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RIVERS AND RELATED MORPHODYNAMIC

PROCESSES

C. Camporeale,1 P. Perona,2 A. Porporato,3 and L. Ridolfi1

Received 23 September 2005; revised 31 March 2006; accepted 10 October 2006; published 22 February 2007.

[1] We review the importance of the physical mechanisms
involved in river meandering by comparing some existing
linear models and extensions thereof. Such models are
hierarchically derived from a common and general
mathematical framework and then analyzed with a
detailed discussion of the physical processes and relevant
hypotheses that are involved. Experiments and field data are
also used to discuss the related morphodynamic processes.
The analysis of the models shows the importance of the
closure of secondary currents especially in the modeling of
eddy viscosity. This aspect confirms the usefulness of using
simplified models for some practical applications, provided

the secondary currents are modeled in detail. On the other
hand, the free response of the sediments, the phase lag of
secondary currents, and the momentum redistribution due to
the coupling between the main and the transverse flow are
shown to be less relevant. Hence the second-order models,
which neglect the effect of superelevation induced by the
topography-driven lateral flow on the longitudinal flow, can
reasonably be considered a good approximation for both
predictive analysis and the computation of the resonant
conditions. Finally, the analysis of higher harmonics
suggests that the multilobed pattern can intrinsically be
present in both second- and fourth-order models.

Citation: Camporeale, C., P. Perona, A. Porporato, and L. Ridolfi (2007), Hierarchy of models for meandering rivers and related

morphodynamic processes, Rev. Geophys., 45, RG1001, doi:10.1029/2005RG000185.

1. INTRODUCTION

[2] River meanders are one of the most ubiquitous

patterns in fluvial morphology [e.g., Chitale, 1970; Allen,

1984; Howard, 1992]. For many years the beauty and

applicative importance of these nearly regular loops in river

planimetry have attracted the interest of several researchers

in fluid mechanics and morphodynamics [Ikeda and Parker,

1989; Seminara, 1998, 2006], geomorphology [Allen,

1984], river engineering [Jansen et al., 1979; Elliott,

1984], riparian ecology [Salo et al., 1986], and petroleum

engineering [Swanson, 1993]. (Italicized terms are defined

in the glossary, after the main text.)

[3] From a physical point of view, meandering rivers

form a dynamical system far from equilibrium, which, in its

continuous evolution, exhibits some kind of statistical

stationarity [Cross and Hohenberg, 1993; Liverpool and

Edwards, 1995; Stølum, 1996; Camporeale et al., 2005].

The river evolution is driven by fluid dynamic and mor-

phodynamic processes, which cause lateral bank erosion

and the continuous migration of meanders, as well as by

sporadic cutoffs that prevent self-intersections of the river

and produce sudden reductions in river length and sinuosity

(see Figure 1). These internal dynamics are usually forced

by external deterministic or stochastic factors, with different

temporal and spatial scales, due to hydrological and riparian

processes as well as to pedological, geological, and an-

thropic constraints. In the present review, attention is

focused on the mathematical modeling of the fluid dynamic

and morphodynamic processes that are responsible for the

short-term evolution of rivers. We will also show how such

mathematical models can be coupled with the cutoff dy-

namics and different types of external forcing to investigate

the long-term evolution of meandering rivers.

[4] Historically speaking, the study of meandering

rivers has followed two interrelated paths: a geomorpho-

logic approach and a fluid dynamic approach. The geo-

morphologic approach, through fundamental field studies

[e.g., Leopold and Wolman, 1960; Kinoshita, 1961; Allen,

1965; Chitale, 1970; Nanson and Hickin, 1983; Carson

and Lapointe, 1983; Thorne and Furbish, 1995] and

laboratory experiments [e.g., Friedkin, 1945; Rozowskij,

1957; Zimmerman and Kennedy, 1966; Kinoshita and
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Miwa, 1974; Whiting and Dietrich, 1993a, 1993b], has

described the main characteristics of meanders and offered

valuable empirical relationships on the planimetric features of

meanders and river bed forms. The fluid mechanic approach

has focused on the mathematical modeling of the physical

mechanisms governing the meandering dynamics. The pio-

neering works of Van Bendegom [1947] and Engelund [1974]

on the flow field and bed topography in a bend were

followed by several important contributions that elucidated

some key fluid dynamic aspects of river meandering. In

particular, Ikeda et al. [1981] proposed the first model of

the evolution of single reach of river bends by linking the

flow field and the erosion rate; Parker et al. [1982, 1983]

described the downstream migration of meanders and the

occurrence of third-order harmonics in Kinoshita’s curve;

Blondeaux and Seminara [1985] clarified the link be-

tween the bend and alternate bar dynamics and pointed

out their possible resonance; Kalkwijk and De Vriend

[1980], Kitanidis and Kennedy [1984], and Johannesson

and Parker [1989b] investigated the role of secondary

currents; Struiksma et al. [1985] observed and modeled

the overdeepening phenomena; Tubino and Seminara

[1990] investigated the nonlinear interaction between bars

and bends; and Zolezzi and Seminara [2001] pointed out the

upstream propagating influence.

[5] After 3 decades of conspicuous efforts the scientific

community has produced a number of different models of

increasing detail and complexity. On one hand, the linear

[e.g., Ikeda et al., 1981; Blondeaux and Seminara, 1985;

Struiksma et al., 1985; Odgaard, 1986; Crosato, 1987;

Johannesson and Parker, 1989a; Zolezzi and Seminara,

2001] and weakly nonlinear [Seminara and Tubino, 1992]

models are strictly valid only for low curvatures of the river

axis and slowly varying bed topography [Seminara and

Solari, 1998] far from resonant conditions. However, be-

cause of their analytical solutions and their good agreement

with observed river evolution [Imran et al., 1999], they

have been extensively used for both theoretical and numer-

ical investigations of river morphodynamics [e.g., Howard,

1984; Stølum, 1996; Sun et al., 1996, 2001a; Seminara et

al., 2001; Edwards and Smith, 2002; Camporeale et al.,

2005; Camporeale and Ridolfi, 2006; Lanzoni et al., 2006].

On the other hand, fully nonlinear models [Smith and

McLean, 1984; Olsen, 1987; Nelson and Smith, 1989b;

Shimizu et al., 1992; Mosselman, 1991, 1998; Imran et

al., 1999; Duan et al., 2001; Darby et al., 2002; Blanckaert

and De Vriend, 2003] have less geometric restrictions and

provide a better quantitative resolution of the flow, but they

require a more demanding computational effort.

[6] Despite the advances produced by these various

models, their formulations are difficult to compare (the

formalisms are often different), and it is hard to evaluate

what the effective role played by different modeling approx-

imations is or whether the increasing modeling complexity

is justified by the results. Apart from the work by Parker

and Johannesson [1989], who performed a partial compar-

ison between some models but focusing essentially on the

resonance, overdeepening, and the dynamics of the second-

ary currents, no other comparative assessment has been

published so far. For these reasons the main objective of the

present work is to review the fundamental morphodynamic

mechanisms that govern the meandering dynamics and to

formulate a general framework from which the previously

proposed linear models can be hierarchically derived and

Figure 1. An aerial photograph of the Colville River (Alaska). Enlargement and continuous migration
of meanders as well as the formation of cutoffs can be observed.
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then critically compared according to their hypotheses and

their level of detail in the description of the various physical

processes. In this manner the main models are obtained in

cascade through a series of subsequent simplifications. We

also derive some extensions of the existing theories that are

useful for model intercomparison and for understanding the

role of some physical processes involved in meandering

dynamics. Finally, a comparison with a real case of meander

evolution allows the role of the different model hypotheses

to be highlighted.

[7] We have focused on linear theories as they allow one

to take into account all the key processes that govern

meandering dynamics but, at the same time, to maintain

analytical tractability. Many fundamental conceptual results

are thus obtained without the need of numerical simulations.

However, in order to verify the reliability of the linear

models we also derive a nonlinear version for each level of

morphodynamic simplification and compare them with the

correspondent linear models. To this aim we have extended

the nonlinear iterative procedure by Imran et al. [1999] to

the equation of sediment mass continuity.

[8] Particular attention is devoted to the models of Ikeda

et al. [1981], Johannesson and Parker [1989a], and Zolezzi

and Seminara [2001], hereinafter referred to as IPS, JP, and

ZS, respectively, as they represent key steps in the compre-

hension and modeling of meandering dynamics. These

models form the skeleton of our work, and we will refer

to them when discussing other existing linear models [e.g.,

Howard, 1984; Struiksma et al., 1985; Odgaard, 1986;

Crosato, 1987; Bridge, 1992]. The IPS and JP models have

been widely used in numerical simulations of river evolu-

tion [e.g., Howard, 1992; Stølum, 1996; Sun et al., 1996,

2001a], while the ZS model is more detailed and encom-

passes all the principal morphodynamic mechanisms (for

this reason, ZS is used here as the reference model, and its

notation is extended to other models). Other linear models

that focus on bank erosion and on how soil properties and

riparian vegetation influence bank geotechnical character-

istics are not discussed here [e.g., Lancaster and Bras,

2002; Richardson, 2002]. Although these models are inter-

esting, they are not completely physically based, and as

such they are not capable of describing the complex

interactions that exist among bed topography, flow field,

and sediment transport. As far as the role of bank erosion is

concerned, mention is made here only of the refined two-

dimensional (2-D) nonlinear models by Darby et al. [2002]

and Duan and Julien [2005], where both fluid dynamic and

geotechnical aspects are modeled in detail.

[9] It should be noted that all the previously mentioned

models share two important basic assumptions: (1) The

river discharge is always assumed to be constant and usually

equal to the mean annual or bankfull value, and (2) the

shallow water approximation allows the flow field to be

solved using a 2-D (or quasi-three-dimensional) depth-

averaged scheme. Although the former assumptions can

result in rather crude approximations, only in very few

studies have they been at least in part relaxed. In particular,

in the work of Howard and Hemberger [1991] the IPS

model was forced with temporally varying discharges

extracted from a lognormal distribution. The authors did

not observe a relevant change in the statistical behavior of

the river planimetry with respect to the case with a constant

discharge equal to the mean value. However, the determi-

nation of the formative discharge for the meandering

patterns still remains an open question, since it does not

necessarily coincide with the dominant geomorphic dis-

charge for the hydraulic geometry proposed by Wolman

and Miller [1960].

[10] The problem of resolving the flow field using a

three-dimensional (3-D) rather than a 2-D approach has

received much more attention, especially from a numerical

point of view [Shimizu et al., 1990; Ye and McCorquodale,

1998; Ferguson et al., 2003; Olsen, 2003; Wilson et al.,

2003; Blanckaert and De Vriend, 2004; Rüther and Olsen,

2005], although the linear analytical treatment by Seminara

and Tubino [1989] should also be mentioned. The main

result is that the 2-D scheme cannot give a correct

description of the flow field when either the bend curvature

is high or the aspect ratio is too low, which corresponds to

the breakdown of the shallow water approximation. In

these circumstances the numerical solution of the 3-D

helicoidal motion becomes essential for modeling mean-

dering dynamics.

[11] To date, the necessary high computational efforts

limit the use of full 3-D models to simple geometries with

sharp bends and hinder the simulation of the planimetric

evolution of rivers, as testified by the comparisons with

experimental data that are restricted to channels with fixed

banks. However, the increasing advances in computer

science suggest that the adoption of powerful computational

fluid dynamics tools, such as direct numeric simulation

(DNS), large eddy simulation (LES), or k-e models, will

produce important contributions in the context of the

emerging discipline of numerical morphodynamics [e.g.,

Keylock et al., 2005].

[12] The paper is organized as follows. Section 2 gives a

detailed qualitative description of the morphodynamic pro-

cesses involved in meandering dynamics, while section 3 is

devoted to the general mathematical modeling of the me-

andering dynamics and to presenting a method for the

nonlinear solution of the morphodynamic problem. In

section 4, the different linear models are derived from the

same general formalism and discussed according to their

level of approximation. When deducing the linear models,

some extensions of the existing theories are also derived

that are useful for the comparison of the models and for

understanding the role of some physical processes involved

in meandering dynamics. The various linear models are

compared in section 5 by analyzing their free and forced

response separately, being the curvature the forcing of the

system. The experimental verification of the longitudinal

flow field is presented in section 6, while the behavior of

each model is discussed in section 7 for some typical

meander configurations and a field case in order to evaluate

the quantitative importance of the degree of refinement of

each model. The role of some external forcings in long-term
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dynamics is reviewed in section 8, and the conclusions

follow in section 9. A brief glossary of the typical expres-

sions herein adopted closes this review.

2. PHYSICAL PROCESSES

[13] We refer to the conceptual scheme of Figure 2 to

describe the interrelationships among the physical processes

that act in meandering rivers and to discuss their role in the

context of the hierarchy of models that will be developed.

Readers who are already familiar with the basic physics of

meandering rivers may wish to skip to section 3. An

orthogonal curvilinear reference system {~s, ~n, ~z}, sketched
in Figure 3, is used where ~s is the longitudinal coordinate

along the channel axis, ~n is the transverse coordinate, and ~z
is the upward vertical coordinate. We also define the mean

flow depth, ~D0, and the channel width, 2~b.
[14] The two key elements necessary for meandering

dynamics are the curvature, C = C(~s), of the channel axis

and the erodibility of the bed and banks. The longitudinal

curvature has two direct effects on the stream: It induces

additional shear stresses and drives the secondary currents.

Assuming inviscid fluid and constant curvature, it is easy to

see, from Euler’s equations, the existence of a free irrota-

tional vortex with transversal profiles of the streamwise

velocity, ~U = ~U (~n), and surface level of the flow, ~h = ~h(~n)
[e.g., Henderson, 1966; Callander, 1978]. Adding viscosity

gives rise to shear stresses (i.e., vortex-induced stresses,

Figure 2) that are responsible for the inside-bank erosion

and contribute to straightening small-radius bends. The

presence of friction on the bed also induces a vertical profile
~U = ~U (~n, ~z). A tangential stress ~t~z~n is thus required to

satisfy the momentum balance, and this, in turn, implies the

formation of a streamwise secondary vorticity that produces

the secondary currents (with vanishing net flux [Seminara,

1998]). The secondary currents cause a transversal flow

field, which, in turn, produces inward bed stresses and a

redistribution of the downstream momentum. This latter

Figure 2. Scheme of the main processes involved in the meandering dynamics and their interactions.

Figure 3. Scheme of the geometric variables: (a) planimetric and (b) section views.
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gives rise to a shifting of the bulk of the stream toward the

outside bank [Kalkwijk and De Vriend, 1980; Johannesson

and Parker, 1989c] that is partially contrasted by the vortex-

induced stresses. Moreover, the nonlinear feedback between

the downstream velocity and the secondary cell deforms the

vertical profile of the lateral flow, decreasing it in the upper

part and increasing it in the lower part [Blanckaert and De

Vriend, 2004].

[15] The second key element of meandering dynamics is

the erodibility of the boundaries. The inward bed stresses,

due to secondary currents, cause a transverse inward

sediment transport, which deepens the riverbed at the out

bank, produces a transversal shoaling of the bed, and

induces the formation of point bars. This, in turn, shifts

the bulk of the longitudinal flow outward (i.e., topographic

steering [Dietrich and Smith, 1983]) and triggers a different

type of lateral flow because of the bed topography (i.e.,

topography-induced lateral flow). These processes are gen-

erally more important than the aforementioned curvature-

induced secondary currents [Seminara, 1998] and influence

the transversal flow field inducing a further outward shift of

the main flow (see Figure 2).

[16] Bed erodibility is also essential in the interactions

between the curvature and the self-excited response of the

bed planform [Blondeaux and Seminara, 1985]. While both

low-sinuosity and high-sinuosity rivers have downstream

migrating alternate perturbations, known as free bars

[Kinoshita and Miwa, 1974; Whiting and Dietrich, 1993a],

only in rivers with intermediate sinuosity can the nonlinear

interactions between point bars and free bars suppress the

growth of the latter forms [Tubino and Seminara, 1990]. The

interaction between free response (i.e., alternate bars) and

forced response (i.e., point bars) displays a resonant behav-

ior when rivers have a particular aspect ratio bR (where b =
~b/~D0) and wavelength LR. In such conditions, nonmigrating

and nonamplifying alternate bars reinforce the effect of the

point bars so that the flow and bed perturbations peak

[Blondeaux and Seminara, 1985]. Moreover, because of

the feedback between morphodynamics and hydrodynamics

on the bed stress distribution a curvilinear stream needs a

longitudinal bed slope that is different from that of a straight

stream to carry the same sediment bed load [Seminara and

Solari, 1998].

[17] The streamwise variation of the channel curvature

influences the longitudinal transport of momentum by

inducing a streamwise phase lag between the planimetric

curvature and the pattern of the flow field in the river. This

lag, which depends on the frictional turbulent dissipation

and is of the order of the channel width, controls the spatial

memory of the downstream propagating influence [Howard,

1984; Smith and McLean, 1984] and is the reason for both

the downstream skewness in the shape of the meander loops

and the downstream planimetric migration [Friedkin, 1945;

Engelund, 1974; Dietrich et al., 1979; Ikeda et al., 1981;

Parker et al., 1982]. Recently, Zolezzi and Seminara [2001]

pointed out the existence of an upstream influence compo-

nent that is capable, in particular conditions, of producing

an upstream migration of meanders in agreement with some

laboratory observations [Garcia and Nino, 1993; Hasegawa

et al., 1998]. Longitudinal variations in curvature also

induce a phase lag in the pattern of the secondary currents

[Gottlieb, 1976; Kitanidis and Kennedy, 1984; Ikeda and

Nishimura, 1986; Zhou et al., 1993]. This aspect, however,

is of secondary importance, as it has a spatial scale of the

order of the channel depth [Johannesson and Parker,

1989b; Edwards and Smith, 2002].

[18] The result of the aforementioned processes is the

formation of excess bank stresses that are responsible for

the lateral erosion of the outward bank and therefore for the

meander evolution (see Figure 3). In particular, the plani-

metric evolution of meanders takes place in three stages:

first, a marked downstream migration with a weak ampli-

tude growth; second, an increased amplitude growth; and

finally, a progressive decay in migration and growth until

bend cutoff occurs [Seminara, 1998]. In this evolution the

interplay of topographic steering, vortex-induced stresses,

and curvature effects on the longitudinal bed slope gives

rise to the fattening of the meander loops [Langbein and

Leopold, 1966; Parker et al., 1982, 1983; Parker and

Andrews, 1986; Seminara et al., 1994].

3. MATHEMATICAL FORMULATION

3.1. Basic Hypotheses

[19] Some basic hypotheses are necessary in order to

obtain significant but mathematically tractable models.

(1) The fluid is assumed to be incompressible and the flow

to be fully turbulent, while the cohesion of the riverbed is

neglected, and the river is assumed to maintain a constant

width during lateral migration [Friedkin, 1945]. Although

some works explored the influence of sediment heteroge-

neity [Allen, 1970; Odgaard, 1982; Parker and Andrews,

1985; Ikeda et al., 1987; Ikeda and Parker, 1989; Bridge,

1992] and suspended sediment [Seminara and Tubino,

1985], these effects are generally neglected in meander

models. (2) Since the typical vertical scale (i.e., the water

depth ~D0) is much smaller than the characteristic horizontal

scale (i.e., the river half-width ~b), the vertical velocity

component can be neglected, and a hydrostatic vertical

pressure distribution can be adopted. Since this approxima-

tion of the shallow water theory [e.g., Ligget, 1994] is

violated near the banks, because of the influence of the

boundary layers, it is clear that the theory that will be

developed is only valid in the central part of the stream (we

will come back to this aspect in section 4.2). (3) It can be

assumed that both the flow and bed topography instanta-

neously adjust to the planimetry, considering the process as

quasi-stationary. It follows that the time dependence of the

equations can be neglected [De Vries, 1965]. Evidently,

such a hypothesis prevents the direct modeling of free-bar

migration. (4) The last essential hypothesis concerns the

assumption of a linear relationship, the so-called Parthe-

niades type, between the rate of bank erosion and the ratio

of the near-bank shear stress to the average boundary shear

stress [Partheniades, 1965; Partheniades and Paaswell,

1970], which can be reexpressed [Howard, 1992] in terms
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of a linear relationship between the bank erosion and excess

near-bank velocity perturbation ~Ub (see Figure 3). This

assumption has been adopted in several models because of

its simplicity [e.g., Ikeda et al., 1981; Parker et al., 1983;

Parker and Andrews, 1986; Johannesson and Parker,

1989a; Odgaard, 1986], and it is justified by field obser-

vations [Pizzuto and Meckelnburg, 1989]. Hasegawa [1989]

offered a possible theoretical justification of this linear

relationship considering channels with noncohesive banks

where the rate of bank line erosion is computed by the use

of a bed load formula on the lateral bank. This justification

was, however, criticized because bank cohesiveness alone

could justify a linear Partheniades-type formula for bank

erosion [Mosselman and Crosato, 1991].

3.2. Governing Equations

[20] Let us introduce the following dimensionless varia-

bles (see Figure 3)

s; nð Þ ¼ ~s; ~nð Þ
~b

; u*; v*;w*ð Þ ¼ ~u;~v; ~wð Þ
~U0

; ð1Þ

h*; h;D; z; dsð Þ ¼
~h; ~h; ~D;~z; ~ds
� �

~D0

; C ¼
~b

~r
; ð2Þ

nT ¼ ~nTffiffiffiffiffiffi
Cf

p
~U0

~D0

; N ¼ 1

1þ nC
; F0 ¼

~U0ffiffiffiffiffiffiffiffi
g~D0

p ; ð3Þ

n0 ¼
~b
~R0

; q ¼
~qffiffiffiffiffiffiffi
r̂~d3s

q ; t ¼ ~t

r ~U
2

0

; t* ¼ ~t
rr̂~ds

; ð4Þ

where (~u, ~v, ~w) are the longitudinal, normal, and vertical

velocity components, ~U0 is the bulk velocity, ~D(s, n) is the
local flow depth, ~h(s, n) is the free surface level, ~h(s, n) is
the bed elevation, ~ds is the average grain diameter, F0 is the

Froude number, nT is the dimensionless turbulent viscosity

(Cf is the friction coefficient), N(s) is the longitudinal metric

coefficient, and C is the dimensionless curvature. Moreover,
~R0 is the minimum radius of curvature in the river, ~q(s, n) =
{qs, qn} is the volumetric bed load transport vector per unit

width, r̂ = g(rs/r � 1), rs and r are the sediment and water

densities, respectively, t* = {ts, tn} is the dimensionless bed

stress vector, ~t is the bed stress vector, and ~I is the overall

slope of the bed. We also introduce c0 = b
ffiffiffiffiffiffi
Cf

p
and c1 =

bCf and note that the uniform flow implies g~D0
~I = Cf

~U0
2

[Henderson, 1966]. Hence, as ~hs is the reference elevation

and ~h is the elevation with respect to the reference level at

the river head, it follows that ~hs = ~h � ~I ~s or, in

dimensionless variables, h*s = h* � c1F0
2s.

[21] The starting point of the modeling is represented by

Reynolds’ equations for the momentum and mass conser-

vation, written in orthogonal coordinates for the steady

flow,

Nu*2;s þ u*v*ð Þ;nþ2NCu*v* þ N F�2
0 h*;s � c1

� �
� c0 nTu*;z

� �
;z
¼ 0; ð5Þ

N u*v*ð Þ;sþv*2;n þ NC v*2 � u*2
� �

þ F�2
0 h*;n

� c0 nT v*;z
� �

;z
¼ 0; ð6Þ

Nu*;s þ v*;n þ NCv* ¼ 0; ð7Þ

where the comma indicates the partial derivative. On the

basis of the primary approximation of the shallow water

theory the first step is the depth averaging of equations (5)–

(7). For this purpose the velocity components are decom-

posed as [Kalkwijk and De Vriend, 1980; Smith and

McLean, 1984]

u* ¼ U n; sð ÞF zð Þ ð8aÞ

v* ¼ v0 z; n; sð Þ þ V n; sð ÞF zð Þ; ð8bÞ

where z(s, n) = (z � h)/D and F (z) is a suitable vertical

profile. In the longitudinal velocity, U = U(n, s) is simply

the depth average of u*, while the normal velocity

component, v*, is decomposed into a contribution because

of the centrifugally induced velocity (the secondary current

v0), which has a vertical distribution with zero average, and

a second contribution induced by the topographic and

inertial effects, with a nonvanishing depth average V(n, s).

Note that (1) the same vertical profile F (z) is used for both

u* and v* and (2) F (z) does not depend on the local

position (s, n). These assumptions are rigorously justified

only in the linear approach, as they preclude the occurrence

of the external deformation in the vertical profile of the

lateral flow. However, such a hypothesis can also be

reasonably formulated in the nonlinear case, as pointed out

by Tubino and Seminara [1990] and as assessed here in

section 6 using experimental data. Moreover, following a

recent numerical result by Blanckaert and De Vriend

[2003], this nonlinear feedback can be considered negligible

if B � 0.4, with B = Cf
�0.275(n0/b)

0.5(as + 1) and as is a

parameter within the interval [�1, 1]. This condition is

generally satisfied in real rivers without sharp bends and

assuming ds = [10�3 	 10�1] and b is greater than 6.

[22] Adopting the velocity decompositions (8), the no-

slip condition at the bottom, the no-stress condition at the

free surface, and introducing the term H = F0
�2h* � bCfs,

one obtains the depth-averaged two-dimensional equations

for shallow waters [Johannesson and Parker, 1989a; Zolezzi

and Seminara, 2001; Blanckaert and De Vriend, 2003]

NUU;s þ VU;n þ NCU V þ 28ð Þ þ NH;s

þ b
ts
D

þ 1

D
UD8ð Þ;n¼ 0 ð9Þ
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NUV;s þ VV;n þ H;n þ b
tn
D

þ N

D
DU8ð Þ;s

þ 2

D
VD8ð Þ;nþ

1

D
81Dð Þ;nþNC82 ¼ 0; ð10Þ

which have to be coupled to the continuity equations for the

water and bed sediment [Exner, 1925], respectively,

N DUð Þ;sþ DVð Þ;nþNCDV ¼ 0 ð11Þ

Nqs;s þ qn;n þ NCqn ¼ 0: ð12Þ

Equations (9)–(11) imply hF 2i ’ hFi = 1, 8 = hFv0i,
81 = hv02i, where h. . .i =

R 1
z0
(. . .)dz and z0 is the vertical

position at which the no-slip condition is set, and 82 =

2V8 � U2 + 81. The term 8 is the momentum

redistribution term due to the interaction between the

secondary currents and the main flow, and 81 derives

from the lateral flux of the secondary currents.

[23] Finally, the following boundary and integral condi-

tions are imposed

V ¼ qn ¼ 0 n ¼ 1ð Þ; ð13Þ

Z 1

�1

UDdn ¼ 2; ð14aÞ

Z Lm

0

Z 1

�1

h� � Dð Þdnds ¼ const ð14bÞ

where (13) is the zero-net-flux condition between the center

and the sidewall layers that imposes no sediment transport

across the sidewalls and (14a) and (14b) ensure that the

water discharge and the average bed slope are not

influenced by perturbations in flow and topography (Lm is

a typical dimensionless wavelength). Equations (9)–(12),

with boundary conditions (13) and (14), describe the

morphodynamics of meandering rivers under the shallow

water assumption and in the absence of sharp bends.

3.3. Constitutive Relationships

[24] System (9)–(12) needs closure relationships for the

terms t , q, and v0. Since a rigorous development would be

prohibitive as it would require one to describe both the

vertical turbulent structure and the dynamics of the coherent

structures near the bed [Robinson, 1991; Nezu and

Nakagawa, 1993], semiempirical closure schemes are

usually adopted in morphodynamic modeling for simplicity.

The main goal of river meandering morphodynamics is not

in fact to describe the flow-bed interactions that occur at a

microscale or mesoscale (e.g., ripples and dunes) but rather

to focus on macroscale bed forms, i.e., the development of

bars that have typical length scales of the order of the

channel width [Colombini et al., 1987]. For this reason,

flow separations at the bed are not modeled as the flow field

is assumed to be slowly varying. It follows that the

dimensionless bed stress vector, t , is aligned with the near

bed velocity vector and can be expressed through a local

friction coefficient Cf according to [Tubino and Seminara,

1990]

ts ¼ Cf Uj jU ð15aÞ

tn ¼ Cf Uj j V þ v0 z0ð Þ
F z0ð Þ

� 	
: ð15bÞ

[25] Exner equation (12) needs a closure relationship for

the components of bed load transport, q, which, under

steady conditions and for bed slopes much smaller than

the friction angle, can be modeled by a linear dependence

on the bed horizontal gradient [Van Bendegom, 1947;

Kikkawa et al., 1976; Ikeda, 1982; Nelson and Smith,

1989a; Kovacs and Parker, 1994; Talmon et al., 1995]. The

dynamic equilibrium of the bed sediment, written in an

orthogonal reference system (s, n), gives the following

relationship [Zolezzi and Seminara, 1998]

qi ¼q
t*i

t*
� 1

b
ti*

2

t*2
t*c

mq0
q;t*j0 þ

tj*
2

t*2
rffiffiffiffi
t*0

p
 !

h;i

"

þ rffiffiffiffi
t*0

p � t*c

mq0
q;t*j0

 !
t*i t*j

bt*2
h; j

#
; ð16Þ

where the longitudinal (or transversal) component of bed

load transport, qs (or qn), is obtained setting (i, j) = (s, n) (or

(i, j) = (n, s)), while t* = jt*j, t*0 is the Shields stress, t*c is

the critical Shield stress, m is the dynamic friction

coefficient, q = jqj is the dimensionless bed load transport

(q0 refers to uniform flow), and r is a coefficient in the range

0.5–0.6 [Engelund, 1981]. Tubino and Seminara [1990]

pointed out the empirical character of (16) that only justifies

its adoption in a linear context, although in practice the

nonlinearities neglected in (16) are weak. Thus in the

following, since in sinuous rivers @h/@s � @h/@n, the effect
of the longitudinal bed slope is neglected.

[26] A suitable closure for the term v0(z, n, s), which
represents the vertical structure of the secondary currents, is

needed for the evaluation of terms 8, 81, and 82 in equations
(9)–(10) and for the computation of the bed stress in

the sediment equation (16). For this purpose we refer to the

method of Zolezzi and Seminara [2001], who extended the

iterative analysis of Seminara and Solari [1998] to channels

with variable curvature but neglected the lateral variation of

the vertical structure of v0. The method is based on

Reynolds’ equation (6), written for the transversal flow, and

it adopts an eddy viscosity profile of the form nT = UDG(z),
where G(z) is a slowly varying function that will be defined

later. A decomposition similar to that used for the velocity

components (e.g., equation (8b)) is employed for the water

surface elevation, i.e., h* = Ĥ(n, s) + h0(n, s), where h0 is

the centrifugally induced term and Ĥ is the term due to the

topographic and inertial effects. Both the influence of the

metric coefficient, N, and the effect of the spatial variation
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of Von the evaluation of v0 are neglected, so that N = 1 and
Ĥ = 1. It should be noticed that the latter assumption is only

adopted for the computation of the secondary currents but

can be relaxed for the solution of the full morphodynamic

problem, e.g., the evaluation of the variables U, V, D, and H.

This point will be further discussed in section 4.

[27] Using these assumptions, Zolezzi and Seminara

[2001] obtained

8; v0 zð Þ; v0 z0ð Þ
F z0ð Þ

� 	
¼
X2
i¼0

wi ki;Gi zð Þ; kiþ3ð Þ ð17Þ

h0 ¼ F2
0U

2n
X2
i¼0

vi ð18Þ

with

w0;1;2 ¼
D

c0

UC;
D UCð Þ;s

c0

;
UCD;s

c0

� 	
; ð19Þ

v0;1;2 ¼ a 0ð ÞC;c0a
1ð Þ DCð Þ;s;c0a

2ð ÞCD;s

h i
; ð20Þ

ki ¼ hGii i ¼ 0; 1; 2ð Þ; ð21Þ

ki ¼ Gi�3;z z0ð Þ i ¼ 3; 4; 5ð Þ: ð22Þ

The coefficients a(i) and the functions Gi(z) depend on the

vertical profiles G(z) and F (z) through the solutions of

three second-order ordinary differential equations (ODEs)

(see Zolezzi and Seminara [2001] for details). As will be

seen in section 5, various models proposed in the past differ

according to the formulation adopted for G(z). In particular,

Zolezzi and Seminara [2001] used the formulation of Dean

[1974] that corresponds to assuming a modified logarithmic

law for the vertical profile of the main flow (see Appendix

A). A slightly simplified logarithmic form was assumed by

Smith and McLean [1984] and Nelson and Smith [1989b,

1989a], while a power law profile was used in the model by

Odgaard [1986]. A very different assumption is based on

Engelund’s [1974] slip velocity method and adopts a

uniform eddy viscosity profile, nT = aUD, in which G =

a = 0.077 is very close to the depth-averaged value of

Dean’s G(z) used by Zolezzi and Seminara. This choice was

adopted by Kikkawa et al. [1976], Johannesson and Parker

[1989a], and Bridge [1992] and allows a more straightfor-

ward analytical evaluation of the coefficient a(i) and the

functions Gi (the results are reported in Appendix A). In the

discussion in section 5 concerning the different linear

models, attention will only focus on Engelund’s and Dean’s

eddy viscosity profiles since the other adopted vertical

distributions can be considered as intermediate cases.

3.4. A Nonlinear Solution

[28] We conclude the general mathematical description of

river meandering morphodynamics by developing a quite

general method of solution for the full nonlinear problem. In

this way we obtain a refined solution that will be used to test

the more simplified linear schemes discussed in the follow-

ing sections. Our approach to the nonlinear problem gen-

eralizes and extends the formulation by Imran et al. [1999]

that uses an iterative scheme based on a procedure proposed

by Smith and McLean [1984].

[29] We begin by writing each morphodynamic variable

as the sum of a basic flow and a deviation, i.e.,

U ;V ;D;Hð Þ ¼ 1; 0; 1;H0ð Þ þ u1; v1; d1; h1ð Þ: ð23Þ

The perturbations u1 and h1 of the main flow and the surface

level are then decomposed into the sum of a term with a

zero mean in the transverse direction and a nonvanishing

term that is only a function of s, that is

u1 ¼ û s; nð Þ þ �u sð Þ; ð24aÞ

h1 ¼ ĥ s; nð Þ þ �h sð Þ ð24bÞ

with

û ¼ ĥ ¼ 0 ð25aÞ

h1 � d1 ¼ 0; ð25bÞ

where (25b) is a local form of the integral condition (14b)

and the overbar indicates lateral averaging. Hence, with the

aid of equations (23)–(24), the nonlinear system (9)–(12)

can be solved in an iterative way according to the following

scheme

ĥnþ1
;n ¼ �Rn

3; ð26Þ

ûnþ1
;s þ a1û

nþ1 þ ĥnþ1
;s ¼ Rn

1 � R
n
1 þ a2F

2
0
�hn � a2d

n
1 ; ð27Þ

�hnþ1
;s � 2F1 a1�a2ð Þ�hnþ1 ¼ F1

F2
0

R
n
1 � a1R

n
4 �

@Rn
4

@s

� �
; ð28Þ

�unþ1 þ F2
0
�hnþ1 ¼ Rn

4; ð29Þ

vnþ1
1 ¼ Rn

2 � nþ 1ð Þ �uþ �h
� �nþ1

;s

� @

@s

Z n

�1

ûnþ1 þ dn1 � �hnþ1dn0
� 	

; ð30Þ

where n indicates the generic step of the iteration. In the

previous relationships, F1 = F0
2(1 � F0

2)�1, while a1 and a2
are given in equation (50), the term R3 is the left-hand side

of equation (10) without the term involving H, and the terms
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R1, R2, and R4 arise from the nonlinear components of the

system (9)–(12) and read

R1 ¼ c1 1þ F02ð Þ þ a1u1 þ a2d1 �
bCf U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ v12

p

ND
� Cv1U

� 1

ND

@

@n
UD8½ � � 2CU8� u1

@u1
@s

� v1

N

@u1
@n

;

ð31Þ

R2 ¼ �v1 d1 þ nCDð Þ � @

@s

Z n

�1

d1 u1ð Þdn00; ð32Þ

R4 ¼ ��uF2
0
�h� ûd1: ð33Þ

[30] In particular, equation (27) is obtained by subtract-

ing the lateral average from (9), while equation (28) is

derived by combining equation (27) with the integral

condition (14a); finally, equation (29) follows from (14a),

and equation (30) derives from the continuity equation (11).

[31] The integration of the Exner equation (12), with the

aid of constitutive relationships (16) and boundary condi-

tions (13) and (25b), provides the last element of the

iterative procedure

F2
0h

nþ1
1 � dnþ1

1 ¼
Z n

�1

Ln � Lndn0; ð34Þ

where

L ¼ bt*2

atn2þ bts2
gtn
t*

þ 1

q

Z n0

�1

N qs;s þ Cqn
� �

dn00

" #
; ð35Þ

a ¼ g2t*c
mq0

q
;t*0
; ð36aÞ

b ¼ g2
rffiffiffiffi
t*0

p ; ð36bÞ

g ¼ U2
0

r̂~ds
: ð36cÞ

At the first step of the procedure, �u = �h = 0 and the other

variables (i.e., û, v1, ĥ, and d1) are obtained from the linear

solution (this could prevent convergence in the conditions

close to resonance). Afterward, at the generic (n + 1)th

step of the iteration, the variables (ĥ, û, �h, �u, v1, and d1)
n+1

are calculated by solving in cascade equations (26)–(30)

and (34).

[32] The above scheme differs from that of Imran et al.

[1999] in several points. For example, no spatial variability

of the friction factor was originally considered. More

importantly, the formulation now includes the full bed

evolution, while Imran et al. [1999] only accounted for the

fluid dynamic equations but not for the bed load transport

equation (34), thus describing a nonlinear open channel

flow on a fixed bed. Moreover, because of their more

simplified lateral momentum equation (namely, the Euler

equation) the R3 term neither included the convection terms

of the lateral flow nor the secondary currents driven by the

bed stresses. This is equivalent to setting 8 to zero, thereby

eliminating the redistribution terms contained in R1 from the

main momentum equation (27). Although a linear term

proportional to the curvature, i.e., �AsnC, can be added to

correct this limitation (see section 4.2), the lack of

secondary currents prevents the modeling of the lateral

bed stresses and consequently of the sediment transport

dynamics. Apart from the term 8 in R1 the secondary

currents v0 also appear in the computation of the bed

stresses t*i for the sediment equation and in the term 81 for
the lateral momentum equation through the closure relation-

ships (15)–(20). These relationships cause a feedback

between the main flow and the secondary current,

determining the nonlinear form of the model (26)–(30)

and (34) [Blanckaert and De Vriend, 2004].

4. HIERARCHY OF LINEAR MODELS

[33] The linearization of the morphodynamic problem

can be performed through the following perturbative expan-

sions in the parameter n0 [Parker, 1976; Ikeda et al., 1981;

Blondeaux and Seminara, 1985; Johannesson and Parker,

1989a]

U ;V ;D;H ;Cð Þ ¼ 1; 0; 1;H0; 0ð Þ þ n0 u; v; d; h; Cð Þ; ð37Þ

ts ¼ Cf 0 1þ n0 f1uþ f2dð Þf g; ð38Þ

tn ¼ n0Cf 0 vþ v0 z0ð Þ
F z0ð Þ

� �
; ð39Þ

q ¼ q0 1þ n0 P1uþ P2dð Þf g; ð40Þ

where the coefficients f1, f2, P1, and P2 that arise from the

Taylor expansions of the functionals Cf = Cf(t*, D) and q =

q(t*, D), which account for the spatial variation, read

[Parker, 1976; Blondeaux and Seminara, 1985]

f1 ¼
2Cf 0

Cf 0 � t*0Cf ;t*j0
; ð41aÞ

f2 ¼
Cf ;Dj0

Cf 0 � t*0Cf ;t*j0
; ð41bÞ

P1 ¼ f1
t*0q;t*j0
q0

; ð42aÞ

P2 ¼ f2
t*0q;t*j0
q0

þ q;Dj0
q0

: ð42bÞ
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[34] In the linear theory the terms v0 and h0 in (17) and

(18) are simply modeled according to

v0 ¼ n0 c�1
0 G0C þ c�2

0 G1C;s
� �

ð43Þ

h0 ¼ n0 F2
0a

0ð ÞCnþ c0F
2
0a

1ð ÞC;sn
� �

: ð44Þ

[35] As a result the third addendum of the summations in

equations (17) and (18) becomes redundant. The first terms

of the right-hand side of equations (43) and (44) show a

strong dependence on the curvature, while the second terms

give rise to the phase lag of the secondary currents with

respect to the curvature.

4.1. Three Key Linear Models: ZS4, JP2, IPS

[36] We can now describe the hierarchy of the linear

models organically. As mentioned in section 1 we refer to

three key linear models of river meandering morphodynam-

ics. Our description starts from the most complete linear

model proposed in the literature and then proceeds with

more simplified ones.

[37] The most refined model (ZS4) was proposed by

Zolezzi and Seminara [2001]. They used Dean’s [1974]

profile for the eddy viscosity and considered the spatial

variation of the friction factor and sediment transport.

Introducing the expansions (37)–(40) in (9)–(14), with the

aid of (43), and neglecting the terms greater than O(n0),
Zolezzi and Seminara [2001] obtained the following linear

system
u;s þ a1uþ h;s þ a2d ¼ nb1C; ð45Þ

v;s þ a3vþ h;n ¼ b2C þ b3C;s þ b5C;ss; ð46Þ

u;s þ d;s þ v;n ¼ 0; ð47Þ

a4u;s þ a5d;s þ v;n þ a6 d � F2
0h

� �
;nn
¼ 0; ð48Þ

with boundary conditions

F2
0h� d

� �
;n
¼ b4C þ b6C;s; ð49aÞ

v ¼ 0 n ¼ 1ð Þ; ð49bÞ

and where the coefficients read

a1 ¼ f1c1 a2 ¼ c1 f2 � 1ð Þ; a3 ¼ c1; ð50Þ

a4 ¼ P1; a5 ¼ P2; a6 ¼
r

b
ffiffiffiffi
t*

p ; ð51Þ

b1 ¼ �c1; b2 ¼ 1�
ffiffiffiffiffiffiffi
Cf 0

p
k3; b3 ¼ �c0k0 �

k4

b
; ð52Þ

b4 ¼
k3

ffiffiffiffi
t*

p

r
ffiffiffiffiffiffiffi
Cf 0

p ; b5 ¼ �c2
0k1; b6 ¼

k4
ffiffiffiffi
t*

p

c1r
: ð53Þ

Zolezzi and Seminara [2001] solved the linear system

(45)–(48) using a Fourier expansion in the transversal

direction, n, and obtained a fourth-order ODE for every

Fourier mode. In particular, the equation for the streamwise

velocity, u =
P1

m¼0umsin(Mn) (with M = 1
2
(2m + 1)p), gives

d4um

ds4
þ s3

d3um

ds3
þ s2

d2um

ds2
þ s1

dum

ds
þ s0um ¼ Am

X6
j¼0

rjþ1

djC
dsj

;

ð54Þ

where um is the mth Fourier mode and Am = 8(�1)m[(2m +

1)p]�2. The coefficients s0–3 and r1–7 were given by

Zolezzi and Seminara [2001] and in a simpler form are also

reported in Appendix B. The model by Zolezzi and

Seminara [2001] is indicated as ZS4 to refer to the order of

the differential equation (53) of the model.

[38] The solution of the linear differential equation (53) for

all the modes allows one to obtain the value of the velocity at

the bank, ub(s) = u(s, n = 1), which is necessary to simulate

the meander evolution. The solution makes it evident

that the flow field, and therefore also the river planimetry

evolution, is regulated by (1) a local effect, (2) an upstream

propagating influence, (3) a downstream propagating

influence, (4) an upstream effect of the downstream

boundary condition, and (5) a downstream effect of the

upstream boundary condition [see Zolezzi and Seminara,

2001, equation (6.6)]. Therefore an upstream influence

always occurs, both in subresonant (b < bR) and super-

resonant (b > bR) conditions, although it is only

predominant in superresonant conditions.

[39] It can be shown that, because of linearization, the

contribution of secondary currents only remains in the

lateral momentum equation and in the sediment equation,

so it only directly influences h and d. The linearization also

makes the effect of the metric factor in equation (10)

irrelevant, which justifies setting N = 1 in the computation

of the secondary currents [e.g., Odgaard, 1986].

[40] A second family of models, called JP after Johannesson

and Parker [1989a] [see also Struiksma et al., 1985;

Crosato, 1989], is obtained by assuming (1) a uniform

vertical eddy-viscosity profile (G = a; see Appendix A),

(2) the friction coefficient, Cf, independent of D and t*,

and (3) the bed load transport independent of depth, D.

Using these assumptions, at the linear level one obtains

f1 = 2, f2 = P2 = 0, P1 = 2t0
q0
q,t*j0, whereas G0 and a(0) are

reported in Appendix A. Assuming h* = h0 = n0F0
2a(0)Cn

[e.g., Smith and McLean, 1984; Odgaard and Bergs, 1988;

Nelson and Smith, 1989b; Bridge, 1992], the linear system

is reduced to three equations where the transverse

component of the flow is no longer coupled with the

dynamics of u and d. The coefficients in the linear system

become

a1 ¼ 2c1; a2 ¼ �c1; a3 ¼ c1; ð55Þ

a4 ¼ P1; a5 ¼ 0; a6 ¼
r

b
ffiffiffiffi
t*0

p ; ð56Þ
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with k1 = k4 = 0 in (52) and (53). It follows that the

m-Fourier mode of u is governed by the second-order

equation

d2um

ds2
þ s1

dum

ds
þ s0um ¼ Am

X3
j¼0

rjþ1

djC
dsj

; ð57Þ

which, for m = 0, is formally equivalent to the model by

Johannesson and Parker [1989a] (the coefficients s0,1 and
r1–4 are reported in Appendix C). We refer to model (57)

as JP2 to recall the order of the differential equation. Note

that Johannesson and Parker [1989b] also accounted for

the phase lag due to the longitudinal convection of the

lateral momentum between the secondary flow and the

curvature and its derivative. For this purpose they used a

modified curvature, ss = ss(s), slightly shifted with respect

to the curvature and driven by a first-order ODE, which is

a semiempirical relaxation model derived from a simplified

version of equation (46) (a similar approach is also given

by Struiksma et al. [1985], Olsen [1987], and Blanckaert

and De Vriend [2003]). However, as will be discussed in

section 5, this effect can be reasonably neglected in natural

rivers where such a lag is generally very small. Thus,

unless otherwise specified, we will assume ss � C, which
is equivalent to setting @/@s = 0 in (10). When the phase

lag is considered instead, the corresponding model will be

called JP*2.

[41] A last family of models, called IPS after Ikeda et al.

[1981], can be obtained when, in addition to the hypotheses

contained in the approach of the second-order models, the

free response of bed sediment is neglected so that the bed

topography has a constant lateral slope that is always in

phase with the curvature. In other words, the sediment

continuity equation is no longer coupled with the shallow

water equations [e.g., Engelund, 1974; Ikeda et al., 1981;

Kennedy et al., 1984; Howard, 1984; Odgaard, 1986;

Bridge, 1992]. Such a simplifying hypothesis implies qn = 0

throughout, so that the Exner equation reduces to h,nn = (F0
2h

� d),nn = 0, which means (F0
2h � d),n = A, where A is the

constant slope factor. It follows that the resulting models

include neither the resonance nor the upstream propagating

influence.

[42] Furthermore, it is assumed that the only action of the

secondary currents is to stabilize the lateral bed slope by

means of topographic steering of the streamwise velocity,

without any direct effect on the flow field. This means

setting 8 = 0 in (9) and reducing equation (10) to the Euler

equation, which, after depth averaging and linearization,

becomes h* = h0 = n0F0
2Cn. Formally, this result can be

obtained by setting a(0) = 1 and a(1) = 0 in equation (44).

[43] With the previously mentioned hypotheses the linear

system (45)–(49) reduces to

u;s þ a1uþ a2d ¼ nb1C � nC;s ð58Þ

d;n ¼ b4C ð59Þ

with

d;nn ¼ 0 n ¼ 0ð Þ ð60aÞ

v ¼ 0 n ¼ 1ð Þ ð60bÞ

and where

b1 ¼ �c1; ð61aÞ

b4 ¼ F2
0 �

ffiffiffiffi
t*0

p
k3

r
ffiffiffiffiffiffiffi
Cf 0

p : ð61bÞ

As a result the following first-order differential equation is

obtained

du

ds
þ a1u ¼ b1 � a2b4ð ÞC � dC

ds
: ð62Þ

[44] In particular, the original model by Ikeda et al.

[1981] corresponds to solving equation (62) at n = ±1,

assuming (1) N = 1, and thus b1 = 0, in the streamwise

momentum equation, (2) a universal slope factor, and (3) no

spatial variation of the friction factor, Cf, so that a1 = 2c1

and a2 = �c1. The second term of the parameter b4 in (61b)

is the slope factor defined by Ikeda et al. [1981] as A. In

spite of its simplifications this model captures some

fundamental features of meandering dynamics, such as

fattening and skewing in meander evolution. This fact,

together with its simplicity, explains its use in several

theoretical and numerical works [e.g., Parker et al., 1983;

Beck et al., 1984; Parker and Andrews, 1986; Sun et al.,

1996].

[45] The simple form of equation (62) allows a clear

interpretation of the basic processes of meandering dynamics.

The coefficient b1 in the forcing term of the right-hand side

accounts for the reduction in longitudinal convection

associated with the outward decreasing of the longitudinal

bed slope, while the coefficient b4 of equation (62) derives

from two responses to the centrifugally induced currents:

the slope of the bed topography and the opposite slope of

the free surface. These terms give two positive contributions

to the outward shifting of the core of the downstream

velocity, the former being stronger in alluvial rivers. The

remaining forcing term is the effect of the vortex-induced

stresses. In the left-hand side of equation (62) the free

response of the streamwise velocity only depends on the

coefficient c1, while the s derivative in the first term gives

rise to the phase lag between u and the curvature in the

presence of long stream changes in the planimetry, causing

skewness in the bend evolution as well as the downstream

propagating influence (such an influence has a characteristic

spatial scale proportional to c1).

[46] In closing this section we note that the model given

by equations (26)–(30) and (34) can be considered the

natural nonlinear extension of ZS4, and therefore we name it
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ZS4N. Moreover, the basic assumptions of the JP approach

yield Gi from (A5),

@

@s
¼ 0 in R3; ð63Þ

@Cf

@t�
¼ @Cf

@D
¼ @q

@D
¼ 0; ð64Þ

from which, with the additional conditions V = 0 in R3, we

obtain the nonlinear model JP2N. Finally, the natural

nonlinear extension of the IPS model, called here IPSN, is

identical to the original formulation by Imran et al. [1999].

4.2. Some Extensions of the Original Linear Models:
ZS2, JP4, IPSU, and IPSV

[47] Suitable modifications and extensions of the original

linear models are useful to analyze the effect of the different

morphodynamic processes. We begin with a simplified

version of the ZS4 model that helps one to understand the

role of the topography-induced component of the surface

level, ĥ. The key point is the approximated expression of the

perturbation of the water surface level, h0 in equation (44),

obtained from the iterative procedure for the evaluation of

the secondary currents. In the fourth-order model, ZS4, such

an expression is not used in the linearization of the flow

equation, and h is left as an unknown quantity in the linear

system. It is possible, however, to use the approximate

solutions (44) and to reduce the linear problem to a system

of three equation in three unknowns

u;s þ a1uþ a2d ¼ nb1C þ nb
1ð Þ
1 C;s þ nb

2ð Þ
1 C;ss; ð65Þ

v;s þ a3v ¼ b2C þ b3C;s þ b5C;ss; ð66Þ

1� a4ð Þu;s þ 1� a5ð Þd;s � a6d;nn ¼ 0; ð67Þ

with the boundary conditions

d;n ¼ b4C þ b6C;s v ¼ 0 n ¼ 1ð Þ: ð68Þ

[48] The coefficients a1–6, b1, and b5 are reported by

Zolezzi and Seminara [2001], while the remaining ones read

b
1ð Þ
1 ¼ �a 0ð Þ; b

2ð Þ
1 ¼ � a 1ð Þ

c0

; b2 ¼ 1�
ffiffiffiffiffiffiffi
Cf 0

p
k3 � a 0ð Þ; ð69Þ

b3 ¼ � k0

c0

� k4

b
� a 1ð Þ

c0

; b4 ¼ F2
0a

0ð Þ �
ffiffiffiffi
t*0

p
k3

r
ffiffiffiffiffiffiffi
Cf 0

p ; ð70Þ

b6 ¼
F2
0a

1ð Þ

c1

�
ffiffiffiffi
t*0

p
k4

rc0

: ð71Þ

[49] At this level of simplification the transversal com-

ponent of the flow (66) is no longer coupled to the dynamics

of u and d. It follows that the m-Fourier mode of u is

governed by a second-order equation in a way that is

formally similar to the JP2 model (i.e., equation (57)). The

respective coefficients s0–1 and r1–4 are reported in

Appendix C. This version, which will be referred to as

ZS2, lacks the full coupling between curvature-driven

secondary currents (v0) and the topography-driven lateral

flow (V). Adopting equation (44) as the solution of the water

level perturbation in fact implies neglecting the super-

elevation of the water surface induced by the topography

and thus its effect on the transversal flow. In this way, v0
influences V, but the opposite is no longer true. To test this

point, a numerical comparison between ZS4 and ZS2 will be

shown in section 5.

[50] Alternatively, we may extend the original JP2 model

to a fourth-order version by avoiding the assumption h* =

h0 = n0F0
2a(0)Cn (see Appendix B for the coefficients). This

generalized version of the JP2 model, called JP4, is

mathematically similar to ZS4 and includes an upstream

propagating influence in subresonant conditions but has

quantitative differences in both the free and forced response

of the system (see section 5).

[51] It is important to note that Johannesson and Parker

[1989a] introduced a correction term, As, to account for the

fact that, upon linearization, the second-order model JP2
loses any influence of the dispersive term 8 in (9); in the

linear context the solution of the secondary currents (43)

and the vertical profile of longitudinal velocity F do not, in

fact, depend on n. To overcome this fact, they extended the

solution of the flow field, only valid in the central part of

the stream, to the sidewall boundary layers, thus forcing the

longitudinal velocity to drop to zero at the wall. As a result

they could account for the bank effect on the redistribution

term, which becomes of the order of O(n0), and they added

a correction term, As, that is similar to the slope factor A.

The results resolved the contradiction between the linear

theory and the data by Kikkawa et al. [1976] for a vanishing

bed slope [Johannesson and Parker, 1989c] besides

allowing v = 0 to be set at the wall and not at the edge of

the boundary layer as in 2-D models. However, the

approximation used is rather crude, since the velocity

profile in the boundary layer is assumed to have the same

behavior as in the central part. Consequently, a sharp

discontinuity appears at the wall and the ‘‘momentum

method’’ leads to a dispersive term that is a Dirac delta

function placed at the wall, resulting in an overestimation of

As for narrow rivers. In the present work, in order to

compare the fourth- and second-order models coherently,

we will set As = 0 and simply use JP2 (as done by Parker

and Johannesson [1989] when comparing their model with

that of Blondeaux and Seminara [1985]).

[52] Finally, some extensions of the original IPS formu-

lation are naturally suggested by the generalization of the

slope factor term A in equation (62). Ikeda et al. [1981]

assumed a slope factor that is independent of the local

hydraulic characteristic [see also Kikkawa et al., 1976;
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Zimmermann and Kennedy, 1978]. A constant value was

also assumed by other researchers [e.g., Beck et al., 1984;

Sun et al., 1996]. However, it seems to be more realistic to

evaluate the slope factor considering the effect of secondary

currents on the bed by means of the value k3, since by the

equations (13) and (16) it is straightforward to show that

A = �(k3/r)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0*=Cf 0

p
. Thus, as the structure of the secondary

currents depends on the eddy viscosity model (through

k3 = G0,z(z0)), we will consider both the solution with a

uniform value of nT and the solution with a variable value

for nT, obtaining two extensions of the IPS model, called

IPSU and IPSV, respectively.

5. ANALYSIS OF THE LINEAR MODELS

[53] In the following the free response and the structure

of the forcing term are analyzed for each linear differential

model described in section 4 (Table 1 summarizes their

characteristics). The free response defines the self-excited

response of the system, the resonant condition, and the

upstream and downstream influence on the local lateral

erosion. Instead, the forcing term contains the information

about the planimetric curvature, gives the local influence on

the erosion, and provides a particular solution of the system.

5.1. Free Response: Eigenvalues, Resonance
Conditions

[54] For realistic values of the morphodynamic parame-

ters, the fourth-order models (ZS4 and JP4) almost always

have two real wave numbers, l1 and l2, and two complex-

conjugate wave numbers, l3 and l4, while only a small

range of b exists with four real solutions [Struiksma et al.,

1985; Seminara and Tubino, 1992]. The second-order

models (ZS2 and JP2) have two solutions, either complex-

conjugate or real, whereas IPS models have only one

characteristic wave number equal to �2c1. Since a

recursive relation among the eigenvalues exists for each

model, e.g., li
(m)(b) = mli

(1)(b/m) for ZS4 [Seminara and

Tubino, 1992], we have only studied the first two modes

(m = 0, 1).

[55] Figure 4a shows the influence of the aspect ratio on

the eigenvalues of the fourth-order models (t*0 = 0.1, ds =

0.01, m = 0, and flat bed conditions). The JP4 model has a

qualitatively similar behavior to ZS4. Quantitatively speak-

ing, however, the two theories only agree for either very

small or very large values of b (greater than 100), but this is

generally outside the range of validity of the shallow water

theory (small b) or in the braiding regime (large b, though
huge meandering rivers can have very large values of b).
Such discrepancies underline the importance of the expan-

sion of the friction factor made in the ZS approach, which is

the only difference in the free response between the two

models. On the other hand, such an expansion does not

affect the qualitative behavior of the system response, since

both models can have superresonant conditions and always

present an upstream propagating influence (i.e., l1 is always
positive). We have verified these findings for a wide range

of t*0 and ds as well as for the case of dune-covered beds.

Similar considerations can be drawn from the comparison

between the eigenvalues of the ZS2 and JP2 models plotted

in Figure 4b. By comparing Figures 4a and 4b it can also be

pointed out that the eigenvalues of the second-order models

have behavior that is very close to that of l3 and l4 in the

fourth-order models.

[56] The behavior of lIPS = �2c1 is represented by the

decreasing straight line in Figures 4a and 4b. Despite the

fact that the IPS model cannot reproduce the full gamut of

processes described in section 2, in some cases it can give a

rough estimate of the predominant wave number. Figure 4a,

in fact, shows that a range exists in which lIPS is

comparable to the smaller eigenvalues of the fourth-order

models; that is, lIPS = O[Re(l3), Re(l4)]. As such

eigenvalues dictate the scale of the morphodynamic

memory, this implies that the first-order models are able

to capture the essential spatial scale of meandering

dynamics. Outside this range of b they are too simplified

and can only give a coarse description of the process.

Moreover, apart from the near-resonant conditions where all

the linear models fail, the IPS models cannot describe the

superresonant case. It can be shown, however, that the range

of validity of IPS increases for higher modes.

[57] We close this section by discussing the resonance

condition that takes place when b = bR, i.e., when the real

part of the complex eigenvalues is zero. In both ZS4 and

TABLE 1. Main Characteristics of the Mentioned Models

Model Characteristics

ZS4 vertically varying eddy viscosity [G = G(z)]
full coupling between the longitudinal and the transverse flow momentum
full coupling between the fluid and sediment dynamics
spatial dependence of the friction factor on D and t*

ZS2 as ZS4 except for the coupling in the flow momentum
JP4 uniform eddy viscosity (G = a)

full coupling between the longitudinal and the transverse flow momentum
no spatial dependence of the friction factor on D and t*

JP*
2

as JP4 except for the coupling in the flow momentum
JP2 as JP*

2
but no phase lag of the secondary current

IPSU as JP2 but no coupling with the sediment dynamics
IPSV as IPSU but the bed slope factor comes from a slowly varying eddy viscosity approach
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ZS2 the resonant condition is met when the two complex

eigenvalues have a vanishing real part. For ZS2 the

computation of the resonant aspect ratio, bR, can be readily

computed from the condition s1 = 0, since the term

involving s1 plays the role of a resistive term in a forced

damped oscillator, which becomes resonant when the

resistance vanishes. In this way one obtains [see also

Parker and Johannesson, 1989]

bR ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

Cf 0

ffiffiffiffi
t*0

p
f2 � 1ð Þ 1� P1ð Þ þ f1 P2 � 1ð Þ½ �

s
; ð72Þ

and in the same way one may obtain the respective

simplified formula for the JP scheme.

[58] Figures 5a and 5b compare the values of bR for the

fourth- and second-order models as a function of the Shields

stress. The good accuracy provided by the second-order

models, which improves for low ds, is evident and suggests

that equation (72) can be useful to easily verify whether a

river is in subresonant or superresonant conditions. On the

other hand, the difference between the JP and ZS

approaches confirms the important role of the spatial

variation of the friction factor due to the local hydro-

dynamic conditions.

5.2. Forcing Term: Secondary Currents

[59] The nonhomogenous part of the linear models rep-

resents the forcing term because of the influence of the

planimetric curvature on the secondary currents. We discuss

here the dispersive term 8 and the transversal bed stress tn
that account for the effects of secondary currents on the

formation of the near-bank excess velocity. We begin with

the most complete model, i.e., ZS4, in which these

quantities have the structure

8 ¼ n0k0
C
c0

þ n0k1
C;s
c2
0

ð73Þ

tn ¼ n0Cf 0vþ n0Cf 0 k3
C
c0

þ k4
C;s
c2
0

� �
: ð74Þ

[60] In these equations, k0 and k3 give the in-phase

contribution of the secondary currents, derived from the first

term of the right-hand side of (73) and (74), whereas k1 and

k4 provide the phase lag contribution of the secondary

currents, derived from the second term in the right-hand side

of (73) and (74). Such a phase lag was pointed out by Yen

[1972] and Gottlieb [1976] and modeled by Zimmermann

and Kennedy [1978]; Kitanidis and Kennedy [1984];

Struiksma et al. [1985]; Ikeda and Nishimura [1986];

Johannesson and Parker [1989b], and Zhou et al. [1993].

However, these authors also noticed that the phase lag in

alluvial rivers is always much smaller than that observed in

laboratory experiments (see also the observations by

Odgaard and Kennedy [1982]), because of both the smaller

depth-arc-length ratio and the greater friction factor [Zhou et

al., 1993]. This is confirmed by an order-of-magnitude

analysis of (73) and (74). In natural rivers, c0 is usually of

the order of 100–101, whereas C varies in the range [10�2–

100] and C,s is at most of the order of C3 [e.g., Parker and
Andrews, 1986]. Thus, since the coefficients k0 and k3 are of

the same order of magnitude as k1 and k4, the phase-lagged

contribution to both dispersive and lateral bed stress is

usually 3 or 4 orders of magnitude less than that of the in-

phase part. As a result the forcing term can be discussed

focusing only on the coefficients k0 and k3.

[61] In the linear system (45)–(48) the dispersive term, 8,
acts only in the lateral momentum equation through the

coefficients b3 and b5. We have shown that in the second-

order models such an equation becomes decoupled from the

other ones; thus the dispersive term neither influences the

streamwise momentum nor the erosion process. This means

that neglecting the effect of the topography-driven lateral

flow on the secondary currents, as in (65) and (67), is

equivalent to neglecting the dispersion process. In contrast,

in fourth-order models (ZS4 and JP4) the lateral momentum

is coupled with the streamwise momentum, and hence the

lateral dispersion of momentum is important. Figure 6a

shows the behavior of k0 for ZS4 and JP4. It can be seen that

this term is always more important in the former model.

Moreover, only for the JP4 model, the influence of k0
becomes negligible when ds is small.

Figure 4. Behavior of the real part of the eigenvalues in the case of (a) fourth-order and (b) second-
order models (m = 0, t*0 = 0.1, ds = 0.01, and flat bed). ZS4 and ZS2 are indicated by bold lines; JP4 and
JP2 are indicated by thin lines. The dashed line corresponds to the Ikeda et al. [1981] approach.
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[62] Figure 6b shows the coefficient k3 that describes the

effect of the secondary current on the lateral bed stresses.

Such a process is present in all the models that have been

analyzed and can be considered as one of the main driving

factors of meandering. We can see that the JP approach

underestimates the effect of the secondary currents,

compared to the ZS approach. This main difference in the

forcing term is mostly due to the different modeling of the

eddy viscosity, which yields two different vertical distribu-

tions for both the main flow and the secondary currents, as

shown in Figures 7a and 7b (see also Appendix A). In

particular, the uniform eddy viscosity approach (thin lines)

underestimates the bed stresses. In conclusion, since the

phase lag of the secondary currents and the role of the

dispersive term are usually negligible, the actual impact of

the secondary current on meandering dynamics is very

sensitive to the turbulence-closure model that is employed.

This fact also justifies the introduction of the improved IPS

models, i.e., IPSU and IPSV.

6. EXPERIMENTAL VERIFICATION OF THE
LONGITUDINAL FLOW FIELD

[63] We tested the performance of the linear models and

verified the use of Kalkwijk and De Vriend [1980]

decomposition (8) in the nonlinear approach using two sets

of experimental data obtained by Whiting and Dietrich

[1993a, 1993b] in a bend flow. The considered experiments

report the downstream surface velocity in two symmetric

sine-generated channels of a 25 cm wide flume, with a

nonerodible flat bed and an erodible bed, called run 100-5

and run 115-3, respectively, by Whiting and Dietrich. By

assuming a lateral boundary layer width equal to the half

depth, the morphodynamic parameters are equal to b = 5.75,

t*0 = 0.076, and ds = 0.031 for run 100-5 and b = 7.3, t*0 =

0.045, and ds = 0.038 for run 115-3. As a consequence, the

shallow water hypothesis (i.e., b > 5) is satisfied. Figure 8

shows a comparison between the experimental measure-

ments, the linear model ZS4, and the proposed nonlinear

approach, in which the solution of ZS4 has been used as the

first step of the iterative procedure. In the simulations the

surface velocity is obtained from the depth-averaged

velocity using the vertical profile derived from Dean’s

[1974] assumptions on eddy viscosity.

[64] The left side of Figure 8 shows the hydrodynamic

computation with a flat bed (run 100-5) and suggests that

the linear model, although giving a very smooth pattern, is

able to capture the correct range of surface velocities (15–

25 cm/s), with the maximum velocity at the inner bank. In

such a case the topographic steering driven by the lateral

Figure 5. Behavior of bR versus t*0 for (a) ds = 0.01 and (b) ds = 0.001. The bold lines refer to the ZS
approach, while the thin lines refer to the JP approach (fourth-order models (solid lines) and second-order
models (dotted lines)).

Figure 6. Dependence of (a) k0 and (b) k3 on ds. ZS4 and ZS2 are indicated by bold lines; JP4 and JP2
are indicated by thin lines.
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slope bed is absent, so the superelevation of the free surface

induces an increase in the velocity where the pressure is

low, i.e., at the inner bank. On the other hand, the nonlinear

model improves the picture by moving the peak velocity

toward the center of the channel and giving ‘‘a corridor of

high velocity which crosses from the convex to the concave

bank,’’ as was experimentally observed by Whiting and

Dietrich [1993b, p. 3620].

[65] The comparison with the erodible bed experiment

(run 115-3), reported on the right side of Figure 8, shows

how the linear model predicts the main features of the flow

field, with the correct values of the maximum velocity at the

out bank and with a substantially correct phase lag with

respect to the curvature. Because of the influence of the

nonlinear sediment equation (34) the nonlinear model works

even better than in the flat bed case. The model reproduces

the main spatial heterogeneities of the surface flow field

and, in particular, the high-velocity island before the apex

bend followed by a large zone with a relatively low velocity.

However, the isolated high-velocity region after the bend

apex (Figure 8b) is not predicted.

[66] In conclusion, both the linear and the nonlinear

models are able to predict the right value of the longitudinal

velocity at the outer bank. As a consequence they can be

reasonably adopted for the computation planimetric evolu-

tion of the river (see hypothesis 4 in section 3.1). However,

it should be noticed that the whole planimetric distribution

of the flow field reported in the previous experiments is not

reproduced exactly. This is expected in a 2-D approach,

particularly in the case of a low aspect ratio. For this reason

the models work better if applied to the conditions of run

115-3 (b = 7.3) compared to run 100-5 (b = 5.75).

Moreover, the unsteady ‘‘shingle bar unit’’ observed in the

experiments by Whiting and Dietrich [1993a] cannot be

obtained by any steady state morphodynamic theory.

7. PLANIMETRIC EVOLUTION

[67] In this section we assess the quantitative influence of

the different morphodynamic processes by comparing the

meander evolution produced by the previously described

models.

7.1. Geometric Formalism

[68] The evolution of the river planimetry can be inter-

preted as the dynamics of a curve moving on a plane

through elongations and lateral displacements. Consequently,

the problem can be treated using the formalism of the

differential geometry of one-dimensional curves. A similar

approach is implicit in all the numerical simulations of

meandering models [e.g., Howard, 1984; Stølum, 1996; Sun

et al., 1996, 2001a; Seminara et al., 2001] and was used

explicitly by Seminara et al. [1994]. Here we present a

formal and general deduction of the integrodifferential

equation regulating the geometric evolution of the curve

[e.g., Brower et al., 1984; Nakayama et al., 1992].

[69] The equation of motion of a parameterized curve

r(a, t) that moves along the normal unit vector n (see

Figure 3a) is
@

@t
r a; tð Þ ¼ n� r a; tð Þ; @r a; tð Þ

@a
; . . .

� �
; ð75Þ

where � is a functional that represents the normal

displacement rate and a is a purely descriptive parameter

that is independent of time, so that @
@t

@
@a = @

@a
@
@t. Introducing

the arc length coordinate ~s(a, t) =
R a
0

ffiffiffiffi
y

p
da0, where

y(a, t) = j@r@a � @r
@a j; we obtain (with ~C = j@2r/@~s2j)

@

@t

@

@~s
� @

@~s

@

@t
¼ �~C�

@

@~s
: ð76Þ

[70] Equation (76), along with the Serret-Frenet equation

[Do Carmo, 1976], provides the temporal rate of change of

the arc length coordinate

@~s

@t
¼ @

@t

Z a

0

ffiffiffiffi
y

p
da0 ¼

Z a

0

1

2
ffiffiffiffi
y

p @y
@t

da0

¼
Z a

0

1

2
ffiffiffiffi
y

p 2y~C�da0 ¼
Z ~s

0

~C�d~s0; ð77Þ

which permits equation (75) to be written in the

integrodifferential form

@r ~s; tð Þ
@t

¼ n�� @r ~s; tð Þ
@~s

Z s

0

~C�d~s0; ð78Þ

Figure 7. Vertical profiles of the (a) main flow (F ) and (b) secondary currents (G0) for the ZS approach
(bold lines) and the JP approach (thin lines) in the case of a flat bed.
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where the normal velocity � is the dynamic term that drives

the curve evolution. Once the normal velocity � is known,

the latter equation allows the evolution of the plane curve to

be described. A scalar form of equation (78), deduced

following a different approach, was also reported by

Seminara et al. [1994, 2001].

[71] It is important to notice that equation (78) has a

spatial memory term and is inherently nonlinear, indepen-

dently of the ‘‘dynamic’’ nonlinearities introduced by � that

depend on the meandering model adopted. As mentioned

before, the normal velocity � is usually assumed to be

proportional to the velocity excess at the bank, ub, through

an erodibility coefficient, E. Consequently, we can compare

Figure 8. Comparison of the experiments by Whiting and Dietrich [1993a, 1993b], the linear model by
Zolezzi and Seminara [2001], and the proposed nonlinear approach. (left) Run 100-5 (b = 5.75, t*0 =
0.076, and ds = 0.031). (right) Run 115-3 (b = 7.3, t*0 = 0.045, and ds = 0.038). (a and b) Laboratory data.
(c and d) ZS linear theory. (e and f) Nonlinear model.
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the river evolutions described by the different meandering

models by focusing directly on the differences between the

dynamics of ub.

7.2. Linear Regime

[72] We next compare the evolution of the original

models, ZS4, JP2 (along with its variant JP*2), and IPS, as

well as the extensions ZS2, JP4, IPSU, and IPSV (see

Table 1). Figures 9a and 9b show the linear behavior of ub
for two sets of morphodynamic parameters, with b = 13,

t*0 = 0.32, and ds = 0.003. In both cases the Kinoshita curve

[Kinoshita, 1961] is chosen as a typical meander planimetry.

It describes the precutoff meander shape well [Parker and

Andrews, 1986; Seminara et al., 1994] by means of the

equation

q ¼ q0 sin ksð Þ þ q1 sin 3ksð Þ þ q2 cos 3ksð Þ; ð79Þ

where q is the angle with respect to the x coordinate (see

Figure 3a) and k = 2p/Lm. Figure 9a refers to a medium

large-amplitude meander, whereas Figure 9b refers to a

configuration at incipient cutoff. The great difference in

amplitude in the models, particularly the ZS models, is the

most evident aspect, while the phase is nearly the same for

all models. In particular, IPSU and JP2 are very close to each

other, while JP*2 is practically coincident with JP2, thus

supporting the hypothesis of neglecting the phase lag of the

secondary current in this model. The only difference

between IPSU and JP2 models is that the former does not

account for the free response of the sediment transport; the

substantial agreement of their ub behaviors confirms that the

free response of the bed topography does not have any

significant influence in mildly sinuous channels [see

Kinoshita, 1961; Tubino and Seminara, 1990].

[73] The differences between second-order and fourth-

order models are generally very small, with the former ones

having slightly higher amplitudes, especially in the JP

approach. The small differences result from the distribution

term of the lateral momentum through the main flow

transport (modeled only in the fourth-order models), which

seems to have a little effect on the longitudinal velocity, thus

supporting the interest for second-order models.

[74] Finally, the behavior of the IPSV model is particu-

larly interesting. In this model the slope factor implicitly

follows from the use of Dean’s [1974] eddy viscosity

profile, which gives a lateral bed stress response that is

stronger than that of Engelund’s [1974] method. For this

reason, IPSV shows an amplitude response that is larger than

the original IPS model and in good agreement with that of

ZS4. Once more, this underlines the strong sensitivity of the

results to the modeling of secondary currents. Although in

other morphodynamic conditions the agreement between

ZS4 and IPSV may not be as good, IPSV represents a good

compromise between parsimony and detail (which could

even be improved by accounting for the influence of the

spatial variation of Cf).

[75] Although the differences in phase among the models

are small, they are even more important than those in

Figure 9. Behavior of ub for the different models in the
case of a Kinoshita-shaped meander with (a) q0 = p

3
, q1 = p3/

1184, q2 = p3/864, and k = 0.02 and (b) q0 = 2
3
p, q1 = p3/648,

q2 = p3/108, and k = 0.02. The insertions show the shape of
the meanders in the two cases.
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amplitude, as the latter can be absorbed in the uncertainties

in the value of the erodibility coefficient E, which is usually

evaluated by fitting the model results to real data. In order to

compare the phase differences and the behavior of ub(s) for

the various models we use ZS4 as the reference model,

evaluating for each model (i) the value of the coefficient di
that minimizes the difference [diub

i (s) � ub
ZS4(s)]. We then

analyze the quantity Di(s) = [diub
i (s) � dIPSU

ub
IPSU(s)], in

which the simplest model, IPSU, is now used as a reference

for the plotting. Such a procedure allows the smallest

differences between the models to be amplified and

analyzed. Figure 10 shows an application to the Kinoshita

curve with q = p/3. Comparing the responses of the models,

both differences and analogies are evident. The third

harmonic present in the Kinoshita curve induces a high-

frequency response in all the models. However, the high

harmonic has a small amplitude in the first-order models

(IPSU and IPSV), while it is more prominent in the higher-

order models. The behavior of DIPSV
suggests that

improving the slope factor evaluation in the IPS approach

changes both the amplitude and the phase, as previously

argued by Parker et al. [1983]. The strong sensitivity of the

higher-order models to the third harmonic of the planimetric

forcing can be related to the complex conjugate eigenvalues

that characterize the ZS and JP models. Complex

eigenvalues, in fact, induce an oscillating solution which,

in particular conditions, can be in a resonant (or near

resonant) state with the forcing third harmonic rather than

with the leading harmonic. This third-harmonic resonant

state is dictated by b = bR and Im(lc) = 3k, where lc is the
complex conjugate eigenvalue. Such patterns can affect the

frequency spectrum of the river planimetry, favoring the

growth of the higher harmonics (i.e., multilobing). Despite

the fact that, in general, the growth of higher-order

harmonics is slow and that cutoff happens before they

become noticeable, the river long-term evolution can be

influenced by them in the form of characteristic multilobes

in the river pattern. It is important to distinguish this

multilobing, which has a fluid dynamic origin, from cutoff-

induced multilobing, which has a ‘‘geometric’’ origin

because of the impossibility of self-intersection in the river

planimetry.

[76] The evolutions predicted by the different models

have been compared, using both the same value of the

erodibility coefficient, E, and the modified value, diE.
Equation (78) is solved numerically by a step-to-step

shifting and fitting. In particular, Figures 11a and 11b report

the reaches after 3000 years starting from the same

Kinoshita curve with q0 = p/3 for ZS4, JP2, and IPSU. Very

similar behavior can be noticed for JP2 and IPSU, while ZS4
provides a more skewed configuration as well as a more

rapid evolution (Figure 11a).

[77] The reliability of the linear models has been inves-

tigated, in cases with nonnegligible curvature, by compar-

ing the linear and nonlinear versions for each approach

(Seminara and Tubino [1992] performed a weakly nonlinear

analysis of the ZS approach but they referred to nearly

resonant conditions). Figure 12 shows the comparison

between the three linear models, ZS4, JP2, IPSU, and the

respective nonlinear extensions. We can notice that the

phase is also preserved in the nonlinear models, underlining

the importance of the real negative eigenvalue of the

linearized problem even in the nonlinear models. Only

IPSUN shows a small lag compared to IPSU in agreement

with Imran et al. [1999], who noticed that the greatest

discrepancies between the linear and nonlinear models are

associated with large values of scour factor A (greater than 3).

However, even though A ’ 10 in the present case, this

difference appears to be small compared to the difference

between ZS4 and IPSU.

7.3. Comparison With a Field Case

[78] The evolutions predicted by the three original linear

models (i.e., IPSU, JP2, and ZS4) have been tested on a real

case. Such an analysis allows us to test and compare models

of different complexity on a real case with the aim of

evaluating the role of the morphodynamic processes

involved in meandering dynamics. Some works [Beck et

al., 1984; Howard, 1984] have already compared real and

predicted river evolutions but used only the first-order

model IPSU.

[79] Here we focused on a 3.5 km reach of the Tanaro

River, a tributary of the Po River, in northwest Italy. The

mean annual discharge is 70 m3/s, the mean sediment

roughness is 2.3 mm, the mean depth is about 1.2 m, the

bed slope is 0.0006, and the width is about 70 m. The

planimetry of this reach in 1880 and 1991 was obtained

from the Italian Geographic Military Institute (see Figure

13, where, for the sake of clarity, only the river axes are

Figure 10. Behavior of Di(s) along the Kinoshita-shaped
meander with q0 = p/3.
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plotted). No significant hydraulic works were done in this

reach (or in a relatively long tract upstream and down-

stream) during the considered temporal interval. As previ-

ously described in section 7.2, the erodibility coefficient E

is evaluated for each model by visually fitting the simulated

evolution to the real data, obtaining E � 107 = 2.0, 1.5, and

0.9 for the IPSU, JP2, and ZS4 models, respectively.

[80] The simulated planimetric evolutions are compared

with the real evolution in Figure 13. The prediction by the

ZS4 model is remarkable, and the JP2 model also seems to

work quite well in spite of the fact that such models do not

describe the bank erosion processes in detail and do not take

into account external disturbances, such as soil heterogene-

ity, discharge variability, and riparian vegetation. The IPSU
model instead does not give good results. The reason for

this is that the 1880 planform showed a weak multilobed

pattern that disappeared during the river evolution pre-

sumably because of the mutual interaction between

dominant and higher harmonics. In this case the capability

of the second- and fourth-order models to force several

harmonics allows the models to capture this aspect very

well (especially the ZS4 model). This capability is, instead,

weak in the IPSU model; therefore the modulation of the

local wavelength is inhibited, and the multilobes cannot

vanish. Therefore, while the IPSU model can give

satisfactory results for simple-shaped meanders (see the

good amplitude responses shown in Figure 9), the presence

of significant multilobes needs higher-order models in

particular fourth-order ones.

8. ROLE OF EXTERNAL FORCING ON LONG-TERM
RIVER DYNAMICS

[81] River morphodynamics can be studied according to a

short- or long-term timescale. The former is typical of the

evolution of single meanders before cutoff, while the latter

spans times in which several cutoffs can occur [Camporeale

et al., 2005]. Such a distinction is fundamental as the long-

term meandering dynamics are markedly affected by many

external forcings, which can have considerable spatial and

temporal variability and can interact with the long-term

river dynamics themselves. Such factors may be both

deterministic and stochastic and act in a multiplicative and

additive way [Perona et al., 2002].

[82] Taking advantage of the improvements that have

been made in numerical analysis over the last 2 decades,

the study of the long-term behavior of meandering river has

been the subject of increasing attention by the scientific

community. The recursive computation of the linear models

discussed in the present review, along with an erosion law,

has, in fact, allowed the planimetric migration of the rivers

Figure 11. Evolution of the Kinoshita-shaped meander (q = p/3, dotted line) after 3000 years according to the ZS4 (bold
solid line), JP2 (thin solid line), and IPSU (dashed line) models. (a) Evolution using the same value of the erodibility
coefficient (E = 10�7).(b) Different erodibilities CiE.

Figure 12. Comparisons of linear and nonlinear models.
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spanning a timescale of the order of several thousands of

years to be simulated step by step. In this context the study

of the influence of different external forcings on meandering

dynamics is becoming a promising topic, and the present

section is a brief review of some recent contributions. We

will focus in particular on four important factors that are

able to influence long-term dynamics: cutoffs, sedimenta-

tion processes, riparian vegetation dynamics, and geological

constraints.

8.1. Meander Cutoffs

[83] A cutoff event is an intermittent planimetric phe-

nomenon dictated by nonlocal geometric conditions that

eliminate the most mature meanders when two points of the

river come into contact [Gagliano and Howard, 1984].

Cutoff behaves like an external action that sporadically

forces the short-term meander evolution and affects the

whole river planimetric dynamics in several ways. Using the

IPSU model, Howard [1984] recognized that cutoffs induce

long-term statistical equilibrium of the spatial pattern. The

same finding was confirmed by Stølum [1996] and Howard

[1992] using JP2 and by Camporeale et al. [2005] using

ZS4. Furthermore, Stølum [1996, 1997] suggested that

cutoff avalanches are responsible for self-organized criti-

cality, whereas Howard [1996] pointed out the role of chute

cutoffs. Finally, although cutoff introduces a strong

nonlinearity into temporal dynamics, it also seems to act

as a ‘‘filter’’ that is able to limit the development of

nonlinearities (induced by the nonlinear evolution equation

(78)). This novel aspect, pointed out by Perucca et al.

[2005], could justify the relative insensitivity of the

statistics of long-term behavior to higher-order dynamical

terms, which may be important in short-term evolution

[Camporeale et al., 2005].

8.2. Sedimentation Processes

[84] The physiographic features of the floodplain interact

with a meandering river through two fundamental processes:

point bar deposition and overbank sediment diffusion

[Howard, 1992]. These aspects are of great importance in

the characterization of the impermeable shale deposits that

form oil reservoirs.

[85] The work by Sun et al. [1996] investigated the

former aspect by developing long-term simulations of the

IPSU model and considering heterogeneous sedimentary

environments. In particular, the erodibility coefficient, E,

was determined from a map keeping track of the geological

history. Different values of E were used for the virgin

floodplain, the point bar deposits, and the cutoff deposits.

The erodibility of the cutoff deposits was considered time-

dependent, in a decreasing exponential way, in order to

model the hardening due to the gradual filling of the oxbow

lake by clay and silt and the successive formation of a clay

plug. The authors pointed out that sedimentary hetero-

geneity leads to self-confinement of the meander belt,

provided the timescale of the temporal decay of the oxbow

lake erodibility is greater than the timescale of the

longitudinal migration of meanders.

[86] In a subsequent work, Sun et al. [2001b] extended

the analysis by using the JP2 model along with the theory of

Figure 13. Comparison of the real river evolution of a reach of the Tanaro River and the evolutions
simulated by the ZS4 (thin solid line), JP2 (thin dashed line), and IPSU (dotted line) models. The bold
dashed and solid lines mark the real river in 1880 and 1991, respectively.
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Parker and Andrews [1985] for the modeling of sediment

sorting in bends. They were able to reproduce both the

deposition of the coarse material in the upstream arms of

the point bar and the deposition of fine material in the

downstream part.

[87] As far as overbank sediment diffusion is concerned,

it is worth mentioning the works by Howard [1992, 1996]

again, where the JP2 model was coupled with a deposition

rate of fine sediments that exponentially decreased with the

distance from the channel. The simulations reproduced

zones of depression in the floodplain located in the axial

position of the sharp meander bends on the downstream end

of the point bar. Such thus formed sloughs were recognized

to be consistent with the formations observed by Lewin

[1978].

8.3. Dynamics of Riparian Vegetation

[88] The interactions between riparian vegetation and

river morphodynamics are twofold: On the one hand, the

river provides water, sediment, and seeds to the nearby

riparian environment according its hydrological, hydraulic,

and geomorphological characteristics [Bendix and Hupp,

2000]; on the other hand, vegetation uses water to live and

to grow and significantly affects the hydraulic and

geotechnical characteristics of the bed and banks, with an

impact on the river morphodynamics [Abernethy and

Rutherfurd, 1998]. In this sense, riparian vegetation can

play both a passive and an active role in the dynamics

[Camporeale et al., 2006]. In the first case (i.e., passive

role), vegetation merely affects roughness, hydraulic

resistance, and bank erodibility in the same manner as any

abiotic element with the same mechanical and morpholo-

gical characteristics. In the second case, depending on the

colonization, growth, and death processes, vegetation

behaves as an active element of the ecological dynamics

of the floodplain and interacts with the fluvial processes,

leading to changes in the evolution of river patterns and, in

turn, in the whole river-riparian vegetation system.

[89] In the context of meandering rivers the aforemen-

tioned processes induce the long-term formation of a ridge

and swale topography with arcuate parallel bands of even

aged trees [Everitt, 1968; Nanson and Beach, 1977].

Moreover, vegetation results are characterized by ‘‘a

predictable development based on the distance of the river’’

[Kalliola et al., 1992, p. 78] and a river-induced pattern

with regular zonation of the communities [Salo et al., 1986;

Puhakka and Kalliola, 1995]. Although a quantitative

physically based modeling of the long-term interactions

between riparian vegetation and river meandering would be

of paramount importance for the floodplain biogeomorphol-

ogy [e.g., Hughes [1997], the models developed in literature

are usually in a conceptual-qualitative form [e.g., Bradley

and Smith, 1986; McKenney et al., 1995; Richter and

Richter, 2000]. In a recent work by Perucca et al. [2006] the

IPSU model has been coupled with a logistic model for the

growth of riparian vegetation to simulate the effect of river

planimetry on the vegetation pattern formation. Despite

some crude approximations the numerical simulations

highlighted the formation of an evident zone with low

vegetation density in the internal part of the meanders in

qualitative agreement with several real fluvial environ-

ments. Such promising results suggest improving and

extending the previous approach to the modeling of the

feedback of riparian vegetation on bank erosion and

therefore on the planimetry evolution itself [e.g., Perucca

et al., 2007]. In this respect a first interesting model, at

short-term timescales, has been numerically developed by

Van De Wiel and Darby [2004] where the two-dimensional

nonlinear equations for flow and sediment transport are

coupled with a biogeotechnical bank stability analysis.

[90] Finally, we mention that riparian vegetation is also

affected by the hyporheic exchange, as the oxygen flux

from the stream regulates the redox conditions in the aquifer

and the nutrient dynamics [Jones and Mulholland, 2000]. In

this context, river sinuosity represents an important factor

that regulates the structure of the intrameander hyporheic

flow path (for an application using the ZS4 model, see

Boano et al. [2006]).

8.4. Geological Constraints

[91] Geological constraints can affect the planimetric

evolution of meandering rivers in several different ways

[e.g., Watson et al., 1984]. Here we wish to focus on two

particular cases: (1) tectonic lateral tilting of the floodplain

and (2) the presence of valley walls with low erodibility.

The first issue has been theoretically investigated by Sun et

al. [2001c] by means of a modified version of the IPSU
model. In particular, the depth-averaged equation of the

flow field was perturbed to consider both the effect of the

lateral tilting and the effect of the curvature. The theory

predicted a drift in the channel migration, moving toward

lower (higher) elevations for high (small) Froude number.

[92] The second issue is particularly interesting whenever

the distance between the valley walls is comparable to or

smaller than twice the characteristic meander amplitude. In

this case the lateral migration is remarkably confined, and

the river planform is forced to assume a regular sequence of

saw-toothed loops which migrate downstream. In this

condition the neck cutoff process is also precluded at the

long term. This point has been numerically investigated by

Howard [1984, 1992, 1996] and Sun et al. [1996]. In all

these works the simulated evolution of the planimetry,

through the use of IPSU or JP2 models, allowed the typical

patterns observable in nature to be reproduced, e.g., the

well-known confined meanders of the Beaver River

(Canada) [e.g., Allen, 1984].

9. CONCLUSIONS

[93] The work has investigated the significance of the

main physical mechanisms involved in river meandering. To

this aim we have reviewed and compared the fundamental

existing linear models and several extensions thereof. These

models have been hierarchically derived from a common

and general mathematical framework. Moreover, a nonlin-

ear version of each model has been derived with the aim of
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assessing the effective influence of the nonlinearities that

are neglected in the linear approach. A critical comparison

of the models, a detailed discussion of the physical pro-

cesses and the relevant hypotheses, and a comparison with

real data have provided the following main results.

[94] The linear analysis has pointed out the importance of

the closure of secondary currents. The amplitude of the

response depends to a great extent on the modeling of the

eddy viscosity. This aspect could justify the use of simpli-

fied models (e.g., IPS models) in practical applications,

provided the secondary currents are modeled in detail [e.g.,

Seminara and Solari, 1998]. In contrast, the phase lag of

secondary currents does not play a significant role, and

although important from a theoretical point of view, the

momentum redistribution due to the coupling between the

main and the transverse flow only contributes weakly.

Hence second-order models can reasonably be considered

as good approximation tools for both predictive analysis and

the computation of the resonant conditions. The analysis of

higher harmonics, supported by the study of a real case,

suggests that both fourth- and second-order models can give

rise to multilobed planimetries, though fourth-order models

are more accurate.

[95] The nonlinear analysis has pointed out that nonlinear

models have a similar quantitative behavior as their linear

counterparts. Such an agreement supports the use of linear

theories to model the long-term evolution of meandering

rivers [Stølum, 1996; Howard, 1992]. The phase response of

both linear and nonlinear models is also similar, showing

that one eigenvalue mainly controls the free response of the

system.

[96] We conclude our work by pointing out that the

evaluation of the effective significance of the different

morphodynamic processes also has important implications

for the simulation of meandering rivers in problems of

riparian ecology [Salo et al., 1986], geomorphology

[Howard, 1992], oil research [Swanson, 1993], and river

engineering [Jansen et al., 1979]. Computational con-

straints or model complexity can, in fact, often induce one

to choose the simplest meandering models. However, in the

light of the results presented here, it is clear that the

simplifications have to be adequate to the peculiar

characteristics of each investigated problem.

APPENDIX A: VERTICAL DISTRIBUTIONS
[97] According to Dean [1974] the secondary currents

can be modeled using a slowly varying eddy viscosity with

the following vertical profiles

G ¼ kz 1� zð Þ
1þ 2Az2 þ 3Bz3

ðA1Þ

F ¼ Cf

k
ln

z
z0

þ A z2 � z20
� �

þ B z3 � z30
� �� �

; ðA2Þ

where A = 1.84, B = �1.56, and k is the von Karman

constant. If a uniform eddy viscosity approach is used

instead, the function F (z) is obtained according to the

Engelund [1974] slip velocity method, where the no-slip

condition on the bottom is replaced by

u*

uf
¼ 2� 2:5 ln z0 v* ¼ u*

uf
av*;z z ¼ hð Þ ðA3Þ

in which uf is the friction velocity. This allows an analytic

evaluation of the coefficient a(i) and functions Gi to be

made, whose expressions are

G ¼ a; F ¼ 1� e
a

1

2
z2 � z þ 1

2

� 	
; e ¼

ffiffiffiffiffiffi
Cf

p
; ðA4Þ

G0 ¼
X3
j¼1

g0jej

ajþ1
; G1 ¼

X5
j¼1

g1jej

ajþ2
; G2 ¼

X5
j¼1

g2jej

ajþ2
; ðA5Þ

a 0ð Þ ¼
X3
i¼0

a0iei

ai
; a 1ð Þ ¼

X5
i¼2

a1iei

aiþ1
; a 2ð Þ ¼

X5
i¼1

a2iei

aiþ1
; ðA6Þ

gij ¼
Xnij
k¼0

gijkzk : ðA7Þ

The numerical coefficients aij, nij, and gijk are reported in the

auxiliary material1.

APPENDIX B: COEFFICIENTS FOR THE FOURTH-
ORDER MODELS
[98] Starting from the system of partial differential

equations (45)–(48) and by means the Fourier decompo-

sition in the lateral coordinate, Zolezzi and Seminara

[2001] obtained m systems of ODEs that can be written in

the algebraic form

A4x;s þ B4x ¼ AmWk sð Þ; ðB1Þ

where

A4 ¼

1 0 1 0

0 1 0 0

1 0 0 0

a4 0 0 a5

2
664

3
775; ðB2Þ

B4 ¼

a1 0 0 a2
0 a3 M 0

0 �M 0 M

0 �M F2
0a6M

2 �M2a6

2
664

3
775; ðB3Þ

k ¼ C; C;s; C;ss; C;sss
�  T

; ðB4Þ

1Auxiliary materials are available in the HTML. doi:10.1029/
2005RG000185.
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whereas the vector x = {um, vm, hm, dm}
T contains the

Fourier coefficients of the unknowns {u, v, h, d}T and the

elements of the matrix W read

W11 ¼ b1 � a2 F2
0b2 � b4

� �
; ðB5Þ

W12 ¼ �b2 � a2 F2
0b3 � b6

� �
; W13 ¼ �b3 � F2

0a2b5; ðB6Þ

W14 ¼ �b5; W32 ¼ b4 � F2
0b2; ðB7Þ

W33 ¼ b6 � F2
0b3; W34 ¼ �F2

0b5; ðB8Þ

W42 ¼ a5 b4 � F2
0b2

� �
; ðB9Þ

W43 ¼ a5 b6 � F2
0b3

� �
; W44 ¼ F2

0a5b5; ðB10Þ

W21 ¼ W22 ¼ W23 ¼ W24 ¼ W31 ¼ W41 ¼ 0: ðB11Þ

The Laplace transform of (B1) gives

tA4 þ B4½ �x̂ tð Þ ¼ AmWKĈ tð Þ; ðB12Þ

where t is the complex variable, the hat refers to the

transformed variables, and K = {1, t, t2, t3}T. Hence,

defining K = tA4 + B4 and L4 = AmWK and using Cramer’s

rule, we obtain the coefficients s of the homogeneous part

of the fourth-order differential equation (53) by collecting

the coefficients of the characteristic polynomial det [K]

s0 ¼ �M2a1a6; ðB13Þ

s1 ¼ � M2a6 þ a2 a4 � 1ð Þ þ a1 1� a5ð Þ
!
þ F2

0a3a6 a1 � a2ð Þ
"
; ðB14Þ

s2 ¼ � 1� a5 þ F2
0a6 a1 � a2 þ a3ð Þ � a3a6

! "
; ðB15Þ

s3 ¼ � F2
0 � 1

� �
a6 � a3; ðB16Þ

where � = M2/(a5 � a4). Similarly, the coefficients r of the

nonhomogeneous part are given by the characteristic

polynomial det [KL
1] where the notation KL

1 refers to the

matrix K with the first column replaced by the vector L.
Therefore the coefficients of equation (53) read

r1 ¼ �M2a6 b1 � F2
0b2a2 þ b4a2

� �
; ðB17Þ

r2 ¼ � 1� a5 þ F2
0a3a6

� �
b1 �M2a6

�
� b2 þ a2 F2

0b3 � b6
� �! " 

;

ðB18Þ

r3 ¼ � a5 � 1ð Þb2½ þ a6 F2
0b1 �M2b3 � a3b4 � F2

0M
2a2b5

� �"
;

ðB19Þ

r4 ¼ � a5 � 1ð Þb3 � a6 b4 þM2b5 þ a3b6
� �! "

; ðB20Þ

r5 ¼ � a5 � 1ð Þb5 � a6b6½ �; r6 ¼ r7 ¼ 0: ðB21Þ

[99] It should be noticed that the coefficients of the

differential equations that describe vm, hn, and dm can

easily be obtained following the same procedure described

above. The only difference concerns the coefficients r of the
nonhomogeneous part. These are given by the characteristic

polynomial det [KL
i ], where i refers to the ith column which

has to be substituted (with i = 2, 3, and 4 correspondent to

vm,hn, and dm, respectively).

APPENDIX C: COEFFICIENTS FOR THE
SECOND-ORDER MODELS
[100] Reducing the procedure of Appendix B to a two-

dimensional vectorial space, the coefficients of the second-

order models can be obtained as

s0 ¼ �V a6a1M
2

� �
; s1 ¼ V a2 1� a4ð Þ �a6M

2
! "

þ a1; ðC1Þ

r1 ¼ V a6M
2 a2b4 � b1ð Þ

! "
; ðC2Þ

r2 ¼ b1 � a6M
2 b

1ð Þ
1 � a2b6

� �
; ðC3Þ

r3 ¼ b
1ð Þ
1 � Va6M2b

2ð Þ
1 ; r4 ¼ b

2ð Þ
1 ; V ¼ a5�1ð Þ�1: ðC4Þ

In order to obtain the ZS2 model we have corrected a small

algebraic mistake that affects the expression of h0 given by

Zolezzi and Seminara [2001]. However, this mistake does

not compromise the subsequent results of Zolezzi and

Seminara as the analytical expression of the superelevation

induced by the curvature is not used in the ZS4 model.

GLOSSARY

Bar: Two-dimensional perturbation of the riverbed

topography occurring on a megascale, namely, of the order

of the channel width [Colombini et al., 1987]. Free bars

(also called alternate bars) are induced by flow bottom

instability and present long stream migration [Tubino et al.,

1999], whereas forced (or point) bars are stationary and are

driven by the curvature-induced secondary flow.

Cutoff: Bypass of a meander loop in favor of a shorter

path and the following formation of an abandoned reach,

called oxbow lake. If cutoff takes place to avoid the self-

intersection of two reaches that come into contact, it is called

‘‘neck cutoff’’; otherwise, cutoff is known as ‘‘chute.’’
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Kinoshita curve: A theoretical meandering curve

named after the Japanese geomorphologist who corrected

the sine-generated curve proposed by Langbein and

Leopold [1966] with two additional third-order harmonics

to give equation (79). In this way it is possible to model not

only the characteristic ‘‘fattening’’ of meanders (already

accounted for by the sine-generated curve) but also the

ubiquitous ‘‘skewing’’ of the loops [Parker et al., 1982].

Subsequently, Seminara et al. [1994] showed that the

absence of even harmonics in the Kinoshita curve can be

justified by the cubic nonlinearity of the evolution

equation (78). They also showed that the eventual formation

of higher harmonics than the third is precluded by cutoff

occurrence.

Overdeepening phenomenon: ‘‘Spatial transient

whereby the scour associated with the point bar configura-

tion establishes in a bend of constant curvature downstream

of a straight reach’’ [Zolezzi et al., 2005, p. 192].

Planimetry: Two-dimensional path of the river axis

curve.

Superelevation: Outward increase of the water surface

induced by stream curvature.
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