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Abstract 
Training Artificial Neural Networks (ANNs) with large 
amounts of speech data is a time intensive task due to the 
intrinsically sequential nature of the back-propagation 
algorithm. 

This paper presents an approach for training ANNs using 
sentence and frame selection. The goal is to speed-up the 
training process, and to balance the phonetic coverage of the 
selected frames, trying to mitigate the classification problems 
related to the prior probabilities of the individual phonetic 
classes. 

These techniques, together with a three-step training 
approach and software optimizations, reduced by an order of 
magnitude the training time of our models.   

Index Terms: speech recognition, neural networks training, 
sentence selection, frame selection 

1. Introduction 
The increasing dimensions of the available training corpora 
offer great opportunities to improve the accuracy of the models 
used in Automatic Speech Recognition. 
 It is easy to distribute on several computers the task of 
computing the sufficient statistics needed to train Gaussian 
Mixture Hidden Markov Models. Distributing the training task 
of Artificial Neural Networks (ANNs) is more difficult. The 
computational load of the standard ANNs back-propagation 
training algorithm can be distributed performing batch update 
of the model weights, but it is known that sequential 
reestimation of the model weights [1] gives more accurate 
models. Usually, a good tradeoff between speed and accuracy 
is obtained reestimating the weights after processing 4-16 
frames. Moreover, the time needed for training ANNs with 
large corpora considerably increases because larger networks 
can be reliably estimated.  
 Another classification problem with ANNs is related to the 
a priori probabilities of the phonetic classes. The posterior 
probability estimation provided by the ANN models [2] is 
approximate. The reasons for this are the lack of training data, 
the scarcity of model parameters, and the convergence of the 
weight estimates to a local rather than to a global optimum. If 
the frequency of the phonetic classes which occur in the 
training set is largely unbalanced, the network will be biased 
toward predicting the most represented ones.  
 To reduce training time, without performance loss, data 
selection can be performed. The selection may also have 
different objectives: to have a homogeneous coverage of the 
phonetic classes, to focus on decision boundaries, to exclude 
outliers [3], or simply to incrementally train larger and larger 
networks [4]. 
We present a strategy that performs both sentence and frame 
selection for reducing training time, and for equalizing the 
phonetic coverage of the frames provided to the back-
propagation algorithm. The selection of a subset of sentences 

from the training corpus is used to create a robust and 
phonetically balanced bootstrap model. Furthermore, we use 
probabilistic selection of the frames in the whole training set to 
mitigate the classification problems related to the prior 
probabilities of the individual phonetic classes. 
 The paper is organized as follows: Section 2 introduces the 
architecture of the Loquendo ANN models and their training 
procedure. Section 3 presents our approach for selecting 
appropriate sentences for training the bootstrap model. Section 
4 is devoted to the probabilistic frame selection. Section 5 
illustrates how the presented techniques, together with other 
software optimizations, speed-up the training process. The 
conclusions are given in Section 6. 

2. Loquendo ANN Architecture 
The Loquendo-ASR decoder uses a hybrid HMM-ANN model, 
where each phonetic unit is described in terms of a single or 
double state left-to-right automaton with self-loops. The 
models are based on a set of vocabulary and gender 
independent units including stationary context-independent 
phones and diphone-transition coarticulation models. The 
HMM transition probabilities are uniform and fixed [5].The 
ANN is a Multi Layer Perceptron with two hidden layers. 
Having two layers, rather than a larger single hidden layer, has 
the advantage of reducing the total number of connections 
without any performance degradation. The network has 273 
inputs (39 parameters of a 7 frame context), 315 units for the 
first hidden layer, and 300 for the second hidden layer. 
Softmax is applied to the output layer, which includes a 
language dependent number of units (in the range ~700 to 
~1000). 
 The ANN models of the Loquendo ASR recognizer are 
trained using 15 epochs of the back-propagation algorithm. 
During these epochs the initial segmentation of each sentence 
(obtained with a rather simple Gaussian Mixture Hidden 
Markov Model) is progressively changed according to the 
segmentation derived from forced alignment with the current 
model.  A focus of attention mechanism is used during training 
to skip the back-propagation step for frames that are classified 
with a low error by the currently estimated model. 
 It is worth noting that: 
• the models provided with the Loquendo ASR are 

application independent. 
• the training procedure, and the quite large number of 15 

back-propagation epochs, were set after years of tests on 
several languages (currently 17) and on a development set 
consisting of sentences of a standard set of application 
grammars such as digit, date, currency, and many other 
recognition objects including continuous speech. 

• for some of these grammars the standard prior 
normalization to convert posterior probabilities to class-
conditional probabilities is not always the best strategy. 

 Using larger databases and larger ANN models, the 
previous training approach would be too time expensive.  



 To reduce learning time without harming recognition 
performance, in the next Section we present our approach for 
sentence selection associated with a three-step training 
technique. Further time-saving is obtained by the probabilistic 
frame selection described in Section 4. 

3. Sentence selection 
Let ST = {s1, s2, …. , sN} be a training set of N sentences. Our 
training approach is based on the following three steps: 

1. Train a bootstrap model MB with a reduced set of training 
sentences SB ⊂ ST. The initial segmentation of the 
sentences is produced by forced alignment using Gaussian 
Mixture HMMs. The initial segmentation is refined during 
the training process. 

2. Use the obtained bootstrap model MB to segment every 
sentence of the complete training set ST.  

3. Train a new model Mnew using the complete training set, 
keeping the segmentation fixed and using MB as the initial 
network. Keeping the segmentation fixed reduces the 
computational costs, as explained in Section 5. 

 
The selection of the bootstrap sentences in the first step is 

particularly important because a good bootstrap model MB 
allows to obtain better segmentation, and more accurate final 
models. 
 In this work we compared the performance of two selection 
criteria.  The first one looks for the minimum number of 
sentences that allow obtaining at least k frames for each target 
phonetic class of the ANN. This problem can be directly 
formulated as a linear programming problem with boolean 
variables. Its objective function is to minimize the number of 
selected sentences, with constraints n(S,c) > k  ∀ c, where 
n(S,c) is the number of frames belonging to the sentences in set 
S having an associated phonetic class c. Since this problem is 
solved by a standard simplex procedure [6], we will refer to 
this approach as “Simplex”. The second criterion selects the set 
of sentences that ensure not only the required minimum 
coverage of k frames per class, but also a homogeneous 
coverage. In particular, the objective function of this approach 
is to maximize the entropy of a set of sentences and also to 
satisfy the minimum coverage per class: 
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where p(S,c) is the frequency of class c in the set of sentences 
S, and C is the number of phonetic classes. 
 The goal is to have a phonetically balanced subset of 
bootstrap sentences with a sufficient number of samples per 
class. This allows us to train an initial model not biased toward 
the phonetic classes that appear more frequently in the 
complete database.  The maximization of this criterion is 
obtained by using a sub-optimal greedy algorithm: 

1. Initialize the set of sentence selected for the bootstrap set 
SB to NULL.  

2. Compute the total number of frames with an associated 
phonetic class c in the training set, n(ST,c). 

3. Sort the class labels, in ascending order of n(ST,c). 
4. While c in the sorted class labels has n(SB,c) <= k do 

a. For each sentence s ∉ SB compute the normalized 
entropy 
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where p(SB ∪ s, c) is the frequency of class c in the 
union set SB ∪ s, and the denominator normalizes the 
entropy by the number of phonetic classes that 
appear in the sentences included in the set SB ∪ s. 

b. Add  to set SB the sentence s* = argmaxs Es 
 

The experiments of Section 5 compare the performance of 
these selection criteria both in terms of the number of selected 
sentences and in terms of the quality of the models obtained 
after the three-step training procedure. 

4. Frame selection 
Improved models can be obtained reducing the effects of the a 
priori biases in training data. In [2] the a posterior probabilities 
P(ti | x) produced by the ANN are normalized by the a priori 
class probability P(ti) to convert them to the emission 
probabilities P(x | ti) used by the HMMs. This normalization 
can be simply obtained by appropriately correcting the biases 
of the ANN output layer [7]. 

Rather than acting a posteriori on the output layer biases, 
we alleviate the problem due to the uneven distribution of the 
phonetic classes in the training set directly by selecting and 
equalizing the training samples before and during the creation 
of the model. We select the sentences according to the entropy 
approach before the creation of the model, and we select the 
frames according to probabilistic sampling during training. 

The frames are chosen using an approach similar to the 
frequency balancing method of [8], where the training patterns 
are probabilistically selected based on a precomputed, class 
dependent, probability. 

Since the frequency of the silence frames is usually higher 
than the frequency of the other phonetic classes, two different 
thresholds are used to adjust their selection probability.  

The selection probability for silence frames is defined as:   
( , )
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where θsil  is the desired percentage of silence frames with 
respect to the voice frames.  

To compute the selection probability for voice frames, first 
their average number per class is computed as: 
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and the selection probability for voice frames is defined as: 
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where θvoice controls the amount of selected frames. In 
particular, every phonetic class (excluding silence) will be 
trained using, at each epoch, a maximum number of frames not 
greater than voiceθ  times n . 

For classes scarcely represented in the training set, prob(c) 
in (5) may exceed one. In this case, all frames of class c are 
used for training. 

Since a frame is selected probabilistically, different frames 
will contribute to the training of their related class in different 
epochs. 
It is worth noting that this procedure is completely different 
from the one proposed in [3], because we do not perform frame 
selection based on their ‘usefulness’, measured by the frame 



Table 1.  Number of  sentences, number of  frames, and  mean 
entropy  for   the  sentences  selected  with  different  criteria 

on a small corpus. 
 

Approach # sentences # frames Entropy 
Simplex 7943 2814000 4.992 
Entropy 8765 3026585 5.027 
Random 10800 2893518 4.900 
Full ST 17839 4795454 4.898 

 
entropy, and we do not use a smaller network for this task. 

5. Experimental results 
In this Section, first we briefly recall the techniques and the 
software optimizations that were used for a fast implementation 
of the back-propagation algorithm. We then compare the 
results of the sentence and frame selection approaches in terms 
of accuracy and training speed-up on different databases. The 
first set of experiments was performed on relatively small 
databases. In the final experiments, illustrated in subsection 
5.4, a large database was used to train a model integrating all 
the presented techniques.  

5.1. Back-propagation optimization 

The forward and the back-propagation steps of the ANN 
training algorithm, which were usually executed by means of 
matrix by vector operations, have been implemented as matrix 
by matrix operations. The same operation is efficiently 
executed for a buffer of frames rather than for a single 
frame[9][10][11]. Using the Intel high performance libraries 
[12][13], these changes accelerated our training procedure by 
3.3 times on a Xeon 3.06 processor. 

5.2. Sentence selection 

A set of experiments has been performed to evaluate the 
sentence selection criteria.  

Table 1 shows the number of sentences, the number of 
10ms frames, and the mean entropy obtained applying three 
different criteria on the Italian SpeechDat 2 training corpus, 
including 1581 speakers and 17839 training sentences. Using 
the constraint n(SB,c) > 2000 for each class c, the Simplex 
approach selected 7944 sentences. It produced, as expected, the 
smallest bootstrap set. The set produced by the Entropy 
method, although slightly larger, presents a more balanced 
phonetic coverage, as suggested by its higher mean entropy. In 
Table 1 we also present the outcome of a random selection of 
the sentences which have approximately the same total number 
of frames. More sentences are selected using the random 
approach, and they are not as well balanced compared to the 
other techniques.  

The second set of experiments was performed to verify 
how many epochs were necessary in the third step to reach 
recognition performances similar to the ones obtained using the 
models trained with the complete training corpus. 

Figure 1 shows the word accuracy obtained using models 
trained with the three-step approach using the three sentence 
selection criteria. The tests were performed on 9400 word 
vocabulary a continuous speech Italian corpus including 4295 
sentences of 966 speakers. No language model was used in 
these tests. The results, using prior’s normalization [2], are 
given as a function of the number of epochs performed by the 
third step of our training approach. The sentence selection 
based on entropy has the best performance, while the Simplex 
and random selection approaches not only produce poorer 
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Figure 1. Word accuracy using models trained by means of the 
three-step approach with different selection criteria. 

 
bootstrap models, but are also unable to reach the performance 
of the baseline model (69.3% WA), a result obtained by the 
entropy approach after just 4 training epochs. Since we retrain 
the bootstrap model using a high initial learning rate to escape 
local minima, it is not surprising that the performance of the 
models obtained in the first epochs decreases. Further iterations 
after the fourth epoch do not improve performance. 

It has been experimentally verified that a minimum number 
of frames per class greater than 2000 allows the estimation of 
an acceptable bootstrap model. As shown in Table 1, ~3M 
frames are back-propagated for 15 epochs to train the bootstrap 
model. The first step, thus, requires a fixed computational cost. 
The ratio of the total computational costs for the three-steps 
and the original approach is given by: 

15 *4 1 4
*15 15
k

k k
+

= +                    (6) 

where k is the ratio between the number of frames in the 
complete and in the bootstrap training databases, and  15 and 4 
are the number of back-propagation epochs for the original and 
the three-step approach respectively. The focus of attention 
mechanism has minor impact on this ratio because the 
proportion of the frames that are skipped is roughly equivalent 
in both approaches.  

The time saving obtained in these experiments is limited to 
about 10% due to the small dimensions of the complete 
training set (13 hours of speech)  with respect to the bootstrap 
set (k=1.58). The potential speed-up for this approach is, 
however, more than 70% (4 versus 15 epochs) for much larger 
corpora (k →∞). For the training database presented in Section 
5.4, only 14% of its sentences and 16% of its frames are 
selected by the entropy criterion for training the bootstrap 
model, and the computational cost is reduced to ~43%.   
Moreover, the actual speed-up increases because larger 
networks can be trained using larger databases. 

5.3. Frame selection 

Three corpora of different languages have been used to assess 
the performance of the frame selection approach, and to verify 
that the threshold θsil and θvoice settings were language and 
database independent: 
• the previously described Italian SpeechDat 2 corpus.  
• the German SpeechDat 2 corpus, which has characteristics 

similar to the Italian one, with 20030 training and 3395 test 
sentences respectively. 

• the 8KHz down-sampled US-English Wall Street Journal 
WSJ0 including 8086 training and the 330 test sentences. 
 



Table 2. Word accuracy improvement w.r.t. the baseline 
results obtained using different normalizations of the priors. 

 
Corpus 

 
Approach 

Italian 
SpeechDat 2 

German 
SpeechDat 2 WSJ 0 

Baseline 69.4% 65.9% 87.5% 
Prior normalization +0.6% +1.4% +1.1% 

Frame selection +0.9% +2.3% +2.0% 
Best thresholds +1.2% +2.3% +2.0% 

 
The results on SpeechDat tests are obtained without language 

model, while the standard bigram language model has been 
employed for the WSJ0 tests.  

Table 2 shows the word accuracy obtained with the baseline 
model, trained with the standard 15 iterations, and without any 
prior normalization. The other rows in Table 2 give the word 
accuracy improvement provided by the prior normalization 
approaches. The second row refers to standard prior 
normalization, performed by correcting the biases of the ANN 
output layer of the baseline models [7]. The frame selection 
approach, keeping the threshold values θsil = 0.075 and θvoice = 
10  fixed for every language, gives the results reported in the 
third row. Last row shows the best case results that could be 
obtained using database dependent thresholds. 

The frame selection approach outperforms the standard 
prior normalization technique, and the frame selection 
thresholds are fairly database independent, as can be observed 
by comparing the last two rows of Table 2. 

5.4. Integration of sentence and frame selection 

To validate the proposed techniques, and to quantify the 
training speed-up which occurs on a real task, a US-English 
model has been trained using our largest database including 
108661 sentences for a total of 65 hours of telephone speech. 
 The results of the tests, performed on the same test 
component of the WSJ0, are summarized in Figure 2.  
 The baseline result has been obtained with a model trained 
with 15 epochs of the complete training set. 
 The bootstrap model has been trained selecting a subset of 
15372 sentences (16% of the frames of the complete corpus) 
according to the entropy criterion and satisfying the usual 
constraint that every phonetic class includes at least 2000 
frames. Using the bootstrap model, all the sentences in the 
database have been segmented, and a new model has been 
trained, in the third step, using the frame selection technique. 
Keeping the segmentation fixed is important for reducing the 
computational cost of the third training step. To estimate a new 
segmentation, a forward-run step of the network would be 
required even for frames that are not selected by the 
probabilistic sampling approach.  

Figure 2 shows the word accuracy, and the 95% confidence 
intervals, obtained using the models trained with a different 
number of epochs. The data labels above the bars represent the 
percentage of time required to train the corresponding model 
with respect to the baseline model (100%). 

A word accuracy improvement of 0.3% with respect to the 
baseline result can be observed after a single training epoch on 
the entire database. This result requires only 22% of the time 
needed for training the baseline model. The best performance is 
reached after 3 training epochs, with a 1.3% absolute 
improvement, and a 3 time faster training. Further iterations 
increase, of course, the computational efforts, but do not 
improve the performance, which remains inside the confidence 
interval of the best result. 
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Figure 2. Word accuracy and relative training time of models 
trained with the traditional and with the three-step approach. 

 

6. Conclusions 
A technique has been presented that performs prior 
normalization during training rather than acting a posteriori on 
the trained model. This technique, together with a three-step 
approach, based on sentence selection, and aiming at 
homogeneous minimal coverage of the phonetic classes, allows 
the reduction of the training time to one third. Compared to the 
original procedure, the new approach, and the software 
optimizations, provides a 10 times faster training time. 

7. References 
[1] D. R. Wilson, and T. R. Martinez, “The General Inefficiency of 

Batch Training for Gradient Descent Learning," Neural Networks, 
Vol. 16, No. 10, pp. 1429 -1451, 2003. 

[2] H. Bourlard, and N. Morgan, “Continuous Speech Recognition by 
Connectionist Statistical Methods,” IEEE Trans. On Neural 
Networks, Vol 4, No. 6, Nov. 1993, pp. 893-909, 1993. 

[3] C. Pelaez-Moreno, Q. Zhu, B. Chen, and N. Morgan, “Automatic 
data selection for MLP-based feature extraction for ASR,” Proc. 
Interspeech 2005, pp. 229-232, 2005. 

[4] Q. Zhu, A. Stolcke, B. Y. Chen, and N. Morgan, “Using MLP 
Features in SRI.s Conversational Speech Recognition System,”   
in Proc. Interspeech 2005, pp. 2141-2144, 2005. 

[5] D. Albesano, R. Gemello, and F. Mana, “Hybrid HMM-NN 
Modelling of Stationary-Transitional Units for Continuous 
Speech Recognition,” Int. Conf. on Neural Information 
Processing 1997, pp. 1112–1115, 1997. 

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, 
“Introduction to Algorithms,” MIT Press and McGraw-Hill, 2001. 

[7] D. Albesano, R. Gemello, and F. Mana, “Hybrid HMM-NN for 
Speech recognition and Prior Class Probabilities,” in Proceedings 
of the 9th International Conference on Neural Information 
Processing, vol. 5,   pp.2391-2394, 2002. 

[8] L. Yaeger, R. Lyon, and B. Webb, “Effective Training of Neural 
Network Character Classifier for Word Recognition,” In 
Advances in Neural Information Processing Systems 9,  MIT 
press, 1997.  

[9]  D. Anguita, G. Parodi, and R. Zunino, “An Efficient 
Implementation of BP on RISC-based Workstations,” 
Neurocomputing, no. 6, pp. 57-65, 1994. 

[10] J. Bilmes, K. Asanovic, C. Chin and J. Demmel, “Using Phipac to 
Speed Error Back-Propagation Learning,”  ICASSP 1997, vol 5, 
pp. 4153-4157, 1997.  

[11] H. Schwenk, “Efficient Training of Large Neural Networks for 
Language Modeling,” IJCNN 2004, pp. 3059-3062, 2004. 

[12] Intel’s MKL Math Kernel Library” 
http://www.intel.com/cd/software/products/asmona/eng/perflib/mkl 

[13] Intel’s IPP Integrated Performance Primitives, 
http://www.intel.com/cd/software/products/asmona/eng/perflib/ipp 


