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Abstract— In this paper we study the problem of receiver
allocation in WDM single-hop optical networks under dynam-
ically changing traffic. Instead of focusing only on performance
optimization, we wish to take into account both network per-
formance and reconfiguration cost reduction. We first formalize
the receiver allocation problem as a multi-criteria ILP. Then,
we define Pareto-optimal solutions to solve the problem. The
number and characteristics of Pareto-optimal solutions is studied
to assess the problem significance. Finally, we propose different
reconfiguration schemes that may guide the choice of network
administrators among efficient solutions for the re-allocation
problem.

I. INTRODUCTION

Single-hop WDM optical networks operating in packet
mode are considered a promising choice for future Metros.
The single-hop approach avoids complex switching in the
optical domain and thus permits a cost-effective balance of
optics and electronics. In these networks, nodes are equipped
with few (typically one) transceivers, and each transceiver
operates at the data rate of a single WDM channel. Tunability
at transceivers is required to exploit the fiber bandwidth by
temporally (on a packet by packet basis) allocating all-optical
single-hop bandwidth between nodes in all available WDM
channels, according to a dynamic TDMA access scheme on
each WDM channel.

Due to the cost of tunability at transceivers, media access
protocols that require packet-by-packet tunability only either
at the transmitter or at the receiver have been studied, to save
the cost of the still quite expensive tunable devices. Usually
nodes are equipped with a fastly tunable transmitter and a fixed
receiver, permanently tuned to a WDM channel. When a node
needs to send a packet, it simply tunes its transmitter to the
receiver’s destination wavelength. This implies that transmitter
tuning times must be negligible with respect to the packet
duration to obtain a good efficiency.

If the number of nodes N is larger than the number of
WDM channels W , a decision problem arises concerning the
allocation of node receivers to WDM channels, with the aim

of balancing the traffic among the available WDM channels.
Indeed, let us suppose that the traffic pattern is described via
a demand matrix T of size N × N , describing the amount
of traffic each node is willing to send to other nodes, is
known either by estimation or measurement. Node receivers
must be assigned to one among the W available channels.
Obviously, traffic demands must be taken into account to
avoid channel overloading and/or to balance load on different
channels. Receivers assigned to the same WDM channel will
share the bandwidth according to a dynamic TDMA scheme.
If fixed receivers are considered, any allocation is fixed and
cannot be updated in response to changes in the traffic pattern,
which are typical in Metros. Therefore, it may be worthwhile
to re-allocate, i.e. tune to different wavelengths, receivers to
keep the network in an optimal operation point. One elegant
way of achieving this result is to introduce slow (hence cheap)
tunability in receivers. This tunability does not need to be fast,
since it must not track packet-by-packet variations, but longer-
term variations of the traffic pattern.

A typical solution to the receiver allocation problem aims at
optimizing performance by balancing the load on all available
channels or by determining an allocation that does not over-
load any channel [1]. This problem, a particular case of a log-
ical topology design problem, can be shown to be equivalent
to the problem of scheduling jobs on parallel machines [2], a
single criterion ILP (Integer Linear Programming) problem.
However, this approach neglects transceiver reconfiguration
cost. Indeed, slow tuning latencies on receivers introduce a
period of blackout, since all nodes must refrain from transmit-
ting to destinations under reconfiguration. Under lightly loaded
conditions, blackout periods affect mainly transmission delays,
while under high load conditions packet losses can occur.

Normally, it is assumed that blackout periods are much
shorter with respect to traffic fluctuations, so that this phe-
nomenon can be neglected when determining a new receiver
allocation via reconfiguration. However, in some situations the
receiver reconfiguration process may require longer blackout
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periods (e.g. in linear topologies a RTT may be necessary
to ensure that all nodes are correctly allocated to the proper
WDM channel). This implies that the performance penalty cre-
ated by the blackout period may become significant. Moreover,
several different re-allocation schemes may provide similarly
acceptable performance (i.e., no overloaded channel) with
different reconfiguration costs (e.g., numbers of receivers to be
tuned). Finally, in some cases the network administrator may
be willing to control not only performance but also disruption
cost, that may be difficult to quantify since they influence
user satisfaction. Indeed, during node receiver re-allocation to
a different wavelength channel, nodes are not active on the
data path, creating service interruption. For all these reasons,
it may be interesting to study a scenario when the traffic matrix
changes over time and receiver allocation schemes take into
account both reconfiguration costs and performance, leading
to a multi-criteria ILP problem.

Multi-criteria problems can be reduced to single-criterion
problems by linearization. However, this requires first the
capability to define proper coefficients weighting the single
criterion; second, criteria should be commensurable. This is
not our case, since reconfiguration cost and performance can-
not be directly compared. As such, a single optimal solution
cannot be easily defined. In this context, a set of solutions
can solve efficiently the receiver allocation problem and it
may be difficult to automatically determine a ranking criteria
among those solutions. This set of solutions, represented as
vectors of criteria, is called Pareto-optimal set. All the Pareto-
optimal solutions of interests must be efficient, i.e., no other
solution vector can decrease some criterion without causing a
simultaneous increase in at least one of the other criterion.

In this paper, first, we analyze how many Pareto-optimal
solutions are available in a typical network reconfiguration
scenario, so as to assess the problem significance. Then, we
analyze the characteristics of the Pareto-optimal solutions.
Finally, we provide algorithms, named reconfiguration strate-
gies, that may be useful to guide the choice of network
administrators among efficient solutions, since no automatic
procedure to determine a ranking among these solutions can
be easily defined.

II. PROBLEM FORMALIZATION

Let us formalize the receiver allocation problem as an ILP
(Integer Linear Programming) model. We refer to a network
with N nodes, W channels, with N > W ; each node is
equipped with a single fixed transmitter and a single tunable
receiver.

Introduce the set of control variables xik, where:

xik =
{

1 iff node i receives on wavelength k
0 otherwise

It is straightforward to notice that the solution of the receiver
allocation problem depends on source-destination node band-
width requirements. Denote by T = [tij ] the traffic demand
matrix, where tij is the amount of traffic to be transmitted
from node i to node j. Since the problem focuses on receivers

allocation, we are interested on the receiver aggregated traffic
tj :

tj =
N∑

i=1

tij ∀i, 1 ≤ i ≤ N (1)

We first consider the single-criterion problem, where the
only objective is load minimization, and later extend it to the
multi-criteria problem, where also reconfiguration costs are
taken into account.

A. The single-criterion problem

In the single-criterion case, we first assume that the traffic
matrix T does not change over time. Thus, reconfiguration
costs are neglected, and the only allocation criteria is to
minimize Lmax, i.e. the load on the most loaded wavelength,

being Lmax = max
k

N∑
i=1

tixik.

Thus, the problem becomes:

Minimize Lmax (2)

subject to the following constraints:

Lmax ≥
N∑

i=1

tixik ∀k, 1 ≤ k ≤ W (3)

W∑
k=1

xik = 1 ∀i, 1 ≤ i ≤ N (4)

Eq. (3) guarantees that no wavelength has a load larger than
Lmax, while Eq. (4) ensures that each receiver is allocated
only to one wavelength, since nodes are equipped with a single
receiver.

Note that slightly different optimization problems can be
defined by modifying the minimization criterion. We focus
on the minimization of the load on the most loaded wave-
length. This choice guarantees that there are no overloaded
wavelength channels in the network, if such an allocation
exists. Moreover, by minimizing the load on the most loaded
channel, the resulting allocation is relatively robust to node-
to-node traffic variations with respect to the nominal values
contained in the traffic demand matrix.

This problem is equivalent to scheduling jobs on identical
parallel machines. Receiver’s aggregated traffic ti represents
job’s duration, and wavelengths represent machines. Although
it falls in the class of NP-hard problems [3], an approximation
algorithm known as Largest Processing Time (LPT) [4] limits
the distance from the optimal solution L∗

max such that

LLPT
max ≤

(
4
3
− 1

3W

)
L∗

max (5)

The LPT algorithm is simple, and runs through the follow-
ing steps:

1 Sort nodes by decreasing ti, ∀i = 1...N .
2 Allocate largest (unallocated) ti to least loaded channel.
3 If unallocated receivers exist, go to 2.
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If the traffic matrix T changes over time, a new LPT
algorithm may be run for each traffic variation to determine
the new optimal receiver allocation.

B. The Multi-criteria problem

In the multi-criteria case, we assume that the traffic matrix
changes over time and that the receiver allocation tracks
these variations, trying to optimize bandwidth usage while
minimizing reconfiguration cost.

To account for reconfiguration costs, we define cik as the
cost of re-allocating node i to wavelength k. Note that if a
receiver has to be tuned to a wavelength different from the
one where it is currently tuned, all nodes willing to transmit to
this destination must refrain from transmissions for a period of
time equal at least to the tuning latency. Once we have defined
the reconfiguration costs, we can modify the single-criterion
ILP model to take into account the costs, expressed, for
example, by C =

∑N
i=1

∑W
k=1 cikxik; therefore, the receiver

allocation problem becomes a multi-criteria problem.

Minimize [Lmax, C] (6)

subject to constraints (3) and (4).
Note that the above expression of C is simply a possible

example of a cost function. Indeed, adding costs may have
sense if considering disruption cost, i.e. the inability to exploit
network resources during network reconfiguration, but it may
be meaningless in different scenarios. The choice of the best
cost function should be made by network administrators,
taking into account the specific needs of the network under
control.

Unfortunately, multi-criteria problems are hard to be dealt
with; typically, the trade-off is among the so-called efficient,
or Pareto-optima, solutions. Since the objective function is no
more a scalar but a vector, the optimality concept used in
scalar optimization is replaced by a new one, called Pareto-
optimum. A vector representing a possible solution to the
problem is said to be Pareto-optimal if no other solution vector
can decrease some criterion without causing a simultaneous
increase in at least another criterion. In other words, given
a feasible solution, if we cannot find a lower Lmax without
increasing the cost C, or vice-versa, this solution is Pareto-
optimum, since, to lower Lmax, we have to accept to pay an
increase in reconfiguration cost.

The solution to the optimization problem is not a single
vector, but a set of Pareto optimal vectors. This fact implies
that although we know all Pareto-optima, we still have to
decide which one represents the best solution. In the following
sections, we first discuss the problem of finding Pareto-optimal
solutions, and, later, we propose an algorithm that may help
in the decision process of selecting the final allocation.

III. RECEIVER ALLOCATION ALGORITHMS

The most common way to treat a multi-criteria problem
is using a scalar optimization approach. A good example of
this method is a linear combination of the different criteria,
maybe using different coefficients, into one objective function.

However, this approach does not guarantee the generation of
the whole set of Pareto-optimal solutions, besides being some-
times difficult to apply when criteria are not commensurable
as in our scenario. Due to its simplicity, it is useful when
the cost of generating a single Pareto optimum solution may
become so high that the designer can afford only a few Pareto-
optimal solutions. In contrast, when the cost of generating
Pareto-optima is low, we can generate the complete set and
then decide which solution to choose.

A. Pareto Search

A way of searching Pareto-optimal solutions is to use
the so-called ε-constraint method [5]. Let σ̄ be our current
allocation where no reconfiguration is done (i.e., C = 0) and
whose maximum load is Lmax(σ̄), and let Lmax(SC) be the
solution to the single-criterion case, where the aggregate load
is minimized. Notice that for any Pareto-optimal allocation
σ, the value of C belongs to the interval [C(σ̄), C(SC)].
The method chooses one criterion as a scalar objective to be
minimized and transform the other one into a constraint. Thus,
we minimize the cost for different C values by applying the
following loop:

Pareto-Search Algorithm
Set Pareto List PL = {σ̄}, budget B = ε and θ = σ̄;
while Lmax(θ) >= Lmax(SC)

1 Solve P (B) : minLmax(σ) when C(σ) ≤ B
2 Let θ = arg minπ∈PL{Lmax(π)}
3 If Lmax(σ) < Lmax(θ) THEN add σ to PL
4 Increase budget: B = B + ε

end while
The algorithm is capable of searching all Pareto-optimal so-

lutions when ε is small enough. Notice that all Pareto solutions
are added to the Pareto List at Step 3 and represent possible
solutions to our problem. Besides, Pareto-optimal solutions
having the same cost C and Lmax are equivalent, since no
other criterion is specified; thus, the algorithm searches only
non-equivalent Pareto-optimal solutions.

To apply the Pareto-Search algorithm, we need an efficient
algorithm to solve P (B). The branch and bound technique
provides an exact algorithm to reach the optimal solution;
however, when the number of variables (equal to NW ) is
large, a heuristic could represent a good trade-off between
complexity and performance. We rely on branch and bound
in the remainder of the paper to determine Pareto-optimal
solutions, since we analyze performance for relatively small
networks to discuss the problem significance. Heuristics to
determine Pareto-optimal solutions should clearly be adopted
when dealing with real-size networks.

In the following subsection, we discuss criteria for selecting
the best solution among Pareto-optima ones.

B. Reconfiguration Strategies

We propose four reconfiguration strategies that may be used
to select one among the Pareto-optimal solutions determined
in the Pareto search procedure in our two-criteria minimization
problem.
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1) Minimum Cost: This solution is trivial and represents the
case in which, even if a reconfiguration process may improve
network performance, the current allocation state is preferred
to avoid any reconfiguration. This strategy may have sense
when the cost criterion is considered dominant: for example
when a certain Service Level Agreement (SLA) or availability
constraint must be satisfied.

2) Minimum Overload: This strategy follows the opposite
approach to the previous one. We aim at the best solution
in terms of load balancing among channels, trying to pay the
minimum cost to obtain this solution. If this strategy is always
preferred, instead of generating all optimal solutions, we can
generate only this Pareto-optimal solution by decoupling the
problem. Indeed, we could first solve the single-criterion case
for current traffic conditions, and then find the least expensive
reconfiguration to move from the current allocation to the best
one.

3) Best Ratio: Define Lmax(σ̄) the maximum load of the
current allocation, Lmax(Pareto) and C(Pareto), respec-
tively, the maximum load and the cost of the Pareto-optimal
solution under examination. We select, as the best allocation,
the one that maximizes

Lmax(σ̄) − Lmax(Pareto)
C(Pareto)

.

This solution looks for improved performance weighted by the
cost of the reallocation.

4) Minimum Feasible: This strategy aims simply at finding
a solution that does not overload any channel in the network.
When there is no solution that avoids overloading, the strategy
looks for the solution that minimizes the overload.

The first two simple strategies simply choose the solution
that minimizes, independently one of the two criteria (cost
and overload). Indeed, these two strategies propose as the best
possible choice among the Pareto-optima solutions the solution
of the two single-criterion problems respectively trying to
minimize the maximum load and the reconfiguration cost.

IV. RESULTS

We wish to analyze the different strategies previously pro-
posed to assess the significance of the proposed approach. We
focus on a toy network with W = 4, N = 16 since we are
using CPLEX to obtain Pareto-optimal solutions; we further
assume that the transmission speed on all wavelengths is the
same, by convention normalized to 1.

To obtain the results, we randomly generate a traffic request
matrix T, where the element ti,j , ranging from 0 to 1,
represents the amount of traffic, normalized to wavelength
capacity, node i is willing to transfer to node j. For each
traffic request matrix randomly generated, we run CPLEX to
obtain the Pareto-optimal solutions. Pareto-optimal solutions
are locally efficient: none of the solutions is worse than other
Pareto-optimal solutions in both cost and performance.

First, in Fig. 1 we report the number of Pareto-optimal solu-
tions found by running the solution algorithm when generating
100 instances of the traffic matrix. The number of available
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solutions is fairly large, with an average number of roughly
6.5 Pareto-optimal solutions available in each instance, with
a small number of situation in which up to 9 solutions are
available. This is rather surprising if we consider the relatively
small network size, and testifies that the problem we are
studying is interesting to solve.

In Fig. 2 we show the characteristics of the Pareto-optimal
solutions in terms of cost and performance. Again differences
are quite astonishing: reconfiguration costs (measured in terms
of number of receivers that must be tuned to ensure realloca-
tion) range from 0 to 11, whereas the maximum load on a
wavelength channel can reach overloading values close to 2.

Finally, Fig.3-6 show the characteristics of the solutions
obtained when selecting the Pareto-optimal solutions accord-
ing to the four previously described strategies. The Minimum
Cost strategy shows how penalizing in terms of wavelength
load can be the absence of any reconfiguration process. The
Minimum Overload strategy, on the contrary, requires very
high reconfiguration costs but it controls the maximum wave-
length load very well, as expected. The Minimum Feasible
strategy provides good values of maximum load, but the price
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in terms of reconfiguration cost is significant. The Best Ratio
strategy seems to provide the best compromise, since loads are
reasonably well kept under control with values comparable
to those of Min Overload and Mean Feasible strategies, at
reasonably small cost.

Clearly these results are only indicative of possible trends.
The choice of the preferred strategy, as well as of the proper
cost function, must be made by the network administrator
taking into account the specific constraints of the network
architecture and of the SLA offered to customers.

V. CONCLUSION

We have discussed why multi-criteria algorithms may play
an important role in reconfiguration strategies on WDM net-
works. We have discussed the concept of Pareto-optimal solu-
tions when looking at reconfiguration costs and performance
as the two key issues when choosing whether a reconfiguration
should take place or not.

We have introduced four possible strategies to guide the
choice among Pareto-optimal solutions obtained by running
CPLEX as an optimization tool, and we have discussed their
performance.

We have also shown that the number of possible efficient
Pareto-optimal solutions is fairly large, so that the problem is
of practical significance.

The most promising reconfiguration strategy seems to be
Best Ratio, which provides the best balance between reduced
reconfiguration costs and controlled wavelength load.
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