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A NOTE ON BISEXUAL GALTON-WATSON BRANCHING PROCESSES

IN RANDOM ENVIRONMENTS

José Maŕia Fernández-Ponce, Eva Maŕia Ortega and Franco Pellerey

Received November 16, 2007

Abstract. A bisexual Galton-Watson branching process is a two–type branching
model, in which matings in one generation give rise to random numbers of both males
and females in the next. The mating function describes how many mating units are
formed from given numbers of males and females. In this paper we consider the
case that the distributions of the random numbers of males and females produced
by the mating units depend on some fertility parameters evolving randomly in time.
By means of a main stochastic comparison result, we show that the total population
increases, in some stochastic sense, as the positive dependence between the fertility
indexes increases. Simple examples of applications of this result are provided, together
with other similar results for a different model of population growth.

1 Introduction Galton-Watson branching processes constitute an appropriate mathe-
matical model for the description of populations’ growth where individuals produce off-
springs according to some stochastic law (see, e.g., Kimmel and Axelrod [9]).

Recently Fernández–Ponce et al. [6] considered branching processes defined in random
environments, and studied the influence on the population sizes of the autocorrelation in
the environmental process. In their Corollary 4.2 they showed that the population size, at
any fixed generation, increases in increasing convex order (whose definition is recalled next)
as the autocorrelation of the environmental process increases.

Here we show that such property can be actually extended to bisexual Galton-Watson
branching processes, i.e., to the modification of the standard branching process introduced
by Daley [3] in order to allow for sexual reproduction. In his model, matings in one gener-
ation give rise to random numbers of both males and females in the next, and the number
of mating units is described by a mating function of the number of males and females in
the previous generation. See Molina et al. [12] or Mota et al. [13] and references therein for
recent results and applications of this model.

For a formal description of bisexual Galton-Watson branching processes defined on a
random environment consider a sequence of couples of fertility indexes (θ, λ) = {(θn, λn) ∈
T × L, n ∈ N} defined on an appropriate space T × L ⊆ R

2, and denote with (θn, λn) the
finite sequence of couples {(θk, λk) ∈ T × L, k = 1, . . . , n}, for every n ∈ N. The bisexual
Galton-Watson branching process we consider here is the bivariate process (F,M)(θ,λ) =
{(Fn, Mn)(θn−1,λn−1), n ∈ N

+} defined recursively by

Z1(θ0, λ0) = N(θ0,λ0)
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and

(Fn+1, Mn+1)(θn,λn) =

Zn(θn−1,λn−1)∑

i=1

(fn,i(θn),mn,i(λn))

=




Zn(θn−1,λn−1)∑

i=1

fn,i(θn),

Zn(θn−1,λn−1)∑

i=1

mn,i(λn)


 , n ∈ N,

Zn+1(θn, λn) = L((Fn+1, Mn+1)(θn,λn))

where N(θ0,λ0) is a positive random integer, the mating function L is assumed to be
non-decreasing in each argument and the empty sum is considered to be (0,0). The
sequence (f ,m)(θ,λ) = {(fn,i(θn),mn,i(λn)), n ∈ N} represents the numbers of females
and males produced by the i-th mating unit in the n-th generation. All the couples
(fn,i(θn),mn,i(λn)),∀i, ∀n, are assumed to be independent once the sequence (θ, λ) of the
fertility parameters is fixed.

In many practical contexts, one can assume that the offsprings distributions depend on
environmental conditions (see, e.g., Athreya and Karlin [1]). Thus, in order to describe
dependence of the process on random evolutions in time of the environment, we can assume
the parameters (θ, λ) to be the realization of an environmental bivariate process (Θ, Λ) =
{(Θn, Λn), n ∈ N} having state space T × L, that describes such evolutions.

Here we study the influence of the autocorrelation of the environmental bivariate process
(Θ, Λ) on the population sizes {(Fn, Mn), n ∈ N

+}. We show that the population size, for
any fixed generation n, increases in increasing convex sense as the positive dependence
between the random fertility indexes increases. As described in details in the next section,
the increasing convex order is a stochastic comparison that jointly consider the “size” and
the “variability” of random variables.

The paper proceeds as follows. In Section 2 we provide notation and tools on stochastic
comparisons and multivariate stochastic convexity that will be used along the paper. In
Section 3 we state and prove the main result mentioned above, and we also provide some
simple examples of application. In the last section, we provide a similar complementary
result for a different compound immigration model.

Some conventions and notations that are used throughout the paper are given previously.
Let ≤ denote the coordinatewise ordering (that is, for any x, y ∈ R

n, then x ≤ y if xi ≤ yi

for i = 1, 2, ..., n) and [x,y] ≤ z, as a shorthand for x ≤ z and y ≤ z. The operators
+, ∨ and ∧ denote, respectively, the componentwise sum, maximum and minimum. The
notation =st stands for equality in law, and a.s. as a shorthand for almost surely. For any
family {Xθ |θ ∈ T} of parameterized random variables, with T ⊆ R, we denote by X(Θ)
the mixture of {Xθ |θ ∈ T} with a mixing variable Θ. For any random variable (or vector)
X and an event A, [X |A ] denotes a random variable whose distribution is the conditional
distribution of X given A. Also, throughout this paper we write “increasing” instead of
“non-decreasing” and “decreasing” instead of “non-increasing”.

2 Utility notions and preliminary results In this section we provide notations and
mathematical tools for the statement of the results presented along the paper. In particular,
we will recall the definitions of some stochastic orders as well as multivariate notions of
stochastic convexity for a family of parameterized random variables. For that, we will
consider different notions of convexity in the multivariate setting.

Let us recall first the definition of two of the most well-known univariate stochastic
orders, which are considered in this paper.
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Definition 2.1 Let X and Y be two non-negative random variables, then X is said to be
smaller than Y in the stochastic [increasing convex] order (denoted by X ≤st [≤icx]Y ) if

E[φ(X)] ≤ E[φ(Y )],

for all increasing [increasing convex] functions φ for which the expectations exist.

It should be mentioned that, for non-negative random variables, X ≤st Y if and only if
for all t ≥ 0 it holds FX(t) ≥ FY (t).

While the st order compares the probabilities of random variables to assume high values,
the icx order is essentially a comparison of variables based both on their “magnitude” and
on their variability, in the sense that X ≤icx Y means that X is both “smaller” and “less
variable” than Y in some stochastic sense (see Shaked and Shanthikumar [16] for details).
In particular observe that both X ≤st Y and X ≤icx Y imply E[X ] ≤ E[Y ], and that
X ≤icx Y implies Var[X ] ≤ Var[Y ] whenever E[X ] = E[Y ].

A characterization of the stochastic ordering that will play a crucial role in this paper
is recalled now (see Theorem 1.A.1 in Shaked and Shanthikumar [16]). Given two random

variables X and Y , then X ≤st Y if and only if there exist two random variables X̂ and Ŷ ,
defined on the same probability space, such that X =st X̂, Y =st Ŷ and X̂ ≤ Ŷ , a.s.

These two orders can be generalized in different ways in the multivariate settings. We
will consider here two multivariate definitions of the increasing convex order, that will be
used in the next sections. For it, recall that a real-valued function φ defined on R

n is said
to be convex (denoted here by φ ∈ cx) if

φ(αx + (1 − α)y) ≤ αφ(x) + (1 − α)φ(y)

for all x,y ∈ R
n and α ∈ [0, 1], and is said to be directionally convex (denoted by φ ∈ dcx)

if for any xi ∈ R
n, i = 1, 2, 3, 4, such that x1 ≤ [x2,x3] ≤ x4 and x1 + x4 = x2 + x3, then

φ(x1) + φ(x4) ≥ φ(x2) + φ(x3).

If in addition, φ is increasing, that is, for all x ≤ y then φ(x) ≤ φ(y), then we say that φ

is, respectively, increasing and convex (denoted by φ ∈ icx) or increasing and directionally
convex (denoted by φ ∈ idcx).
Moreover, a function φ : R

n −→ R
m defined by φ(x) = (φ1(x), ..., φm(x)) is said to be

directionally convex if each of the coordinate functions φi, i = 1, 2, ...,m is directionally
convex.

For a complete discussion on convex and directionally convex functions see Meester and
Shanthikumar [11]. In particular we note here that directional convexity neither implies
nor is implied by usual convexity, and the composition of functions preserves increasing
directional convexity. Also, the composition of an icx function with an idcx function is an
idcx function.

As already stated, the stochastic order and the increasing convex order can be extended
to the multivariate case in several ways. Here we consider three of them.

Definition 2.2 Let X = (X1, ...,Xn) and Y = (Y1, ..., Yn) be two n-dimensional random
vectors, then X is said to be smaller than Y in the stochastic [increasing convex, increasing
directionally convex] order (denoted by X ≤st [≤icx,≤idcx]Y) if

E [φ(X)] ≤ E [φ(Y)]

for all increasing [increasing convex, increasing directionally convex] real-valued functions
φ defined on R

n for which the expectations exist.
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For a survey on these stochastic orderings and their properties we refer the reader to
Shaked and Shanthikumar [16]. Here we just point out that multivariate st and icx order
have the same intuitive interpretation as in the univariate case, while, on the other hand,
the idcx order can be used to compare positive dependence properties of random vectors
having the same marginal distributions. In this case, in fact, X ≤idcx Y means that
the components of X are less positively dependent than the components of Y (see again
Shaked and Shanthikumar [16] for details). For example, it can be shown that if X and
Y are multivariate random vectors with the same mean vector M and variance–covariance
matrices Σ and Σ + D, respectively, then X ≤idcx Y when D is a matrix that has zero
diagonal elements and all other entries non-negative. Also, it can be shown that, given
a vector X = (X1, X2, . . . , Xn) of associated random variables (see Denuit et al. [5] for
definition), if the Xi are marginally identically distributed then

X⊥ ≤idcx X ≤idcx X0

where X⊥ = (X⊥
1 , X⊥

2 , . . . , X⊥
n ) is the corresponding vector of independent variables, while

X0 = (X0
1 , X0

2 , . . . , X0
n) is such that X0

1 = X0
2 = . . . = X0

n = X1 a.s. Further examples and
sufficient conditions for idcx comparison of random vectors may be found in Meester and
Shanthikumar [10] (see in particular Lemma 2.10), and in Rüschendorf [14] (Corollary 3.2
and Corollary 4.1 therein).

At this point, we recall some notions of multivariate stochastic convexity for a family of
parameterized random variables, introduced in Shaked and Shanthikumar [15] and further
studied also in Meester and Shanthikumar [10] and [11] . For it, consider a family of
multivariate random variables X(θ) for θ ∈ T, where T is a sublattice of either R

n or N
n.

Definition 2.3 A family {X(θ),θ ∈ T} of multivariate random variables is said to be:
i) stochastically increasing (denoted by {X(θ),θ ∈ T} ∈ SI) if for any θi ∈ T, i = 1, 2,
θ1 ≤ θ2, then X(θ1) ≤st X(θ2);
ii) stochastically increasing and directionally convex in the sample path sense (denoted by
{X(θ),θ ∈ T} ∈ SI−DCX(sp)) if for any four θi ∈ T, i = 1, .., 4, such that θ1 ≤ [θ2, θ3] ≤

θ4 and θ1+θ4 = θ2+θ3, there exist random variables X̂i, i = 1, ..., 4, defined on a common
probability space, such that X̂i =st X(θi), i = 1, ..., 4 and

[
X̂2, X̂3

]
≤ X̂4, a.s.(1)

and

X̂1 + X̂4 ≥ X̂2 + X̂3, a.s.(2)

In case both the parameter and the random variables are univariate, then we will use the
notation SI − CX(sp).

Stochastic increasing directional convexity in sample path sense is closed by composition
with idcx functions (see for example, Lemma 2.15 in Meester and Shanthikumar [10]). Also,
this notion of stochastic convexity is closed by conjunction of independent random variables
(see Lemma 2.16 in Meester and Shanthikumar [10] or Theorem 3.3 and Theorem 4.4 in
Meester and Shanthikumar [11]).

Some examples of stochastic directional convexity for parameterized families of ran-
dom variables can be found in the literature: see Shaked and Shanthikumar [15], Chang
et al. [2] or Meester and Shanthikumar [11]. For example, the Bernoulli distribution and
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the Poisson distribution are SI − CX(sp) in their parameters, and the Multinomial dis-
tribution and the Gamma distribution are SI − DCX(sp). Other examples can be ob-
tained by using the preservation properties above. For example, it is easy to verify that
when the families {X(θ), θ ∈ T} and {Y (λ), λ ∈ L} are independent and SI-CX(sp), then
{(X(θ), Y (λ)), (θ, λ) ∈ T × L} is SI-DCX(sp). Also, under appropriate conditions, some
applied stochastic models have stochastic directional convexity properties (see references
above).

The following two properties will be used in the next sections. The proof of Lemma 2.2
may be found in Shaked and Shanthikumar [15].

Lemma 2.1 Let (X1, . . . , Xn) ≤idcx (Y1, . . . , Yn) or (X1, . . . , Xn) ≤icx (Y1, . . . , Yn). Then∑n
i=1 Xi ≤icx

∑n
i=1 Yi.

Proof. Let φ be any icx real function. Then it is easy to verify that the function
h(u1, . . . , un) = φ(u1 + . . . + un) is both idcx and icx (see Corollary 2.5 in Meester and
Shanthikumar [10] for details). Thus

E[φ(

n∑

i=1

Xi)] = E[h(X1, . . . , Xn)] ≤ E[h(Y1, . . . , Yn)] = E[φ(

n∑

i=1

Yi)]

Lemma 2.2 Let the family {X(θ),θ ∈ T} be SI-DCX(sp). Then E[φ(X(θ))] is increasing
and directionally convex in θ for any idcx function φ.

3 Main result The following result describes conditions for SI-DCX(sp) property of the
generations sequence of males and females.

Theorem 3.1 Consider the sum

(Fn+1, Mn+1)(θn,λn) =

Zn(θn−1,λn−1)∑

i=1

(fn,i(θn),mn,i(λn))

=




Zn(θn−1,λn−1)∑

i=1

fn,i(θn),

Zn(θn−1,λn−1)∑

i=1

mn,i(λn)




If
i) all the variables fn,i(θn), mn,i(λn) and Zn(θn−1, λn−1) are independent for fixed values
of (θn, λn);
ii) the families {fn,i(θ), θ ∈ T} and {mn,i(λ), λ ∈ L} are SI − CX(sp) for every n and i;
iii) {Zn(θn−1, λn−1), (θn−1, λn−1) ∈ T

n−1 × L
n−1} is SI − DCX(sp);

iv) all the variables fn,i(θ) are identically distributed for every fixed θ ∈ T and, similarly,
all the variables mn,i are identically distributed for every fixed λ ∈ L;
then

{(Fn+1, Mn+1)(θn,λn), (θn, λn) ∈ T
n × L

n}

is SI − DCX(sp).

Proof. Let uk = (θn, λn)(k), k = 1, . . . , 4 be such that u1 ≤ [u2,u3] ≤ u4 and u1 + u4 =
u2 + u3. By the assumptions, we can build on the same probability space the random
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variables f̂
(k)
n,i =st fn,i(θ

(k)
n ), m̂

(k)
n,i =st mn,i(λ

(k)
n ), i ∈ N, and Ẑ(k) =st Z(θn−1, λn−1)

(k), for
k = 1, ..., 4, such that, almost surely,

f̂
(1)
n,i + f̂

(4)
n,i ≥ f̂

(2)
n,i + f̂

(3)
n,i , f̂

(4)
n,i ≥ [f̂

(2)
n,i , f̂

(3)
n,i ],

m̂
(1)
n,i + m̂

(4)
n,i ≥ m̂

(2)
n,i + m̂

(3)
n,i, m̂

(4)
n,i ≥ [m̂

(2)
n,i, m̂

(3)
n,i],

and

Ẑ(1) + Ẑ(4) ≥ Ẑ(2) − Ẑ(3), Ẑ(4) ≥ [Ẑ(2), Ẑ(3)].

Let

(F̂ (k), M̂ (k)) =

bZ(k)∑

i=1

(f̂
(k)
n,i , m̂

(k)
n,i), k = 1, . . . , 4.

and observe that (F̂ (k), M̂ (k)) =st (Fn+1, Mn+1)(θn,λn)(k) .

Consider now the partition of Ω in the sets

Ω123 = {ω ∈ Ω : Ẑ(1) ≥ Ẑ(2) ≥ Ẑ(3)}

Ω132 = {ω ∈ Ω : Ẑ(1) ≥ Ẑ(3) > Ẑ(2)}

Ω213 = {ω ∈ Ω : Ẑ(2) > Ẑ(1) ≥ Ẑ(3)}

Ω312 = {ω ∈ Ω : Ẑ(3) > Ẑ(1) ≥ Ẑ(2)}

Ω321 = {ω ∈ Ω : Ẑ(3) > Ẑ(2) > Ẑ(1)}

Ω231 = {ω ∈ Ω : Ẑ(2) > Ẑ(3) > Ẑ(1)}

For almost all ω ∈ Ω123 we have:

(F̂ (1), M̂ (1)) + (F̂ (4), M̂ (4)) =

bZ(1)∑

j=1

(f̂
(1)
n,i , m̂

(1)
n,i) +

bZ(4)∑

j=1

(f̂
(4)
n,i , m̂

(4)
n,i)

≥

bZ(2)∑

j=1

(
(f̂

(1)
n,i , m̂

(1)
n,i) + (f̂

(4)
n,i , m̂

(4)
n,i)

)

≥

bZ(2)∑

j=1

(
(f̂

(2)
n,i , m̂

(2)
n,i) + (f̂

(3)
n,i , m̂

(3)
n,i)

)

≥

bZ(2)∑

j=1

(f̂
(2)
n,i , m̂

(2)
n,i) +

bZ(3)∑

j=1

(f̂
(3)
n,i , m̂

(3)
n,i)

= (F̂ (2), M̂ (2)) + (F̂ (3), M̂ (3)).

Thus, for almost all ω ∈ Ω123 it holds

(F̂ (1), M̂ (1)) + (F̂ (4), M̂ (4)) ≥ (F̂ (2), M̂ (2)) + (F̂ (3), M̂ (3))(3)

It is easy to verify that (3) holds even for almost all ω ∈ Ω132.
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For almost all ω ∈ Ω213 we have:

(F̂ (1), M̂ (1)) + (F̂ (4), M̂ (4)) =

bZ(1)∑

j=1

(f̂
(1)
n,i , m̂

(1)
n,i) +

bZ(4)∑

j=1

(f̂
(4)
n,i , m̂

(4)
n,i)

=

bZ(3)∑

j=1

(
(f̂

(1)
n,i , m̂

(1)
n,i) + (f̂

(4)
n,i , m̂

(4)
n,i)

)
+

bZ(1)∑

j= bZ(3)+1

(f̂
(1)
n,i , m̂

(1)
n,i) +

bZ(4)∑

j= bZ(3)+1

(f̂
(4)
n,i , m̂

(4)
n,i)

≥

bZ(3)∑

j=1

(
(f̂

(2)
n,i , m̂

(2)
n,i) + (f̂

(3)
n,i , m̂

(3)
n,i)

)
+

bZ(2)∑

j= bZ(3)+1

(f̂
(4)
n,i , m̂

(4)
n,i)

≥

bZ(3)∑

j=1

(f̂
(2)
n,i , m̂

(2)
n,i) +

bZ(3)∑

j=1

(f̂
(3)
n,i , m̂

(3)
n,i) +

bZ(2)∑

j= bZ(3)+1

(f̂
(3)
n,i , m̂

(3)
n,i)

=

bZ(2)∑

j=1

(f̂
(2)
n,i , m̂

(2)
n,i) +

bZ(3)∑

j=1

(f̂
(3)
n,i , m̂

(3)
n,i) = (F̂ (2), M̂ (2)) + (F̂ (3), M̂ (3)).

Thus, even in this case (3) holds.

Using the same arguments as in the case Ω213, one can see that (3) holds even for almost
all ω ∈ Ω312.

Consider now the subset Ω321. For almost all ω ∈ Ω321 it holds

(F̂ (1), M̂ (1)) + (F̂ (4), M̂ (4)) =

bZ(1)∑

i=1

(f̂
(1)
n,i , m̂

(1)
n,i) +

bZ(4)∑

i=1

(f̂
(4)
n,i , m̂

(4)
n,i)

=

bZ(1)∑

i=1

(
(f̂

(1)
n,i , m̂

(1)
n,i) + (f̂

(4)
n,i , m̂

(4)
n,i)

)
+

bZ(4)∑

i= bZ(1)+1

(f̂
(4)
n,i , m̂

(4)
n,i)

≥

bZ(1)∑

i=1

(
(f̂

(2)
n,i , m̂

(2)
n,i) + (f̂

(3)
n,i , m̂

(3)
n,i)

)
+

bZ(2)∑

i= bZ(1)+1

(f̂
(4)
n,i , m̂

(4)
n,i) +

bZ(4)∑

i= bZ(2)+1

(f̂
(4)
n,i , m̂

(4)
n,i)

≥

bZ(1)∑

i=1

(
(f̂

(2)
n,i , m̂

(2)
n,i) + (f̂

(3)
n,i , m̂

(3)
n,i)

)
+

bZ(2)∑

i= bZ(1)+1

(f̂
(2)
n,i , m̂

(2)
n,i)

+

bZ(4)
−bZ(2)+bZ(1)∑

i= bZ(1)+1

(f̂
(4)

n,i+ bZ(2)−bZ(1)
, m̂

(4)

n,i+bZ(2)−bZ(1)
)

≥

bZ(2)∑

i=1

(f̂
(2)
n,i , m̂

(2)
n,i) +

bZ(1)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) +

bZ(3)∑

i=bZ(1)+1

(f̂
(3)

n,i+bZ(2)−bZ(1)
, m̂

(3)

n,i+bZ(2)−bZ(1)
)

the last inequality being Ẑ(4) − Ẑ(2) + Ẑ(1) ≥ Ẑ(3), f̂
(4)

n,i+bZ(2)−bZ(1)
≥ f̂

(3)

n,i+bZ(2)−bZ(1)
and

m̂
(4)

n,i+bZ(2)−bZ(1)
≥ m̂

(3)

n,i+bZ(2)−bZ(1)
.

Let now (f̂
(3)
n,i , m̂

(3)
n,i)

′ = (f̂
(3)

n,i+ bZ(2)−bZ(1)
, m̂

(3)

n,i+bZ(2)−bZ(1)
). Note that by assumption (iv)

it holds (f̂
(3)
n,i , m̂

(3)
n,i)

′ =st (f̂
(3)
n,i , m̂

(3)
n,i) for all i = Ẑ(1) + 1, . . . , Ẑ(3). Moreover, the couples
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(f̂
(3)
n,i , m̂

(3)
n,i)

′, with i = Ẑ(1)+1, . . . , Ẑ(3), are independent from the couples (f̂
(3)
n,i , m̂

(3)
n,i), with

i = 1, . . . , Ẑ(1). Thus, by inequalities above, we have

(F̂ (1), M̂ (1)) + (F̂ (4), M̂ (4)) ≥

bZ(2)∑

i=1

(f̂
(2)
n,i , m̂

(2)
n,i) +

bZ(1)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) +

bZ(3)∑

i=bZ(1)+1

(f̂
(3)
n,i , m̂

(3)
n,i)

′,

i.e., for almost all ω ∈ Ω321 it holds

(F̂ (1), M̂ (1)) + (F̂ (4), M̂ (4)) ≥ (F̂ (2), M̂ (2)) + (F̂ (3), M̂ (3))′,(4)

where

(F̂ (3), M̂ (3))′ =

bZ(1)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) +

bZ(3)∑

i= bZ(1)+1

(f̂
(3)
n,i , m̂

(3)
n,i)

′.

In a similar way one can see that for almost all ω ∈ Ω231 it holds

(F̂ (1), M̂ (1)) + (F̂ (4), M̂ (4)) ≥ (F̂ (2), M̂ (2))′ + (F̂ (3), M̂ (3)),(5)

where

(F̂ (2), M̂ (2))′ =

bZ(1)∑

i=1

(f̂
(2)
n,i , m̂

(2)
n,i) +

bZ(2)∑

i= bZ(1)+1

(f̂
(2)
n,i , m̂

(2)
n,i)

′,

and where the (f̂
(2)
n,i , m̂

(2)
n,i)

′ are defined as the (f̂
(3)
n,i , m̂

(3)
n,i)

′ above.
Combining (3), (4) and (5) one has

(F̂ (1), M̂ (1)) + (F̂ (4), M̂ (4)) ≥ (F̃ (2), M̃ (2)) + (F̃ (3), M̃ (3)),(6)

where

(F̃ (2), M̃ (2)) =

{
(F̂ (2), M̂ (2)) for ω 6∈ Ω231

(F̂ (2), M̂ (2))′ for ω ∈ Ω231

and

(F̃ (3), M̃ (3)) =

{
(F̂ (3), M̂ (3)) for ω 6∈ Ω321

(F̂ (3), M̂ (3))′ for ω ∈ Ω321 .

It is easy to verify that

(F̃ (2), M̃ (2)) =st (Fn+1, Mn+1)(θn,λn)(2)

and
(F̃ (3), M̃ (3)) =st (Fn+1, Mn+1)(θn,λn)(3) .

Moreover, it is easy to verify that

(F̂ (4), M̂ (4)) ≥ [(F̃ (2), M̃ (2)), (F̃ (3), M̃ (3))](7)

In fact, for example, we have

(F̃ (3), M̃ (3)) = (F̂ (3), M̂ (3)) =

bZ(3)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) ≥

bZ(4)∑

i=1

(f̂
(4)
n,i , m̂

(4)
n,i) = (F̂ (4), M̂ (4))
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when ω 6∈ Ω321, and

(F̃ (3), M̃ (3)) =

bZ(1)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) +

bZ(3)∑

i= bZ(1)+1

(f̂
(3)
n,i , m̂

(3)
n,i)

′

=

bZ(1)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) +

bZ(3)∑

i= bZ(1)+1

(f̂
(3)

n,i+bZ(2)− bZ(1)
, m̂

(3)

n,i+bZ(2)−bZ(1)
)

≤

bZ(1)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) +

bZ(4)
−bZ(2)+bZ(1)∑

i= bZ(1)+1

(f̂
(3)

n,i+ bZ(2)−bZ(1)
, m̂

(3)

n,i+bZ(2)−bZ(1)
)

=

bZ(1)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) +

bZ(4)∑

i= bZ(2)+1

(f̂
(3)
n,i , m̂

(3)
n,i)

≤

bZ(4)∑

i=1

(f̂
(3)
n,i , m̂

(3)
n,i) ≤

bZ(4)∑

i=1

(f̂
(4)
n,i , m̂

(4)
n,i) = (F̂ (4), M̂ (4))

when ω ∈ Ω321.
Thus, by inequalities (6), (7) and recalling that (F̂ (i), M̂ (i)) =st (Fn+1, Mn+1)(θn,λn)(i)

when i ∈ {1, 4} and (F̃ (i), M̃ (i)) =st (Fn+1, Mn+1)(θn,λn)(i) when i ∈ {2, 3}, one get the
assertion.

By the closure property of idcx functions with respect to composition, mentioned in
Section 2, it immediately follows the next statement (see also Lemma 2.15 in Meester and
Shanthikumar [10]).

Corollary 3.1 Let the mating function L be an idcx function. Then, under the assump-
tions of Theorem 3.1, {Zn+1((θn, λn)), (θn, λn) ∈ T

n × L
n} is SI − DCX(sp).

Note that the idcx property of the mating function L is not too restrictive; for example
the functions L(x, y) = min{x, y}, L(x, y) = x + y and L(x, y) = xy satisfy this property.
Moreover, the idcx property implies superadditivity of L, that is a quite common assumption
for mating functions (see, e.g., Daley et al. [4]).

Now, by induction one can easily prove the following corollary.

Corollary 3.2 If assumptions i) and ii) of of Theorem 3.1 are satisfied, if the mating
function L is an idcx function, and if {Z1(θ0, λ0), (θ0, λ0) ∈ T×L} is SI −DCX(sp), then
{(Fn+1, Mn+1)(θn,λn), (θn, λn) ∈ T

n × L
n} is SI − DCX(sp) for every n ∈ N.

We can now state the main result of this section. For it, let us denote with (Θn, Λn) =
{(Θi, Λi), i = 1, . . . , n} the first n pairs of the random sequence (Θ, Λ) (and similarly for
(Θ′

n, Λ′
n))

Corollary 3.3 Let the assumptions i) and ii) of of Theorem 3.1 be satisfied, and let the
mating function L be an idcx function. If {Z1(θ0, λ0), (θ0, λ0) ∈ T ×L} is SI − DCX(sp),
then for every n ≥ 1 the inequality

(Θn, Λn) ≤idcx (Θ′

n, Λ′

n)

implies
(Fn+1, Mn+1)(Θn,Λn) ≤idcx (Fn+1, Mn+1)(Θ′

n
,Λ′

n
),
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[Fn+1 + Mn+1|(Θn, Λn)] ≤icx [Fn+1 + Mn+1|(Θ
′

n, Λ′

n)]

and

[Zn+1|(Θn, Λn)] ≤icx [Zn+1|(Θ
′

n, Λ′

n)].

Proof. Let u be any increasing and directionally convex function. By Corollary 3.2 and
Lemma 2.2 it follows that the function h(θn, λn) = E[u((Fn+1, Mn+1)(θn,λn))] is increasing
and directionally convex. Now, the first assertion follows from Lemma 2.11 in Meester and
Shanthikumar [10], the second from the first assertion and Lemma 2.1, and the last one
from the first assertion and Lemma 2.2.

In words, Corollary 3.3 essentially says that, under appropriate assumptions, the total
population at any fixed generation n increases in icx order as the environmental process in-
creases in idcx order, i.e., as the positive dependence between the fertility indexes increases.

Remark 3.1 Note that the results above can be actually further generalized considering
mating functions Ln(Fn, Mn, δn) depending also on one more environmental parameter δn,
or mating functions Ln(Fn + IFn, Mn + IMn) depending also on an immigration process
I = {(IFn, IMn), n ∈ N} (see González et al. [7]).

Remark 3.2 As a particular case one can assume that Θn = Λn a.s. for every fixed n.
In this case it can be obtained a simple generalization to bisexual branching processes of
Corollary 4.2 in Fernández–Ponce et al. [6], that deals with standard branching processes.
This is a simple interesting case, that shows that population increases in icx order as the
positive autocorrelation in time between the random fertility indexes increases.

Assume for example that the random evolutions of the environment are described by a
stationary discrete–time homogeneous Markov process Θ = {Θn : n ∈ N} that is stochas-
tically monotone (i.e., such that [Θ2|Θ1 = θ] is stochastically increasing in θ). Using the
criteria described above one can define stochastic bounds for the total population at any
generation. In fact, let Θ′

n = {Θ′

k : k = 1, . . . , n} be a finite sequence of variables such
that Θ′

k = Θ′

1 a.s. for all k where Θ′

1 has the same distribution of Θ1 (i.e., the sta-
tionary marginal distribution of Θ). Then it is well-known that (Θ1, Θ2, . . . , Θn) ≤idcx

(Θ′

1, Θ
′

2, . . . , Θ
′

n) for every n ∈ N. Let now Θ′′

n = {Θ′′

k : k = 1, . . . , n} be a finite sequence
of independent and identically distributed variables such that Θ′′

k =st Θ1 (i.e., having as
distribution the stationary marginal distribution of Θ). It has been shown (see, e.g., Hu and
Pan [8]) that in this case it holds (Θ′′

1 , Θ′′

2 , . . . , Θ′′

n) ≤idcx (Θ0, Θ1, . . . , Θn) for every n ∈ N.
Therefore, for a bisexual Galton–Watson branching process defined on a random envi-

ronment as described before, and subjected to an underlying stationary discrete–time homo-
geneous Markov process Θ, it holds

[Fn+1 + Mn+1|Θ
′′

n] ≤icx [Fn+1 + Mn+1|Θn] ≤icx [Fn+1 + Mn+1|Θ
′

n]

and, in particular

E[Fn+1 + Mn+1|Θ
′′

n] ≤ E[Fn+1 + Mn+1|Θn] ≤ E[Fn+1 + Mn+1|Θ
′

n]

for all n ∈ N
+.

Remark 3.3 Otherwise, one can assume that Θn = Θ and Λn = Λ a.s. for all n (i.e., the
fertility indexes do not change in time). This is another simple interesting case, that shows
that population increases in icx order as the positive dependence between the two random
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fertility indexes increases. For example, let (Θ, Λ) and (Θ′, Λ′) be two bivariate normally
distributed random pairs, having the same mean vector M and variance-covariances matrices

Σ =

(
σ2

Θ ρ

ρ σ2
Λ

)
and Σ′ =

(
σ2

Θ ρ′

ρ′ σ2
Λ

)
,

respectively. Then using the results above we have that for all n ∈ N
+ it holds

[Fn+1 + Mn+1|(Θ, Λ)] ≤icx [Fn+1 + Mn+1|(Θ
′, Λ′)],

and in particular

E[Fn+1 + Mn+1|(Θ, Λ)] ≤ E[Fn+1 + Mn+1|(Θ
′, Λ′)],

whenever ρ ≤ ρ′.

4 A complementary result In this section we consider a different population growth
model, and we show that it satisfies properties similar to those provided in the previous
section.

Consider a population whose total number of individuals is given by the sum of immi-
grates coming from m different fonts of immigration. From each font i, immigrates arrive at
random times Tj,i according to a counting process N i

δi
(parametrized by δi ∈ R

+), and at
each time Tj,i total population increases of a random amount Xj,i(λ) of individuals whose
distribution depends on some common environmental parameter λ ∈ R

+. Thus, the total
number of immigrates up to time t due by font i of immigration is

Ni

δi
(t)∑

j=1

Xj,i(λ),

and the total number of immigrates up to time t is

W (t) = W(δ1,... ,δm,λ)(t) =

m∑

i=1

Ni

δi
(t)∑

j=1

Xj,i(λ).(8)

One can assume that all variables N i
δi

and Xj,i(λ) are independent when the parameters are
fixed, and that they are actually given by a realization of a random vector (∆1, . . . , ∆m, Λ),
defined on some appropriate space contained in R

m+1, describing random environmental
conditions.

For the main result on this model, we firstly recall a preliminary result that has been
proved in Fernández–Ponce et al. [6], whose proof is similar to the proof of Theorem 3.1.

Theorem 4.1 Consider the family of random sums {Z(θ, λ), (θ, λ) ∈ T × L} defined by

Z(θ, λ) =

N(θ)∑

j=1

Xj(λ)

If
i) all the families {Xj(λ),λ ∈ L}, j ∈ N, and {N (θ),θ ∈ T} are independent;
ii) {Xj(λ),λ ∈ L} ∈ SI − DCX(sp) for every j ∈ N;
iii) {N (θ),θ ∈ T} ∈ SI − DCX(sp);
iv) {Xj(λ), j ∈ N} ∈ SI for every λ ∈ L;
then {Z(θ, λ), (θ, λ) ∈ T × L} ∈ SI − DCX(sp).
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Using the above Theorem 4.1 it is easy to prove the following.

Theorem 4.2 Let

W (t) = W(δ1,... ,δm,λ)(t) =

m∑

i=1

Ni

δi
(t)∑

j=1

Xj,i(λ).

i) If the families {Xj,i(λ), λ ∈ R} and the the families of processes {N i
δi

, δi ∈ R} are all
independent;
ii) if the families {Xj,i(λ), λ ∈ R} ∈ SI −−CX(sp) for all fixed i and j;
iii) if the families {N i

δi
(t), δi ∈ R} ∈ SI −−CX(sp) for all fixed i and all t,

iv) if the families {Xj,i(λ), j ∈ N} ∈ SI for all i and λ ∈ R;
then the family {W(δ1,... ,δm,λ)(t), (δ1, . . . , δm, λ) ∈ R

m+1} is SI–DCX(sp).

Proof. From Theorem 4.1 we have that




Ni

δi
(t)∑

j=1

Xj,i(λ), (δi, λ) ∈ R
m+1





,

is SI–DCX(sp) for all t ≥ 0 and i = 1, 2, ...,m. Now, by the independence assumptions and
by Lemma 2.16 in Meester and Shanthikumar [10], we have that








N1
δ1

(t)∑

j=1

Xj,1(λ), . . . ,

Nm

δm
(t)∑

j=1

Xj,m(λ)


 , (δ1, ..., δm, λ) ∈ R

m+1





is SI–DCX(sp). Finally, the assertion follows by Lemma 2.15 in Meester and Shanthiku-
mar [10] since the function f(x) =

∑m

i=1 xi is idcx.

Note that Lemma 2.16 can be applied here since this result holds when all or some of
the parameters are the same, and it also holds if SI–CX(sp) is replaced by SI-DCX(sp).

Now we can state the main result of this section.

Corollary 4.1 Let

W (t) = W(δ1,... ,δm,λ)(t) =

m∑

i=1

Ni

δi
(t)∑

j=1

Xj,i(λ).

If the assumptions (i)–(iv) in the previous theorem hold, then

(∆1, . . . , ∆m, Λ) ≤idcx (∆′

1, . . . , ∆′

m, Λ′)

implies
W(∆1,... ,∆m,Λ)(t) ≤icx W(∆′

1,... ,∆′

m
,Λ′)(t)

for all t ≥ 0,

Proof. Let u be any increasing and directionally convex function. Then by Theorem
4.2 and Lemma 2.2 it follows that the function ht(δ1, . . . , δm, λ) = E[u(W(δ1,... ,δm,λ)(t))]
is increasing and directionally convex. Thus, the assertion follows from Corollary 2.12 in
Meester and Shanthikumar [10].
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As for the main result presented in Section 3, the statement above essentially says that
under appropriate assumptions the total population at every fixed time t increases as the
positive dependence between the environmental parameters increases.

For an example of application, consider two populations W and W ′ defined as in (4.1),
but subjected to two different environments (∆1, . . . , ∆m, Λ) and (∆′

1, . . . , ∆′

m, Λ′), re-
spectively. For fixed values of the parameters δi and λ, let the counting processes N i

δi
be

homogeneous Poisson processes having rates δi, i = 1, . . . , m, and let the variables Xj,i(λ)
be Bernoulli distributed with mean λ. Also, let (∆1, . . . , ∆m, Λ) be a vector of independent
normally distributed variables, having means d1, . . . , dm, l, and variances v1, . . . , vm, u, with
di >> vi, i = 1, . . . , m and l >> u (here l >> u means that l is much bigger than u, so that
probability of having negative parameters is negligible). Let now (∆′

1, . . . , ∆′

m, Λ′) be a
multivariate normally distributed vector whose components have the same means and vari-
ances than (∆1, . . . , ∆m, Λ) and non–negative covariances. Then making use of Corollary
4.1 it immediately follows

E[W ′(t)] ≥ E[W (t)] =

m∑

i=1

tE[∆i]E[Λ] = lt

m∑

i=1

di

for every t ≥ 0.
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