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Abstract 
 
This paper focuses on the adaptation of Automatic Speech Recognition systems using 
Hybrid models combining Artificial Neural Networks with Hidden Markov Models. 
A classical adaptation technique consists in adding a linear transformation network that 
acts as a pre-processor to the main network. We investigated the application of linear 
transformations not only to the input features, but also to the outputs of the internal 
layers. The motivation is that the outputs of an internal layer represent a projection of the 
input pattern into a space where it should be easier to learn the classification or 
transformation expected at the output of the network. 

                                                 
1 This paper is an  extended version of the paper “Adaptation of Hybrid ANN/HMM Models Using  
Linear Hidden Transformations and Conservative Training” accepted for publication at ICASSP 2006. 



 - 2 - 

To compensate for the lack of adaptation samples for some phonetic units, a new 
solution, called Conservative Training, is also proposed that is a variation to the standard 
method of assigning the target values. 
Supervised adaptation experiments with different corpora and for different adaptation 
types are described. The results show that the proposed approach always outperforms the 
use of transformations in the feature space and yields even better results when combined 
with linear input transformations. 
 
Key words: Automatic Speech Recognition; Speaker Adaptation; Neural Network 
Adaptation; Catastrophic Forgetting 
 
 
 
1 Introduction 
 
The literature on speakers, environments, and applications adaptation is rich of techniques for 
refining Automatic Speech Recognition (ASR) systems by adapting the acoustic features and 
the parameters of stochastic models [1-5]. More recently, particular attention has been paid to 
discriminative training techniques and their application to the acoustic feature transformation 
[6,7]. 
Since the acoustic-phonetic Artificial Neural Networks (ANN) models are also trained with 
discriminative methods, it is worth exploring methods for adapting their features and model 
parameters.  
Several solutions to this problem have been proposed.  Some of these techniques for adapting 
neural networks are compared in [8,9].  A classical approach consists in adding a linear 
transformation network (LIN) that acts as a pre-processor to the main network, or simply 
adaptig all the weights of the original network.  
A tied-posterior approach is proposed in [10] to combine Hidden Markov Models (HMM) 
with ANN adaptation strategies. The weights of a hybrid ANN/HMM system are adapted by 
optimizing the training set cross entropy. A sub-set of the hidden units is selected for this 
purpose. The adaptation data are propagated through the original ANN and the nodes 
exhibiting the highest variance are selected, since hidden nodes with a high variance transfer 
a larger amount of information to the output layer.  
 
Recent adaptation techniques have been proposed with the useful properties of not requiring 
to store the previously used adaptation data and to be effective even with a small amount of 
adaptation data. Methods based on speaker space adaptation [2] and eigenvoices [3] are of 
this type and can be applied both to Gaussian Mixture HMMs as well as to the ANN inputs as 
proposed in [11]. The parameters of the transformations are seen as the components of a 
vector in a parameter adaptation space. Principal components can be found in this space to 
define a speaker space. Rapid adaptation consists in finding the values of the coordinates of a 
specific speaker point in the speaker space. If a limited number of adaptation data is 
available, then only fewer eigenvoices are used.  
 
This paper explores a new possibility consisting in adapting ANN models with 
transformations of an entire set of internal model features. Values for these features are 
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collected at the output of a hidden layer for which the number of outputs is usually of the 
order of a few hundreds. These features are supposed to represent an internal structure of the 
input pattern. As for input feature transformation, a linear network can be used for hidden 
layer feature transformation. In both cases the estimation of the parameters of the adaptation 
networks can be done with error Back-Propagation by keeping unchanged the values of the 
parameters of the ANN. Internal transformations can also be obtained by linear combination 
of “eigenvoices”.  
 
A problem, however, occurs in distributed connectionist learning when a network, trained 
with a large set of patterns, has to learn new input patterns. This problem, called 
“catastrophic forgetting,” [13] is particularly severe when a network is adapted with new data 
that do not adequately represent the knowledge included in the original training data. This 
effect is evident when adaptation data do not contain examples for a subset of the output 
classes.  
A review of several approaches that has been proposed to solve this problem is presented in 
[13]. Among them, the use of a series of pseudo-patterns, i.e. random patterns, associated to 
the output values produced by the connectionist network before adaptation. These pseudo-
patterns are added to the set of the new patterns to be learned [14] to try keeping stable the 
classification boundaries related to classes that have few or no samples in the new set of 
patterns. This effectively decreases catastrophic forgetting of the originally learned patterns. 
Since it seems difficult to generate these pseudo-patterns when the dimensionality of the 
input features is high, it has been proposed [15] to include in the adaptation set examples of 
the missing classes taken from the training set. 
 
This paper proposes a solution to this problem introducing Conservative Training, a variation 
to the standard method of assigning the target values, which compensates for the lack of 
adaptation samples in some classes. Experimental results on the adaptation test for the Wall 
Street Journal task [16] using the proposed approach compare favorably with published 
results on the same task [10,16]. 
 
The paper is organized as follows: Section 2 gives a short overview of the acoustic-phonetic 
models of the ANN used by the  ASR system, and presents the Linear Hidden Networks, 
which transform the features at the output of hidden layers. Section 3 is devoted to the 
illustration of the problem of catastrophic forgetting in connectionist learning, and proposes 
our Conservative Training approach as a possible solution and illustrates its benefits using an 
artificial classification task of 16 classes. Section 4 reports the experiments performed on 
several databases with the aim of clarifying the behavior of the new adaptation techniques 
with respect to the classical LIN approach. Finally the conclusions and future developments 
are presented in the last Section. 
 

2 Feature transformations 
 
The LOQUENDO-ASR decoder uses a 4-layer hybrid combination of Hidden Markov 
Models (HMM) and Multi Layer Perceptron (MLP), where each phonetic unit is described in 
terms of a single or double state left-to-right automaton with self-loops. The HMM transition 
probabilities are uniform and fixed, and the emission probabilities are computed by a MLP 
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[12]. The MLP has an input layer of 273 units (39 parameters of a 7 frame context), a first 
hidden layer of 315 units, a second hidden layer of 300 units and an output layer including a 
variable number of units, which is language dependent (600 to 1000).  Using two hidden 
layers, rather than a larger single hidden layer, has the advantage of reducing the total number 
of connections. Moreover, it allows considering the activation values of each hidden layer as 
a progressively refined projection of the input pattern in a space of features more suitable for 
classification. 
The acoustic models are based on a set of vocabulary and gender independent units including 
stationary context-independent phones and diphone-transition coarticulation models.  
These models have been successfully used for the acoustic models of 15 languages released 
with the LOQUENDO-ASR recognizer, and are the seed models for adaptation experiments 
of Section 3, if not differently specified. 
 
2.1 Input feature transformations 

The simplest and more popular approach to speaker adaptation with ANNs is Linear Input 
Transformation [8,9]. The input space is rotated by a linear transformation to make the target 
conditions more consistent with the training conditions. The transformation is performed by a 
linear layer interface (referred to, in this paper, as linear input network or LIN) between the 
input observation vectors and the input layer of the trained ANN as shown in Figure 1. The 
LIN weights are initialized with an identity matrix, and they are trained by minimizing the 
error at the output of the ANN system keeping fixed the weights of the original ANN. 
Using few training data, the performance of the combined architecture LIN/ANN is usually 
better than adapting the whole network, because it involves the estimation of a lower number 
of parameters.  
 

 

Fig. 1. Artificial Neural Network including a linear input layer 
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Second Hidden Layer 

Linear Input Network 

Input Layer
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Fig. 2. Artificial Neural Network including a linear hidden layer 
 

2.2 Hidden feature transformations 

Assuming that the activation values of a hidden layer represent an internal structure of the 
input pattern in a space more suitable for classification, a linear transformation can be applied 
to the activations of the internal layers. Such a transformation is performed by a Linear 
Hidden Network (LHN). As for the LIN, the values of an identity matrix are used to initialize 
the weights of the LHN. The weights are trained using a standard Back-Propagation 
algorithm keeping frozen the weights of the original network. It is worth noting that, since the 
LHN performs a linear transformation, once the adaptation process is completed, the LHN 
can be removed combining LHN weights with the ones of the next layer using the following 
simple matrix operations: 
 

SILHNSIa

SILHNa

WBBB
WWW

×+=
×=

             (1) 
 

where Wa and Ba are the weights and the biases of the adapted layer, WSI and BSI are the 
weights and biases of the layer following the LHN in the original Speaker Independent 
network, and WLHN and BLHN are the adapted weights and the biases of the linear hidden 
network.  
In our experiments the LHN has been applied to the last hidden layer. 
 

3 Catastrophic Forgetting 
 
It is well known that in connectionist learning, acquiring new information in the adaptation 
process, can damage previously learned information [13,14]. This effect must be taken into 
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account when adapting an ANN with limited amount of data, which do not include enough 
samples for all the acoustic-phonetic units. The problem is more severe in the ANN modeling 
framework than in the classical Gaussian Mixture HMMs. The reason is that an ANN uses 
discriminative training to estimate the posterior probability of each acoustic-phonetic unit.  
The minimization of the output error is performed by means of the Back-Propagation 
algorithm that penalizes the units with no observations in the adaptation set by setting to zero 
the target value of the their output units for every adaptation frame. This target assignment 
policy induces in the ANN a forgetting of its capability to classify the corresponding 
acoustic-phonetic units. Thus, while the Gaussian Mixture models with little or no 
observations remain un-adapted or share some adaptation transformations of their parameters 
with other similar acoustic models, the units with little or no observations in the ANN model 
loose their characterization rather than staying not adapted. Thus, adaptation may destroy the 
correct behavior of the network for the unseen units.  
To mitigate the problem of loosing characterization of the units with little or no observations, 
it has been proposed [15] to include in the adaptation set examples of the missing classes 
taken from the training set. The disadvantage of this approach is that a substantial amount of 
the training set must be stored so that examples of the missing classes can be retrieved for 
each adaptation task. In [14], it has been proposed to approximate the real patterns with 
pseudo-patterns rather than using the training set. Pseudo-patterns consist of pairs of random 
input activations and the corresponding output. These pseudo-patterns are included in the set 
of the new patterns to be learned to prevent catastrophic forgetting of the original patterns. It 
seems difficult, however, to generate these pseudo-patterns when the dimensionality of the 
input features is high. 
 
We here propose a solution, that we call Conservative Training (CT), to mitigate the 
forgetting problem.  
Since the Back-Propagation technique used for MLP training is discriminative, the units for 
which no observations are available in the adaptation set will have zero as a target value for 
all the adaptation samples. Thus, during adaptation, the weights of the acoustic MLP will be 
biased to favor the output activations of the units with samples in the adaptation set and to 
weaken the other units, which will tend to always have a posterior probability close to zero. 
Conservative Training does not set to zero the value of the targets of the missing units, using 
instead as target values the outputs computed by the original network.  
 
Let Fp be the set of phonetic units included in the adaptation set (p indicates presence), and 
let Fm be the set of the missing units. In Conservative Training the target values are assigned 
as follows: 
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where )|( tpi OFfT ∈  is the target value associated to the input pattern tO  for a unit 

if  that is present in the adaptation set,  )|( tmi OFfT ∈ is a target value associated to 
the input pattern tO  for a unit not present in the adaptation set, 

)|(__ ti OfNNORIGINALOUTPUT  is the output of the original network (before 
adaptation) for the phonetic unit i given the input pattern tO , and  )|( ti Ofcorrect  is a 

predicate which is true if the phonetic unit if   is the correct class for the input pattern tO . 
Thus, a phonetic unit that is missing in the adaptation set, rather than obtaining a zero target 
value for each input pattern, will keep the value that it would have had with the original un-
adapted network. 
 

3.1 Experimental results on artificial data 
 
An artificial two-dimensional classification task has been used to investigate the effectiveness 
of the Conservative Training technique. An MLP has been used to classify points belonging 
to 16 classes having the rectangular shapes shown by the green borders in Figure 3. The MLP 
has 2 input units, two 20 node hidden layers, and 16 output nodes. It has been trained using 
2500 uniformly distributed patterns for each class. 
Figure 3 shows the classification behavior of the MLP after training based on Back-
Propagation. In particular, a dot has been plotted only if the score of the corresponding class 
was greater than 0.5. MLP outputs have also been plotted for test points belonging to regions 
that have not been trained, and outside the green rectangles: they are at the left and right sides 
of Figure 3. The average classification rate for all classes, and particularly for classes 6 and 7, 
is reported in the first row of Table 1. 
Afterward, an adaptation set was defined to simulate an adaptation condition where only two 
of the 16 classes appear. The 5000 points in this set define a border between classes 6 and 7 
shifted toward the left, as shown in Figure 4.  
 
 

 
 

Fig. 3. Training 16 classes on a 4 layer network with 760 weights 
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Fig. 4. Adaptation of all the network weights. The adaptation set includes examples of class 6 
and class 7 only. 
 
 

Adaptation 
method 

Forgetting 
mitigation 
technique 

Average 
classification rate 

(%) 

Class 6 
classification 

rate (%) 

Class 7 
classification 

rate (%) 
1. None None 95.9 98.5 93.3 
2. Whole 

network None 83.1 100.0 98 

3. Whole 
network CT 89.8 97.8 94.8 

4. LIN None 42.6 100 95.7 
5. LIN CT 69.0 99.0 91.8 
6. LHN None 65.4 99.6 97.2 
7. LHN CT 86.7 98.0 93.3 

 
Table 1 
Correct classification rates on the artificial data task. 
 

In the first adaptation experiment, all the 760 MLP weights and 56 biases of the network 
were adapted. The catastrophic forgetting behavior of the adapted network is evident in 
Figure 4, where a blue grid has been superimposed to indicate the original class boundaries 
learned by full training. 
Classes 6 and 7 do actually show a relevant increase of their correct classification rate, but 
they have a tendency to invade the neighbor classes. Moreover, a marked shift toward the left 
affects the classification regions of all classes, even the ones that are distant from the adapted 
classes. This undesired shitf of the boundary surfaces induced by the adaptation process 
damages the overall average classification rate as shown in the second row of Table 1.  
 
To mitigate the catastrophic forgetting problem, the adaptation of the network has been 
performed using Conservative Training. Figure 5 shows how the trend of classes 6 and 7 to 
invade neighbor classes is largely reduced, Class 6 and 7 fit well their true classification  
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. 

 
 

Fig. 5. Conservative Training adaptation of all the network weights. 
 
regions, and although the left shift syndrome is still present, the adapted network performs 
better as shown by the average classification rate in the third row of Table 1. 
 
Our artificial test-bed is not well suited to LIN adaptation because the classes cover 
rectangular regions: thus a linear transformation matrix that is able to perform a single global 
rotation of the input features is ineffective. Moreover the degree of freedom of this LIN is 
really poor: the LIN includes 4 weights and 2 biases only. These considerations are 
confirmed by the results reported in line 4 of Table 1. Classes 6 and 7 are well classified, but 
the average classification is very bad because the adaptation of the LIN weights to fit the 
boundary between class 6 and 7 has the catastrophic forgetting effect of enlarging the regions 
of all classes.  
The mitigation of these effects introduced by Conservative Training is shown in Figure 6 and 
line 5 of Table 1. The drag toward left syndrome is still visible, but the horizontal boundary 
surfaces are correct. 
 

 
 

Fig. 6. Conservative Training LIN adaptation. 
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Fig. 7. LHN Adaptation. 
 

 
 

Fig. 8 Conservative Training LHN adaptation. 
 
If we add, instead, a LHN between last hidden layer and the output layer, and we adapt its 
420 weights plus biases only, we obtain better results than LIN adaptation (see line 6 of Table 
1). However, as Figure 7 shows, the class separation surfaces are ugly. Class 6, and 
especially class 7 are spread out, class 3 is split, and thus the average classification rate is 
unacceptable. 
Conservative Training does again a very good job, as shown in Figure 8 and in last line of 
Table 1, even if class 12 does not present high scores. 
 
 
5 Experimental results on speech recognition tasks 
 
Adaptation to a specific application may involve the speakers, the channel, the environmental 
noise and the vocabulary, especially if the application uses specific list of terms. The 
proposed techniques have been tested on a variety of cases requiring different types of 
adaptation. The adaptation tasks that have been considered are listed in sub-session 4.1 
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below. The LOQUENDO default speaker independent Italian models were the seed models 
for the adaptation.  
 
The results of our experiments show that the problem of forgetting is dramatic especially 
when the adaptation set is not characterized by a good coverage of the phonemes of the 
language. The use of Conservative Training mitigates the forgetting problem, allowing 
adaptation with a limited performance decrease of the model on other tasks (some 
performance reductions are inevitable because the ANN is adapted to a specific condition and 
thus it is less general).  
 
4.1 Tests on various adaptation tasks 
 
Application adaptation:  Directory Assistance 

We tested the performance of models adapted to a Directory Assistance application. The 
corpus includes spontaneous utterances of the 9325 Italian city names. The adaptation set has 
53713 utterances; the test set includes 3917 utterances. 
 
Vocabulary adaptation: Command words 

The lists A1-2-3 of the SpeechDat-2 Italian corpus, containing 30 command words, have 
been used. The adaptation and the test sets include 6189 and 3094 utterances respectively. 
 
Channel-Environment adaptation: Aurora-3 

The benchmark is the standard Aurora3 Italian corpus. The Well-Matched train set has been 
used for adaptation (2951 utterances), while the results on Well-Matched test set (the noisy 
channel, ch1) are reported (654 utterances). 
 
The results on these tests, reported in Table 2, show that a linear transform on hidden units 
(LHN) always outperforms a linear transform on the input space (LIN). This indicates that 
the hidden units represent a projection of the input pattern in a space where it is easier to 
learn or adapt the classification expected at the output of the MLP.  The adaptation of the 
 
 

Adaptation 
 task 

Adaptation 
 method 

Application 
Directory Assistance

Vocabulary 
Command Words

Channel-Environment 
Aurora3 Ch 1 

No adaptation 14.6 3.8 24.0 
Whole network 10.5 3.2 10.7 

LIN 11.2 3.4 11.0 
LIN + CT 12.4 3.4 15.3 

LHN 9.6 2.1 9.8 
LHN + CT 10.1 2.3 10.4 

 
Table 2 
Adaptation results (WER %) on different tasks using various adaptation methods. The seed 
adaptation models are the standard LOQUENDO telephone models. 
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Adaptation 
method 

Directory Assistance
 Adapted Models 

Command Words
 Adapted Models 

Aurora3 Ch1 
 Adapted Models 

Whole network 36.3 63.9 126.6 
LIN 36.3 42.7 108.6 
LIN + CT 36.5 35.2 42.1 
LHN 40.6 63.7 152.1 
LHN + CT 40.7 45.3 44.2 
No adaptation 29.3 

 
Table 3 
Evaluation of the forgetting problem: recognition results (WER%) on Italian continuous 
speech with various adapted models. 
 
whole net is feasible only if many adaptation data are available, and is less effective than 
LHN. 
As expected, CT slightly reduces the performance, but the CT adapted models have greater 
generalization capabilities. This claim has been assessed by testing on a generic common task 
(continuous speech with a large vocabulary) the models adapted on a specific condition. The 
reference word error rate achieved using un-adapted acoustic models on the same task is 
given in the last line of the Table 3.  
Because the adapted models have been specialized to a specific condition, some performance 
reductions are justified.  But, the interest of the results shown in Table 3 is that they highlight 
the effects of catastrophic forgetting, which takes place when the vocabulary of the 
adaptation set is small and it has a poor phonetic coverage. This is particularly evident for the 
Command words and Aurora 3 adapted models whose results on the generic continuous 
speech recognition task are emphasized in italics in Table 3.  Conservative Training mitigates 
the problem, preserving an acceptable performance of the adapted model on the task for 
which the original network was trained (open vocabulary speech recognition).   
 
 

4.2 Speaker Adaptation  

Further experiments have been performed on the WSJ0 speaker adaptation test in several 
conditions. Three baseline models have been used: 
− the default LOQUENDO 8kHz telephone speech model (trained with LDC 

MACROPHONE [18] – referred as MCRP in the Tables); 
− a model trained with the WSJ0 train set (SI-84), 16 kHz.  
− a model trained with the WSJ0 train set (SI-84), down-sampled to 8 kHz. 

Furthermore, we tested two architectures for each type of models: the standard one (STD), 
described in sub-section 2.1 and an improved one (IMP), characterized by a wider input 
window modeling a time context of 250 ms [17], and by the presence a third 300 units hidden 
layer. 
The adaptation set is the standard adaptation set of WSJ0 (si_et_ad, 8 speakers, 40 utterances 
per speaker), down-sampled to 8 kHz when necessary. 
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Train Set Net type Adaptation  method Bigram LM Trigram LM 
MCRP STD NO adaptation 16.4 13.6 
MCRP STD Standard LIN 14.6 11.6 
MCRP STD LIN+CT 13.9 11.3 
MCRP STD LHN+CT 12.1 9.9 
MCRP STD LIN+LHN+CT 11.2 9.0 
WSJ0 STD NO adaptation 13.4 10.8 
WSJ0 STD Standard LIN 14.2 11.6 
WSJ0 STD LIN+CT 11.8 9.7 
WSJ0 STD LHN+CT 10.4 8.3 
WSJ0 STD LIN+LHN+CT 9.7 7.9 
WSJ0 IMP NO adaptation 10.8 8.8 
WSJ0 IMP     Standard LIN 9.8 7.6 
WSJ0 IMP     LIN + CT 9.8 7.7 
WSJ0 IMP     LHN + CT 8.5 6.6 
WSJ0 IMP     LIN+LHN+CT 8.3 6.3 

 

Table 4 
Speaker Adaptation results – WSJ0 8 kHz. 
 
The test set is the standard SI 5K read NVP Senneheiser microphone (si_et_05, 8 speakers x 
~40 utterances), and the bigram or trigram standard Language Models provided by Lincoln 
Labs have been used. 
The results, reported in Tables 4 and 5, show that also in these tests LHN always achieves 
better performance that LIN. The combination of LIN and LHN (trained simultaneously) is 
usually better than the use of LHN alone. Conservative training (CT) effects are of minor 
importance in these tests because the adaptation set has a good phonetic coverage and the 
problem of unseen phonetic classes is not dramatic.  
Nevertheless, its use improves the performance (compare Standard LIN and LIN+CT), 
because it avoids the adaptation of prior probabilities of the phonetic classes on the (poor) 
prior statistics of the adaptation set. 
 

Train Set Net type Adaptation method Bigram LM Trigram LM 
WSJ0 STD NO adaptation 10.5 8.4 
WSJ0 STD Standard LIN  9.9 7.9 
WSJ0 STD LIN+CT 9.4 7.1 
WSJ0 STD LHN+CT 8.4 6.6 
WSJ0 STD LIN+LHN+CT 8.6 6.3 
WSJ0 IMP NO adaptation 8.5 6.5 
WSJ0 IMP     Standard LIN  7.2 5.6 
WSJ0 IMP     LIN+CT 7.1 5.7 
WSJ0 IMP     LHN+CT 7.0 5.6 
WSJ0 IMP     LIN+LHN+CT 6.5 5.0 

 

Table 5 
Speaker Adaptation results – WSJ0 16 kHz. 
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5 Conclusions 
 
A method has been proposed for adapting all the outputs of the hidden layer of ANN acoustic 
models and for reducing the effects of catastrophic forgetting when the adaptation set does 
not contains examples for some classes.  Experiments for the adaptation of an existing ANN 
to a new application, a new vocabulary, a new noisy environment and new speakers have 
been performed. They all show the benefits of CT, and also that LHN outperforms LIN. 
Furthermore, experiments on speaker adaptation show that further improvements are obtained 
by the simultaneous use of LHN and LIN showing that linear transformations at different 
levels produce different positive effects that can be effectively combined.  
An overall WER of 5% after adaptation on WSJ0 using the standard trigram LM and without 
across word specific acoustic models compares favorably with published results. 
Future work will explore unsupervised adaptation and the use of eigenvoices.  
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