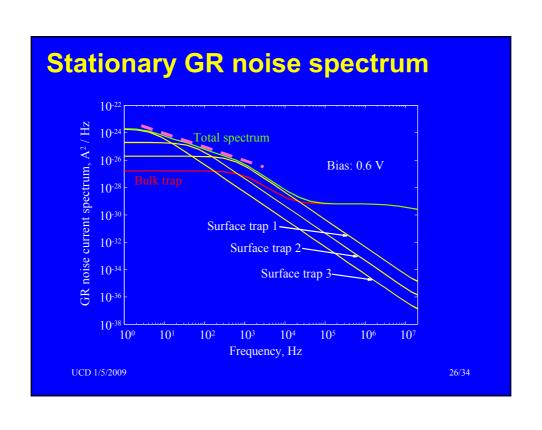
System size: $N_{\text{eq}} = (3 + N_{\text{t}})(N_{\text{i}} + N_{\text{x}}) + 2N_{\text{c}}$

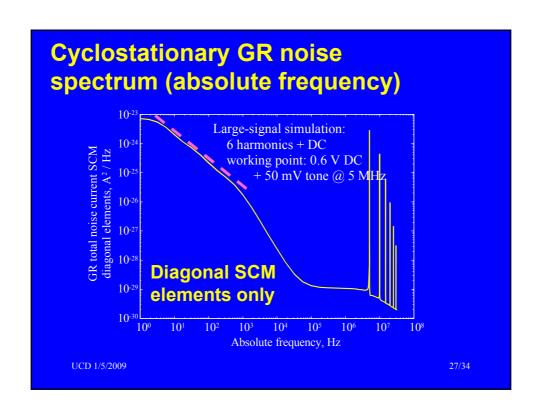
For a 3-terminal device with 2000 nodes mesh and 3 traps N_{eq} =12,004!

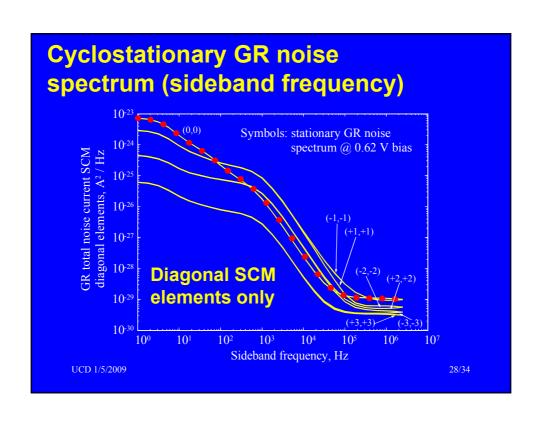
- Direct computation of the steady-state response
 - Frequency-domain: Harmonic Balance (HB)
 - Time-domain: shooting method
 - Autonomous case?

UCD 1/5/2009

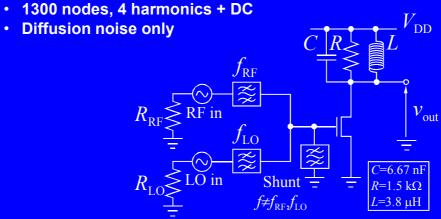

23/34


Case studies


- 2D n⁺p diode
 - motivation: low-frequency noise compact modelling usually based on amplitude modulation of stationary SS noise generators → is this generally correct / accurate?
- GaAs MESFET and AlGaAs/GaAs HEMT Mixer
 - 2D LS mixed-mode noise simulation

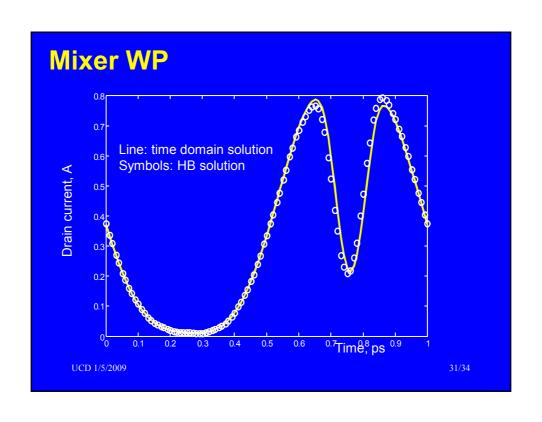

UCD 1/5/2009

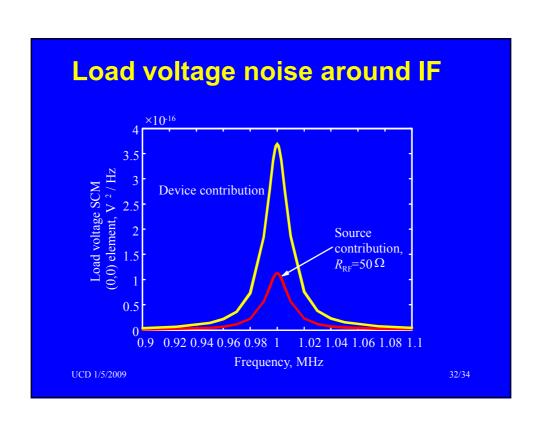
24/34

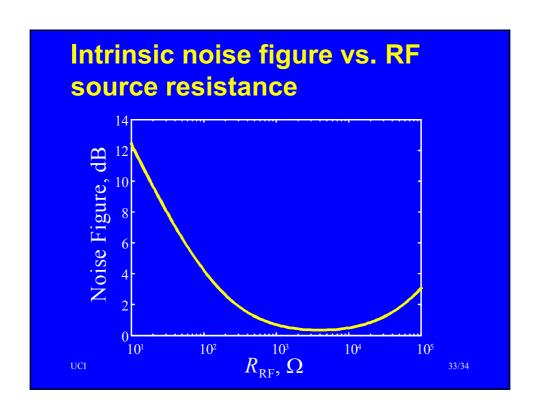

Remarks

- The SS 1/f like behaviour is preserved in the (0,0) sideband
- However, conversion to upper sidebands acts differently for bulk and surface traps
- Therefore, noise in upper sidebands is markedly different from modulated SS noise → which would have the same 1/f like behaviour for all sidebands
- Impact on compact modelling!

UCD 1/5/2009 29/34


Mixer circuit


- Downconversion mixer, f_{LO}=1 GHz, f_{RF}=1.001 GHz
- Noiseless LO
- Device: 0.3 μm gate HEMT, 100 μm gate periphery



UCD 1/5/2009

30/34

Conclusions

- Numerical noise simulation has (hopefully) reached maturity
- Progress made in understanding low-frequency noise (→1/f) and its frequency conversion (also → compact modelling)
- Incouraging advances in oscillator PB modelling
- LS noise simulation requires more efficient WP solvers (time domain?)
- General strategy for LS compact modelling still an open problem – but this is another story!

UCD 1/5/2009 34/3²