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APPLICATIONS TO PORTFOLIO THEORY OF MARKET 
STOCHASTIC BOUNDS  

Sergio Ortobelli*, Franco Pellerey** 

Abstract 
This paper examines the market bounds in order to describe the evolution of investor's op-

timal choices. Thus, first we describe the distributions of market bounds when limited short sales are 
allowed. Then, we introduce a linear approximation model that describes the investors’ optimal 
choices as a function of the upper market bound. Finally, we propose an empirical comparison be-
tween optimal strategies based on the expected optimal portfolios related to the upper market bound. 

 
Key words: stochastic bounds, stochastic dominance, safety first optimal portfolio. 
JEL Classification: G11, G14. 

1. Introduction 
The theory of portfolio choice is based on the assumption that investors allocate their 

wealth across the available assets in order to maximize their expected utility. One of the first 
rigorous approximating results to the portfolio selection problem was given in terms of the 
mean and the variance by Markowitz and Tobin. Mean variance theory finds its justification in 
arbitrage theory and in stochastic dominance analysis. In particular, stochastic dominance 
analysis justifies the partial consistency of mean-variance framework with expected utility 
maximization when the portfolios are elliptically distributed. 

Almost in contradiction to maximization of expected utility approach, there has been the 
gradual development of a theory of decision making which has focused on agents who seek to at-
tain some aspiration or target level of outcome through their actions. However, it is possible to 
prove that the two approaches are related and in some cases equivalent even if the economic rea-
sons and justifications are different (see Bordley, LiCalzi (2000) Castagnoli, LiCalzi (1996), Orto-
belli and Rachev (2001)). In portfolio literature, Roy (1952), Tesler (1955/6), Bawa (1976, 1978), 
suggest the safety first rules as a criterion for decision making under uncertainty. In such models, a 
subsistence or disaster level of returns is identified. The objective is taken to be the maximization 
of the probability that the returns are above the disaster level (or some other variation on this 
theme). Further extensions and developments have followed these primary works (see, among oth-
ers, the discrete time extensions of Roy (1995), Li, Chan, Ng (2000) or the continuous time exten-
sions of Majumdar and Radner (1991) and Dutta (1995)). 

This paper describes market stochastic bounds in order to study the evolution of inves-
tors' optimal choices. In particular we introduce some management tools to forecast the behav-
ior of future choices. Thus, using the upper stochastic bound in an approximating linear model, 
we can examine the market trend and we can give a first naive interpretation to safety first 
analysis in markets with short sale restrictions. This metodology suggests a way to determine 
an average portfolio of optimal choices. Thus with an ex-post empirical analysis we compare 
the forecasting power of the expected optimal portfolios and of the portfolio that maximizes 
the Sharpe ratio.  

In the second section we define the stochastic bounds of the market and introduce the analy-
sis of market trend. The third section proposes an empirical comparison of the dominating portfolios 
and the portfolio that maximizes the Sharpe ratio. Finally we briefly summarize the results.  

                                                           
* University of Bergamo, Italy. 

** Politecnico di Torino, Italy. 
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2. Stochastic Bounds and Market Trend 
Suppose we have a frictionless market with n risky securities where all investors have the 

same temporal horizon and they act as price takers. The random vector of the gross returns1 

1[ ,..., ]nZ Z Z ′=  is defined on the Polish probability space ( , , )PΩ ℑ .  
In a market with limited short selling opportunities every admissible vector of portfolio 

weights 1[ ,..., ]nx x x ′=  belongs to a compact convex set T. In this case all the admissible portfo-

lios are stochastically bounded, i.e., there exist two random variables UY  and LY  such that for 

every admissible vector of portfolio weights 1[ ,..., ]nx x x ′=  belonging to the set T, every non-

satiable investor prefers UY  to x Z′  and x Z′  to LY  i.e., if and only if 

'( ) ( ) ( )
U LY x Z YF t F t F t≤ ≤  for every real t (see Ortobelli and Rachev (2001), Ortobelli and Pel-

lerey (2007) for further details)2. Under these assumptions, we can express analytically the distri-
bution functions of the optimal bounds. As a matter of fact,  

( ) inf ( ' )U x T
F P x Zλ λ

∈
= ≤  

is the "smallest" cumulative distribution (in FSD sense) which FSD dominates all portfolios 
while  

( ) lim sup ( ' )L
s x T

F P x Z s
λ

λ
+

∈
= ≤

�
 

is the "greatest" cumulative distribution (in FSD sense) which is FSD dominated by all portfolios. 

UF  has support [ , ]a b  and LF  has support [ , ]a b
) )

, where  

sup ( )
x T

a c x
∈

= ,
Tx

xdb
∈

= )(sup , inf ( )
x T

a c x
∈

=
)

, inf ( )
x T

b d x
∈

=
)

, 

{ }( ) sup / ( ' ) 0c x c P x Z c= ∈ℜ ≤ =  and { }( ) inf / ( ' ) 0d x d P x Z d= ∈ℜ > = . 

Generally, in the market it does not exist a portfolio x Z′  that FSD dominates (or is FSD 
dominated by) all the others. Thus, it does not exist a portfolio x Z′  that admits as distribution 
function UF  (or LF ). When only limited short sales are allowed, we call UF  the stochastically 

dominating distribution of all the admissible portfolios and LF  the stochastically dominated dis-

tribution. We call stochastic bounds of all admissible portfolios two random variables UY  and LY  

(unique in distribution) defined on ( , , )PΩ ℑ , with respectively the stochastically dominating 

distribution UF  and the stochastically dominated distribution LF . We call UY  preferential mar-

ket growth, since it represents the maximum factor of future wealth growth. In some sense, UY  is 
the maximum price that we can give at the future risky wealth for a unity of wealth invested today. 

                                                           
1 We indicate with ir  the rate of return of the 

thi  security and 1i iZ r= +  the respective gross return. 
2 Recall that X first stochastically dominates Y (X FSD Y) if and only if ( ( )) ( ( ))X Yφ φ≥E E  for every non-decreasing 

function φ  such that the two expectations exist, i.e., if and only if ( ) ( )X YF t F t≤  for every real t. More generally, we 

say that X dominates Y in the sense of the α  ( 1α ≥ ) stochastic dominance order ( X Y
α
≥ ) if 

( )1
( ) ( )

( )
( ) : ( )

( )X Y

t X
F t F t

α
α α

α

−
+−

= ≤
Γ

E
 for every real t (see Fishburn (1980)). 
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The above definition of stochastic bounds can be easily extended to a given category of investors. In 
particular, when limited short selling opportunities are allowed, we can consider the non-dominated 

choices in the sense of a given α − stochastic order (see Fishburn (1980)) belonging to ,T
α

 closure 
of the set 

( )( ){ }1
( ) ( )( ) / ,  ( ) arg inf ( ) .

x T
T x t T t R x t t x Zα α

α α
−

+∈
′= ∈ ∈ ∈ −E  

Note that T
α

 is a compact subspace of T. As for the stochastic bounds of all admissible 
portfolios, we consider two random variables ,( )UY α  and ,( )LY α  (unique in distribution) with re-

spectively the stochastically dominating distribution ( ), inf ( ' )U x T
F P x Z

αα λ
∈

= ≤  and the stochas-

tically dominated distribution )'(suplim)(, sZxPF
Txs

aL ≤=
∈→ + αλ

. Therefore, for every random vari-

able 1 ,( )

d

UD Y α≠  which FSD dominates every portfolio x Z′  in T
α

, then 1D  FSD ,( )UY α , and 

for every random variable 2 ,( )

d

LD Y α≠  which FSD is dominated by every portfolio x Z′  in T
α

, 

then ,( )LY α  FSD 2.D  Similarly, we can extend these considerations to the portfolios not domi-

nated in the sense of any given order of preferences. For example we could compute stochastic 
bounds and optimal portfolios weights: 

a) of non satiable risk lover investors, belonging to ,
RL

T  closure of the set  

( )( ) ( )( ) / ,  ( ) arg sup ( )RL
RL RL

x T
T x t T t R x t x Z t +

∈

⎧ ⎫⎛ ⎞′= ∈ ∈ ∈ −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

E , 

b) of investors that maximize their performance ratio, belonging to ,
PR

T  closure of the set 

( ) ( )
( ' )( ) / ,  ( ) arg sup .
( ' )

PR
PR PR

x T

v x ZT x t T t R x t
x Zρ∈

⎧ ⎫⎛ ⎞
= ∈ ∈ ∈⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
 

where ( ' )v x Z , ( ' )x Zρ  are respectively a positive reward measure and a positive risk 
measure of the portfolio (see Biglova et al. (2004), and Rachev et al. (2007)); 
c) of non dominated choices in a multiparameter framework (see Ortobelli (2001)). 
In the following we will consider portfolio choice among n risky assets when no short sales 

are allowed, i.e. portfolio weights 
1

: 0; 1 .
n

n
i i

i

x T y R y y
=

⎧ ⎫
∈ = ∈ ≥ =⎨ ⎬

⎩ ⎭
∑  We also assume that it 

does not exist a portfolio x Z′  in the market that FSD dominates (or is FSD dominated by) all the 
others, and we examine stochastic bounds for all admissible portfolios belonging to T. First of all we 
discuss the uniqueness, for every λ  belonging to [ , ],a b  of the portfolio weight  

( )( ) arg inf ( ' )U x T
x P x Zλ λ

∈
∈ ≤  

when limited short sales are allowed. Actually, the uniqueness is not always satisfied in presence 
of riskless assets, as shown in the following counterexample. 
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Counterexample: Let 0z  be the return of a riskless asset, and suppose that the vector Z 
of the other assets is jointly Gaussian distributed. Under this assumptions, we generally share the 
risky components from the riskless one for notation, i.e., for every 

{ }1 1
1: 0; 1n n

ii iy T y R y y+ +
=∈ = ∈ ≥ =∑  we consider ( ,1 );y x x e′= −  ,nx∈ℜ  

[1,...,1] .e ′=  Then, every portfolio 0(1 ) ,x e z x Z′ ′− +  is Gaussian distributed with mean 

0(1 ) ( )x e z x Z′ ′− + E  and variance x Qx′ , where Q is the variance covariance matrix of Z and 

1 0,x e′− ≥  0ix ≥  for every 1,..., .i n=  When there exists a risky portfolio with mean greater 

than 0z , non-satiable risk averse investors maximize the Sharpe ratio  

( )00 0 ( )(1 ) ( ) x Z ezx e z x Z z
x Qx x Qx

′ −′ ′− + −
=

′ ′
EE

 

(see Sharpe (2004)), and all optimal choices belong to a linear combination between the riskless return 

0z  and the market portfolio 'x Z% , where x%  is the solution of the optimization problem  

1

0

: 0; 1

( )sup .
n

i i

i

x x x

x E Z z
x Qx

=

≥ =

′ −
′

∑
 

Thus, in this case, when 0 ,zλ =  we get that  

1

1

0

: 0; 1

0

: 0; 1

arg inf ( (1 ' ) )

( )arg sup

n

i i

i

n

i i

i

x x x

x x x

x P x Z x e z

x E Z z
x Qx

α λ

=

=

≥ ≤

≥ ≤

⎛ ⎞
⎜ ⎟

′∈ − − ≤ =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟′ −⎜ ⎟=
⎜ ⎟′
⎜ ⎟
⎝ ⎠

∑

∑

%

 

for every (0,1]α ∈ , i.e., ( )Ux λ  is not unique.  
The above counterexample can be further extended to more general scalar and translation 

invariant families of distribution functions (see Ortobelli (2001)). On the other hand we can guar-
antee the uniqueness when the risk-free asset is not allowed and the risky returns are elliptically 
distributed (see Ortobelli and Rachev (2001)). For this reason in all the following considerations 
we assume that risk-free assets are not allowed. 

Since the stochastic bounds are the market limits, then the market trend is implicitly de-
scribed by them and it has sense to study the evolution of investor's choices in relation to the mar-

ket trend. Assume now that ( )( ) arg inf ( ' )U x T
x P x Zλ λ

∈
∈ ≤  is a measurable vectorial function. 

Then, by the definition of the stochastically dominating distribution it follows that 
( ) inf ( ' ( ) )U Ux T

F P x Zλ λ λ
∈

= ≤ .  
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Next, we say that it is satisfied the based target axiom when we assume non satiable in-
vestors minimize the probability that their returns are lower than a given value of the preferential 
market growth. The based-target axiom can be justified even in terms of the classic von Neumann-
Morgenstern approach. As a matter of fact, Castagnoli and LiCalzi (1996) have shown that the 
based-target approach is a generalization of the von Neumann-Morgenstern (vNM) one and even 
the vNM investors minimize the probability of being under a given target. Assuming that the 
based-target axiom holds, optimal choices are well represented by the random vectorial surjective 
function UX  defined on ( , , )PΩ ℑ  by  

( )( ) ( ( )) arg inf ( ' ( ))U U U Ux T
X w x Y w P x Z Y w

∈
= = ≤  for every w∈Ω . 

We call the random vectorial function UX  dominating portfolio of all admissible 
choices. The dominating portfolio is a random indicator of the investors' optimal choices, since it 
represents all the "safety first" choices (see Tesler (1955/6)). 

Therefore, it could be important to understand how optimal allocations vary among the n 
risky assets under preferential market growth changes. That is, the implicit question is: How does 

UX  change when UY  changes ? or, more suggestively, Where does the market go? These ques-
tions have not easy solutions even when returns are elliptically distributed, because if no short 
sales are allowed, it is still difficult to describe the Markowitz-Tobin efficient frontier. Moreover, 
the portfolio distributions are not necessarily elliptically distributed. When UY  admits finite vari-

ance 2

UYσ , we can consider the best linear approximation between UX  and UY  with the least 

square estimator (LSE). Thus, we can assume that the following model holds:  

 
2

,
, ,

cov( , )
( ) ( ( )) , 1, , ,

U

U i U
U i U i U U i

Y

X Y
X X Y Y i nε

σ
= + − + = KE E   (1) 

where E( ) 0i jε ε =  for all ,i j≠  E( ) 0jε =  for all 1, ,j n= K , and 
1

0.n
i

i
ε

=
=∑   

In this model we can distinguish different market indicators that can be interpreted by an 
economic point of view: 

♦ the vector of the expected values of the dominating portfolio  

 
� [ , ]

( ) ( ) ( ),D U U U U Ua b
x X x Y dP x dFλ λ

Ω
= = =∫ ∫oE   (2) 

represents the portfolio weights where the investors’ preferences collapse in average. 

In addition, when the set of all optimal safety first portfolios is convex, then x D  be-
longs to the portfolio weight efficient frontier U , since it is a convex combination of 
optimal portfolios; 

♦ the average of the upper stochastic bound  

 
� [ , ]

( ) ( ),U U Ua b
Y Y dP dFλ λ λ

∼

Ω
= = =∫ ∫E   (3) 

is another interesting indicator of the market growth, since UY  is the first random 

variable which dominates all portfolios. Then λ
∼

 can be considered as the average of 
the maximum future price of risky wealth for a unity of wealth invested today; 
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♦ moreover, we can interpret the portfolio  

 [ , ] ( ) ( )( ) U Ua bU U
D

x dFX Yy
λ λ λ

λ λ
∼ ∼

∫
= =

E
, (4) 

as the value that we give today to the differently allocated unitary wealth capitalized 
tomorrow with the maximum future price of risky wealth. Thus, Dy  represents in 
some sense how we look today at the evolution of the market portfolio tomorrow. 

The model (1) is well defined. As a matter of fact UX  remains a random vector of portfolio 

allocations since if we consider the vector cov( , )U UX Y  then we see that 

cov( , ) ( )U U U U DX Y X Y xλ
∼

= −E  that is cov( , ) ( )U U D DX Y y xλ
∼

= − , and therefore 

1 , 1.n
i U iX= =∑  We observe that the dependence of the thi  component of UX  with UY  is determined 

by the sign of ,cov( , ).U i UX Y  Therefore, the above relations can be interpreted in the following way: 

1. If , ,D i D iy x−  is greater than zero, then we can think the component , ( )U i Ux Y  has 

the same trend as .UY  Thus, if the market is growing, non satiable investors tend to in-

crease their position on the thi  investment. 

2. If , ,D i D iy x−  is lower than zero, then we can think the component , ( )U i Ux Y  has 

opposite trend than .UY  Thus, if the market is growing, we have that non-satiable inves-

tors tend to disinvest their position on the thi  investment. 

3. Opposite conclusions follow when the market is downing. 
This analysis is coherent with the economic interpretation given to the portfolios Dy  

and Dx , and could be potentially useful to address the future risk management choices. In addi-

tion, all the indicators ,λ
∼

 Dy  and Dx  can be estimated numerically. Clearly, these approxima-

tions can be only used to understand indicatively the trend of the market growth by the point of 
view of non-satiable investors. Finally, observe that all the above considerations can be ex-
tended to the stochastic bounds of portfolios belonging to any compact set of optimal choices 

contained in T=S (such as T
α

, 
RL

T  and 
PR

T ). For example, let us suppose we have N obser-

vations with probability kq  (k=1,...,N) of n risky assets. Typically, we can assume 
1/ ( ) /(1 ) / ,N N k N

kq g g g N−= − +  where (0,1],g∈  so that when g=1 we implicitly assume 

the observations are independent identically distributed (i.i.d.); otherwise, (i.e., (0,1)g∈  ) we 

consider an exponential weighted behavior of the historical observations (see, among others, 
Longerstaey and Zangari (1996)). Then, in order to determine optimal portfolios for non-satiable 

risk averse investors belonging to 
2

T , we have to solve the following linear optimization prob-
lem for different values of t: 
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1

1

,
1

min

1;    0;    1,...,

0;    1,...,

N

ky
k

n

i i
i

n

k k i i k k
i

v

y y i n

v v t y z q k N

=

=

=

= ≥ =

⎛ ⎞
≥ ≥ − =⎜ ⎟

⎝ ⎠

∑

∑

∑

 

where ,i kz  is the k-th observation of the i-th gross return. Then we can estimate the indicators 

relative to non-satiable risk averse 
2,2 ( ) inf ( ' )U

x T
F P x Zλ λ

∈
= ≤ , (2) ,(2)( ),UYλ

∼

= E  

,( 2) ,( 2)

( 2)

( )
,(2)

U UX Y
Dy

λ
∼= E

 and ,(2) ,(2)( )D Ux X=E  for the class of non-satiable risk averse investors, 

where ( )2,(2) ,(2)( ) arg inf ( ' ( ))U U
x T

X w P x Z Y w
∈

= ≤  for every Ω∈w  defines the dominating 

portfolio of non-satiable and risk averse choices. Analogously, we can estimate optimal choices of 
non-satiable risk lover investors, solving a similar optimization problem where we have the maxi-

mization instead of minimization and the constraints ,
1

n

k k i i k
i

v q y z t
=

⎛ ⎞≥ ∑ −⎜ ⎟
⎝ ⎠

; 1,...,k N=  in-

stead of constraints ,
1

;
n

k k i i k
i

v q t y z
=

⎛ ⎞≥ −∑⎜ ⎟
⎝ ⎠

 1,...,k N= . Similarly, we can also estimate the 

indicators ( ) ,RLλ
∼

 ,( ) ,D RLy  ,( )D RLx  of non-satiable risk lover investors. 

3. An Empirical Analysis on the Market Stochastic Bounds 
In this section we propose an empirical analysis of the stochastic bounds presented above. 

Since we do not know the distribution functions of the asset returns, we approximate the indicators 

Dx , λ
∼

 and Dy  using the empirical distributions of portfolio returns. The simplest way to get an 

estimation for these quantities is by taking a partition of [ , ]a b , say 1 2[ , ,..., ]fa bλ λ λ= = , and 

considering the approximations  

 1 1 2 2 1

1

( ) ( ( ) ( )) ...
... ( ( ) ( )),

U U U

f U f U f

F F F
F F

λ λ λ λ λ λ
λ λ λ

∼

−

= + − +
+ −

  (5) 

 
1 1 2 2 1

1

( ) ( ) ( )( ( ) ( )) ...
( )( ( ) ( )),

D U U U

f U f U f

x x F x F F
x F F

λ λ λ λ λ
λ λ λ −

= + − +
+ −

  (6) 

and  

 
[1

1 1 1 2 2 2 1

1

( ) ( ) ( )( ( ) ( ))

... ( )( ( ) ( )) .

D U U U

f f U f U f

y x F x F F

x F F
λ
λ λ λ λ λ λ λ

λ λ λ λ

∼

−

= + − +

⎤+ − ⎦
  (7) 
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In order to test the forecasting power of these indicators, we propose an ex-post analysis. 
In particular, we use daily returns quoted on the market from January 1995 to May 2005. Assum-
ing that short selling is not allowed, we examine optimal allocation among 10 stock returns com-
ponents of the Dow Jones Industrials1: Altria Group, Citigroup, General Electric, Home de pot, 
Intel, Johnson and Johnson, Microsoft, Pfizer, United Technologies, and Wal Mart Stores. We 
propose a performance comparison with two different assumptions: in the first we assume i.i.d. 
observations and we make use of a window of 250 daily observations to approximate the optimal 
portfolios; in the second we use a window of 750 daily observations and we assume the k-th ob-
servation has the probability 1/ ( )/(1 ) / ,N N k N

kq g g g N−= − +  with 410g −= . In particular, we 

compare the final wealth processes obtained with the portfolios Dx  and Dy  with the ex-post final 
wealth sample path obtained investing in the maximum Sharpe ratio portfolio (i.e., in the portfolio 

weights ( )0( )arg max x Z z
x x Qx

v ′ −
′

= E  assuming a null riskless return 0 0z = ). 

  

Fig. 1. Ex-post final wealth obtained assuming i.i.d. observations 

Note: This figure presents the ex-post final wealth processes (from December 1995 till May 2005) 
obtained investing daily either in portfolio Dx  or in Dy , or in portfolio that maximizes the Sharpe ratio. 

We compute the resulting ex-post sample paths of the final wealth obtained investing 
the wealth every day in the portfolios Dx  and Dy . That's why, we approximate Dx  and ,Dy  

by means of formulas (5), (6) and (7), computing 100 optimal portfolios ( )ix λ , with 

[ , ], 1,...,100i a b iλ ∈ = , assuming that the investors have an initial wealth 
0

1tW = . Thus, 

once we approximated the optimal portfolios ,( ) ,kD tx  and ,( )kD ty  at each time ,kt  we calculate 

the ex-post final wealths ( )1

( 1)
( ) ( ) ,: k

k k k

t
x t x t D tW W x Z

+

′ +=  and 
1( ) ky tW
+

 capitalized at time 1kt +  

with the ex-post observed gross returns ( 1).ktZ +   

                                                           
1 We take data from DATASTREAM. 
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In the first four figures we compare the different results from December 18th 1995 till 
May 24th 2005 assuming i.i.d. observations (i.e., 1/ 250),kq =  while in the last figure we 
compare the ex-post final wealths when historical observations are exponentially weighted. 

Figure 1 presents the comparison among the ex-post final wealth processes. Note that, 
in practice, there is no difference between the sample path of the final wealth obtained with 
portfolios Dy  and the one obtained considering portfolios Dx  even if both portfolios Dx  and 

Dy  give a performance better than that obtained considering the Sharpe ratio. 
The reason of this equality is explained by Figure 2, that reports the sample path of the 

differences , ,D i D iy x−  between the components of Dx  and Dy . 

 

Fig. 2. Component trend analysis 

Note: This figure presents the daily difference (from December 1995 till May 2005) between the 
components of portfolios Dy  and Dx . 

These differences are of order 10 3− , and do not imply a substantial difference in the final 
wealth. In Figure 3 we compare the behaviors over time of the expected upper and lower bounds. 
In particular, we observe that during the market crises the distance between the two bounds is 
higher since the market is much more volatile. The geometric means of the expected upper and 
lower bounds ( )UYE  and ( )LYE  during the period of observation are 1.00612809 and 
0.99615493 respectively. Thus, probably, there exist several strategies that could give better per-
formances than that obtained with the expected dominating portfolio for non-satiable investors. 
For example, let us compute the ex-post final wealth sample paths that one can obtain considering 
the expected dominating portfolios ,(2)Dx  and ,( )D RLx  of non-satiable and respectively risk averse 

and risk lover investors (analogous results can be obtained considering respectively the portfolios 

,(2)Dy  and ,( )D RLy ). Figure 4 shows the comparison among the ex-post final wealth processes. As 

we could expect, the strategies of non-satiable risk lover investors sometimes give better perform-
ance than the other ones. However, these strategies lose much more than the others during the crises 
after September 11th 2001. Among all the strategies, the one based on the expected dominating 
portfolio of all non-satiable investors gives the best performance.  
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Finally, in Figure 5 we compare the performance of all ex-post final wealth processes 
from October 17th 2000 till May 24th 2005 when we assume an exponential probability of the 
historical observations (i.e., we use 0001,0=g , N=750). Even in this case we observe the better 
performance of the expected dominant portfolio of all non-satiable investors. 

 

Fig. 3. Expected daily stochastic bounds 

Note: This figure presents the daily expected upper and lower bounds for all non-satiable investor 
valued from December 1995 till May 2005. 

 

Fig. 4. Ex-post final wealth processes obtained assuming i.i.d. observations 

Note: This figure presents the ex-post final wealth sample from December 1995 till May 2005 when 
we assume i.i.d. observations. We compare the ex-post final wealth process obtained investing daily 
either in the portfolio Dx  or in ,(2)Dx , or in ,( )D RLx , or in the portfolio that maximizes Sharpe ratio. 
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Fig. 5. Ex-post final wealth obtained with exponential weighted observations 

Note: This figure presents the ex-post final wealth sample path from October 2000 till May 2005 
when we assume exponential weighted observations. We compare the ex post final wealth obtained 
investing daily either in the portfolio Dx , or ,(2)Dx , or ,( )D RLx , or in the portfolio that maximizes 

the Sharpe ratio. 

4. Concluding Remarks 
In the paper we study the distribution law of the upper bound, and, in the first empirical 

analysis, we compare the forecasting power of two portfolios related to the upper bound of the 
market. In particular, we discuss how we can use the market stochastic bounds to analyze inves-
tors’ optimal choices in markets with short sale restrictions. On the other hand, when distribution 
functions of returns are elliptical, we can analytically describe how choices change in relation to 
the upper market stochastic bound (see Ortobelli and Pellerey (2007)). Clearly, the results of this 
paper can be discussed and studied in a more general context where some decision making agents 
have to choose a parametric random variable Xθ  (with θ  being a parameter belonging to a com-

pact convex set nΘ⊂ℜ ). Moreover, we believe that further discussions and extensions could 
rise from this first empirical analysis. For example: 

♦ we should consider strategies that minimize a distributional distance from the prefer-
ential market growth; 

♦ we should consider dynamic strategies taking into account the intertemporal depend-
ence of historical observations; 

♦ we should examine non dominating strategies with respect to behavioral orderings 
(see Levy and Levy (2002)). 

However, a more general empirical analysis with further studies and comparisons of the 
above model should be an object of future researches.  
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