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ABSTRACT 
This paper presents a novel method for motion recognition. The approach is based on 3D motion data. The 
captured motion is divided into sequences, which are sets of contiguous postures over time. Each sequence is 
then classified into one of the recognizable action classes by means of a PCA based method. The proposed 
approach is able to perform automatic recognition of movements containing more than one class of action. The 
advantages of this technique are that it can be easily extended to recognize many action classes and, most of all, 
that the recognition process is real-time. In order to fully understand the capabilities of the proposed method, the 
approach has been implemented and tested in a virtual environment. Several experimental results are also 
provided and discussed. 
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1. INTRODUCTION 
The recognition of human movements is an 

important topic in computer vision and has many 
promising applications in entertainment, human 
computer interaction, automatic video indexing 
[Nam97], video surveillance and intrusion detection 
[Har00]. An important requirement is speed. 
Especially for interactive applications, real-time 
recognition rates are needed. In applications like 
computer games or human computer interactions, the 
user should not perceive any noticeable delay 
between the action performed and the system 
response. 

This paper presents a novel technique for 
recognizing human motion in real time. The 
movement of a performer is first captured in 3D by 
means of a model-based technique. The basic idea of 
our approach is the following: a movement is a curve 
in the (normalized) model parameter space, and these 
curves are characteristic of the type of action 
performed. Comparing the whole curves for 

recognizing actions does not seem to be a good idea, 
for instance because the same action can have 
different lengths, but we can extract small segments 
of curves and use them for comparison. In our idea 
these segments, called sequences, are still 
characteristics of the kind of action performed, as we 
will demonstrate in the paper. Using sequences 
allows for an “on line” recognition, necessary in 
several applications, since we do not need to acquire 
and process the whole motion to classify it. 
Exploiting Principal Component Analysis (PCA), a 
reduced dimensionality model of the sequences can 
be used to recognize several basic actions, like 
walking, running or waiting.   

The contribution of this work is a system that, 
after a proper training, is capable of recognizing 
many different action classes in real time. 
Furthermore, the approach can be easily extended to 
deal with other motion classes. The proposed method 
exploits 3D motion data, since 2D techniques often 
impose constraints on the characteristics of the 
motion to be analysed and of the available data. For 
instance, in several approaches the performer’s 
motion must be frontal or parallel to the image plane 
([Yac99], [Rah05], [Dav01], [Cao04]), which are too 
limiting for applications like smart surveillance 
systems or sports analysis.  

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee.  The extraction of 3D motion data and their 

classification are actually two independent processes, 
and this work focuses on motion recognition only. 
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Extracting 3D motion data is a complex task. 
However, several real-time non-intrusive motion 
capture techniques, such as [The03] or [Hig03], are 
available and can be coupled with our motion 
classifier.  

This paper is aimed at demonstrating the 
capabilities of the proposed approach. Since, in 
principle, the recognition process is independent on 
how motion data have been acquired, we initially 
tested the approach with motion data acquired with 
an optical capture system. However, for several 
applications, non-intrusive capture techniques must 
be used. Therefore, we also experimented the 
proposed approach with a non-intrusive tracker in a 
virtual environment in order to understand how the 
reconstruction errors introduced by those methods 
affect the classification process. The preliminary 
results are promising, demonstrating a good 
capability of separating the analyzed movements. 
The contents of the paper are the following. In 
section 2 we outline the contents of this work. 
Section 3 describes the motion recognition approach 
and the experimental results are shown in section 4. 

Related works 
PCA is a popular technique in pattern recognition. 

Eigenspace analysis and PCA methods have been 
successfully applied to several computer vision 
problems, like face recognition, background 
modelling, object detection and tracking ([Del01]). 
Several approaches to motion recognition use PCA 
on various 2D or 2½D motion data extracted from 
monocular sequences ([Yac99], [Per02], [Ben02]) or 
directly from video sequences ([Rah05]). In order to 
recognize segmented 2D motion trajectories, the use 
of a reduced PCA space has been coupled in several 
approaches to other techniques, like Hidden Markov 
Models ([Bas05]) or neural networks ([Hyu05]).  
However, in our knowledge, this is the first work that 
deals with PCA classification of 3D motion data. 
In literature, state-space and template matching are 
the most popular approaches to human motion 
classification. In state-space approaches ([Sun02], 
[Kel05], [Ime03], [Gal01]), the set of features 
extracted from the incoming images, for instance 
2D/3D postures or optical flow data are represented 
in a suitable manner to define different states 
connected by transition probabilities. A motion 
sequence can be thought as a tour between different 
states. Given the state sequence for an incoming 
motion, activities recognition is achieved modeling 
each activity as a state diagram and matching the 
incoming sequence with the most probable model. 
On the contrary, template-matching techniques 
compare the extracted features with pre-stored 
patterns for recognition. Those techniques can 
exploit several clues, like Motion History Images 

([Dav01], [Bab03]), Gabor features ([Nak01]) and 
contours ([Rit99]). In both cases, the performances 
of these algorithms are strictly related to the type and 
quality of the extracted features used. A review of 
the literature on the field can be found in [Agg99]. 

2. SURVEY OF THE APPROACH 
Our approach to motion recognition consists in 

analysing the 3D motion data of a performer and 
identifying the actions he performs. Therefore, in 
order of principle, the approach is absolutely 
independent on the way motion data are obtained. As 
we will show, the recognition process can be 
performed in few milliseconds. When coupled with a 
real-time motion capture system, all the tracking-
recognition chain can be performed in real-time.  

Figure 1 outlines our recognition framework. The 
motion curves in the parameter space are split into 
sequences, which are segments of fixed length. The 
PCA based representations of the training sequences 
for the action classes to be recognized (right) are 
compared for recognition with the same 
representation of the sequences of the incoming 
movement (left).  

 

 
Figure 1. Outline of the recognition process 

 
Before describing in details the proposed method, 

let us give some definitions. The attitude of the 
human body is referred to as a posture. A motion is a 
sequence of contiguous postures over time. An 
action is a specific type of motion, for instance 
walking, running or sitting. The aim of our approach 
is to automatically segment a motion, classifying the 
various actions it contains. 

  

 
Figure 2: the human body model and its skeleton 

 



To represent and reconstruct the motion of a 
human performer, we use a human body model that 
is defined by an articulated structure whose skeleton 
has 23 segments and whose surface is described by a 
triangular mesh (see Figure 2). Skeleton segments 
are organized into a tree whose root is located in the 
pelvis. The model has 29 degrees of freedom, 26 to 
define the rotation of the segments and 3 for the 
(x,y,z) position of the pelvis.  

In order to deal with 3D data coming from 
different performers, we have to perform spatial 
normalization. Motion data can be made almost 
independent from performer’s characteristics and 
from motion orientation with respect to a global 
reference system considering only angular data. In 
particular, all information about model’s measures 
are discarded, the skeleton’s root is translated into 
the origin of the reference system and the model is 
rotated in order to make the pelvis segment 
coincident with the z axis of the world coordinate 
systems, heading towards the x axis. Therefore, the 
dimension of the posture vector can be reduced to 26. 
We did not perform any temporal normalization for 
two reasons. First, in our opinion, the speed of a 
gesture provides a strong clue to detect its class of 
movement. For instance, speed is necessary to tell a 
slap from a caress, being the main distinctive 
parameter between the two actions. Second, temporal 
normalization would require the acquisition of the 
whole motion, preventing real time recognition. 
However, the PCA representation of the data, 
described in the following, introduces a sort of 
temporal normalization. 

 

 
Figure 3: a motion is divided into three sequences x1, x2 
and x3. Each sequence contains n frames, and the interval 
between the beginnings of two consecutive sequences is t 
frames  

 
Every movement can be represented into the 

reduced posture space as a curve, or motion curve. 
But how can we use motion curves for recognition? 
Our approach consists in splitting a complex 
movement into a set of “atomic” motions. We define 
as sequence a set of n consecutive frames, the 
starting frames of two sequences being at a distance 
of t frames (see Figure 3). Each sequence is defined 
by a unique vector containing the model parameters 

of its composing postures. A sequence represents the 
atomic quantity of motion that we want to recognize. 
In the posture space, a sequence represents a segment 
of a motion curve. Our idea, which will be 
demonstrated in the next section, is that these 
segments are characteristic of the type of action 
performed, that is sequences belonging to a walk are 
different from sequences belonging to a run. In this 
way it is possible to create classes of sequences that 
can be labelled as belonging to a specific action 
class. When a movement has to be recognized, we 
can extract its composing sequences and classify 
each of them, obtaining an indication of the actual 
action performed. The choice of proper values for t 
and n has been a fundamental part of our tests, and it 
will be discussed in section 4. 

The motion recognition process is based on the 
principal component analysis. All sequences are 
represented by vectors of the same size. PCA can be 
applied to decompose the original sequences into a 
set of characteristic feature data, called 
eigensequences, which can be seen as the principal 
components of the original sequences. 
Eigensequences form the orthogonal basis of a linear 
subspace, called the sequence space. Therefore we 
can recognize an input sequence projecting it on the 
sequence space and comparing its position with those 
of known samples. If we see eigenfaces as a set of 
"standardized face ingredients", the eigensequences 
can be thought as being a set of standardized motion 
ingredients.  

The advantages of the proposed approach are the 
following: 

• the set of recognizable action classes can be 
increased at will, as soon as training motions 
for the desired action classes are available 

• short detail movements can be easily 
recognized 

• changes of the actions performed by the 
subject can be immediately identified, which 
is necessary for some applications like real-
time video surveillance 

• PCA allows reducing greatly the data 
dimension, providing for their real-time 
processing 

 

3. RECOGNIZING MOTION 
 

Let a sequence be composed of n normalized pose 
vectors and represented by a vector x. Let Z be the 
number of action classes to recognize. For each 
action class, we use a set of training motions and 
each one of them is split into its composing 
sequences. Let {xi | i=1, …, S} be the complete set of 



training sequences. The average sequence for this set 
is defined as: 
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The covariance matrix of the set is given by: 
t
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is the matrix containing the differences between 

the training sequences and the mean sequence. The 
basis vectors of the training sequence space are the 
orthogonal eigenvectors of Cx. 

The dimension of a sequence can be reduced 
expressing its components in terms of the 
eigensequences e1,..., ek that are the eigenvectors 
corresponding to the largest k eigenvalues of Cx. 
These eigensequences form a reduced linear 
subspace, that we will call the sequence space. 
Therefore, each training sequence xj can be expressed 
in the sequence space as a characteristic vector 
gj=[gj1,…, gjk], that can be obtained as: 
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In order to minimize the error introduced 
projecting the original vector on the sequence space, 
the value of k corresponds to the value for which the 
ratio of the eigenvalue sum is above a predefined 
threshold ε, as follows: 
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In the recognition phase, each motion is divided 
into sequences; an incoming sequence x is projected 
onto the sequence space, obtaining its characteristic 
vector g. Therefore, each motion gives rise to a set of 
points in the eigenspace.  

For comparison, we use the so-called point-set 
representation, describing a motion class by the set of 
vectors projected from all its training sequences. The 
distance dj to each training sample in sequence space 
is defined as:  

kjgd jj ,...,1
2

=−= g  

The action class of the training sequence at 
minimal distance gives the action class of x. It is 
worth noting that the distance in frame of the 
beginnings of two inputs sequences can be different 
from the one used to extract the training sequences. 
As a matter of fact, in all our tests, the input 
sequences have a distance of one frame. This allows 
a per-frame classification of the input motion. 

The training motion sequences used have been 
acquired with an optical motion capture system and 
are part of Motek’s StockMovestm library ([Motek]). 
In order to test our approach we selected several 
animations corresponding to seven action classes: 
walk, run, wait, jump, slide, rowing and squat. For 
each class, we picked out a subset of the available 
animations to extract the training sequences. The 

animations have been chosen in order to provide the 
widest variability possible for the specific action. For 
instance, normal and lame walks, runs at different 
speed, normal jumps and jumps with turns, and so 
on. Some frames extracted from a running motion are 
shown in Figure 4. 

 

 
Figure 4. A running motion 

 

An indication of the fact that the sequences are 
characteristic of the type of action performed can be 
seen in Figure 5, where the eigenspace representation 
of the training sequences is shown. For the sake of 
visibility, only the three eigensequences 
corresponding to the three largest eigenvalues are 
used to create the graphical representation. As it can 
be seen, sequences corresponding to the same action 
class cluster in the eigenspace representation, and the 
different action classes are considerably separated. 

 

 
Figure 5. Eigenspace representation of the training 

sequences 

4. EXPERIMENTAL RESULTS 
Several experiments have been carried out in 

order to study the behaviour of the proposed 
approach with respect to the different parameters 
involved. These parameters are: 



• The number n of frames composing a 
sequence  

• The distance t in frames between two 
consecutive sequences in a training 
motion 

• The value of the threshold ε used to 
select the k eigensequences defining the 
sequence space 

• The number S of training sequences 
• The representative motions used to 

extract the training sequences for each 
action class 

The experimental work has been divided in two 
phases.  

In the first phase the approach has been tested 
directly on the available motion capture data 
obtained from Motek in order to investigate the 
precision of the classification process for several 
motions and several arrangements of the parameters.  

In the second phase we used a non-intrusive 
motion capture approach in a virtual environment. In 
this case, the motion data are used to animate a 
dummy. Its motion is reconstructed using the non-
intrusive motion capture technique described in 
[Bot01]. The aim of this second phase is to 
understand how the reconstruction error introduced 
by a non-intrusive capture method affects the 
classification process.  It should be outlined, 
however, that the proposed approach to motion 
recognition is independent on how motion data are 
acquired, that is with optical or magnetic tracking or 
any other motion capture method, until they are 
presented to the classifier in the desired format. 

 
Figure 6. The motion capture technique 

The motion capture technique used is depicted in 
Figure 6. In short, several images of the performer, 
taken with calibrated cameras, are used (Figure 6(a)). 
On each image plane, the silhouette of the performer 
is extracted, and it is back-projected in 3D from the 
view center the corresponding camera. The obtained 
viewing cones are intersected, and the resulting 
volume is represented as the set of voxels containing 
its surface (Figure 6(b)). The model is then fitted in 
3D to the reconstructed surface by minimizing a 
suitable distance function between the surface of the 
model and the set of voxel centers (Figure 6(c)). It 

should be noted that the motion capture technique 
used is not real-time. However, more complex 
reconstruction techniques fulfilling this requirement, 
such as [The03] or [Hig03], can be used. 

In the two phases we used both animations from 
Motek’s StockMovestm library, different from the 
ones containing the training sequences, and motion-
captured sessions, still provided by Motek, where the 
actors perform motions containing different kinds of 
actions. Those sequences have been pre-labelled at 
hand in order to compare the classifier’s results with 
ground truth data. The frame rate of all the motion-
captured data is 30 frames/sec. 

Despite the value of the parameter t used to 
separate training sequences, the distance between 
sequences extracted from the incoming motions is 
always one frame. This allows having an 
instantaneous classification of the current motion. 
We also consider only the instantaneous 
classification of a single sequence, while other 
approaches considering the classification of 
contiguous sequences, that is performing some kind 
of filtering on the output data, are not taken into 
account in this work. 

The performances of the different tests are 
measured using the true/false recognition rates, 
defined as the ratio of correctly/incorrectly classified 
input sequences to the total number of incoming 
samples. In the following tables, the results presented 
can be read in the following way. The first column is 
the test-set reference name, the second is the 
dimension n of the used sequences, the third is the 
distance t in frames between two training sequences, 
the fourth the number of training sequences S, the 
fifth the value of ε used to select the k 
eigensequences defining the sequence space, the 
sixth the cataloguing average time in milliseconds 
and the last two columns the true and false 
recognition rates. 

The aim of the first battery of tests, whose results 
are summarized in Figure 7, is to understand how the 
sequence dimension affects the recognition rate. As it 
can be seen, varying the dimension of n from 5 to 20, 
the recognition rates are essentially equal. However, 
a smaller value is preferable, since it allows detecting 
the changes of the performed actions in a shorter 
time. We found the value of 5 being the best but also 
a limit to the sequence dimension, since for fewer 
values the recognition rates decrease significantly, as 
can be seen in Figure 7, where we have 59% of 
correct recognitions for 3 poses sequences. Finally, 
we have run our experiments in order to check the 
use of PCA on single poses, and the recognition falls 
below 54%, demonstrating that PCA based single 
posture recognition is not effective. 

The table in Figure 8 outlines the variation of the 
recognition rates as function of the distance t in 



frames between two consecutive training sequences. 
Also in this case, the results are almost constant and 
varying t does not significantly affect the quality of 
the reconstruction. Moreover, increasing the value of 
t reduces the number of available training sequences 
S and, consequently, the mean cataloguing time of 
the input sequences.  

Apparently, this intuition is contradicted by the 
results detailed in Figure 9, where the recognition 
rates as function of the number S of training 
sequences are shown. It can be seen that recognition 
rates are decreasing when a lower number of training 
sequences are used. This somewhat contradictory 
behaviour can be explained by the following 
consideration. In the tests of Figure 8 the number of 
training motions for each action class is the same for 
all the experiments, while in Figure 9 the training 
sequences are reduced by discarding some of the 
selected training motions. The result is that the 
training sequences are less representative of the 
variability of the single action class, and the 
recognition rate decreases.  

A predictable result is the improvements of the 
recognition rates determined by the parameter 
ε  (Figure 10). Increasing its value, the classifier uses 
a greater number of eigensequences, the data are 
represented with higher accuracy in the sequence 
space and the recognition error is reduced.  

The confusion matrix (Figure 11) shows the 
relationship between the ground-truth labelled data 
and the results of our classifier. Each row represents 
the probability of a sequence belonging to an action 
class to be classified into the available action classes. 
The diagonal of this matrix, therefore, shows the 
correct classification probabilities. 

Summarizing the results obtained in the first 
phase of the experimental work, we have that: 

• the recognition rate is substantially 
unaffected by the number of postures 
composing a sequence; this allows 
choosing a smaller value of n, providing 
for faster recognition of action changes 

• PCA recognition applied to single 
postures is not effective 

• reducing the number of training 
sequences, keeping constant the number 
of training motions used to create them, 
does not affect substantially the 
recognition rate; this allows to increase 
the value of t, that is to have a reduced 
number of sequences which are more 
spaced on the motion curves in the 
parameter spaces, reducing also the 
recognition time 

• provided the same values for n and t, the 
recognition rates increases when the 
classifier uses a larger set of training 

motions for each action class; as a matter 
of fact, increasing the number of training 
motions allows to describe a wider 
variability for the specific action 

In order to test the reliability of the classification 
results when input data are affected by reconstruction 
noise, the motions used to create the table in Figure 8 
have been used to animate a dummy in a virtual 
environment. The motion data to be classified have 
been captured with the non-intrusive motion capture 
system previously described. In Figure 12, for each 
test set, the recognition rates using directly the 
motion data are compared with the recognition rates 
of the captured data. In all the cases, the best 
performances are obtained with the direct data. 
However, the loss of quality is lower than 1% in all 
the cases, showing that the recognition rates are 
relatively unaffected by the reconstruction error 
introduced by the non-intrusive MC system. 

Finally, we ran several experiments on motion 
data of an actor performing several actions in the 
same motion (Figure 13). The motions have been 
labelled at hand in order to provide ground-truth data 
for the experiments. As it can be seen, recognition 
rates are somewhat lower than the previous 
experiments. This is primarily due to the inter-action 
frames, which were difficult to classify even for a 
human observer and are somewhat confusing the 
classifier.  
Concerning computational times, we ran our 
experiments on a 2.5GHz PC with 1 GByte of RAM. 
Constructing the sequence space can be done off-line 
as a pre-processing stage and takes between 3 and 6 
seconds, depending on the number of training 
sequences. The mean classification time is always 
below 11 ms, which means that the classification can 
be performed in real-time. The complexity of the 
recognition process is O(Sn), where S is the number 
of training sequences and n is the sequence 
dimension. 

5. CONCLUSIONS 
This paper introduces a new approach to motion 

recognition. The 3D motion of a performer is first 
captured and then divided into sequences, each one 
representing a small segment of the curve describing 
the motion in a normalized posture space.  

The motion recognition process is based on the 
principal component analysis. PCA can be applied to 
decompose the original sequences into a set of 
characteristic feature data, called eigensequences, 
which can be seen as the principal components of the 
original sequences. Given the eigensequences, every 
training sequence can be represented as a vector of 
weights; the weights are obtained by projecting the 
sequences into the sequence space. When an input 
sequence has to be identified, its vector of weights 



also represents it. Identification is done by locating 
the training sequence whose weights are the closest 
to the weights of the incoming sequence. 

The approach has been tested in a virtual 
environment in order to understand the capabilities of 
the method, and the influences of the various 
parameters on the recognition rate. Results of the 
recognition process in a controlled environment have 
been presented, showing encouraging recognition 
rates (about 89% in the best configurations). The 
ability of achieving real-time classification has also 
been demonstrated, since the recognition time is 
always lower than 11 ms.  
One interesting research line could be to test the 
system in a real environment. Another research line 
involves the vector comparison method, which can 
influence the system’s performance dramatically. For 
example, PCA algorithms can use either the angle or 
the Euclidean distance between two projection 
vectors, the Euclidean distance can be weighted or 
unweighted, or we can use non-Euclidean metrics. 
Also LDA algorithms, which have often showed 
promising results, will be tested. Finally, we are 
planning to experiment different clustering 
techniques, like kernel PCA [Smo98], to see if 
recognition rates can be improved. 
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Sequence 
frames (n)

Training 
step time 

(t)

Training 
sequences 

(S)

Eigenvector 
threshold 
(epsilon)

catalogation 
time average true % false % 

exp50-x1-f1 1 1 / 30 sec 893 0,99 7,72 msec 53,98% 46,02%
exp50-x1-f3 3 1 / 30 sec 865 0,99 7,64 msec 58,15% 41,85%
exp50-x1-f5 5 1 / 30 sec 798 0,99 8,72 msec 88,41% 11,59%
exp50-x1-f10 10 1 / 30 sec 728 0,99 8,05 msec 87,42% 12,58%
exp50-x1-f15 15 1 / 30 sec 658 0,99 7,52 msec 87,30% 12,70%
exp50-x1-f20 20 1 / 30 sec 588 0,99 7,03 msec 87,56% 12,44%  

Figure 7. Recognition rates vs. number of frames of a sequence 

Sequence 
frames (n)

Training 
step time 

(t)

Training 
sequences 

(S)

Eigenvector 
threshold 
(epsilon)

catalogation 
time average true % false % 

exp50-x1-f5 5 1 / 30 sec 798 0,99 8,72 msec 88,41% 11,59%
exp50-x2-f5 5 2 / 30 sec 399 0,99 4,20 msec 89,01% 10,99%
exp50-x3-f5 5 3 / 30 sec 272 0,99 2,88 msec 88,23% 11,77%
exp50-x4-f5 5 4 / 30 sec 204 0,99 2,12 msec 89,67% 10,33%  

Figure 8. Recognition rates vs. distance between sequences 

Sequence 
frames (n)

Training 
step time 

(t)

Training 
sequences 

(S)

Eigenvector 
threshold 
(epsilon)

catalogation 
time average true % false % 

exp50-x1-f5-50p 5 1 / 30 sec 399 0,99 4,28 msec 77,24% 22,76%
exp50-x1-f5-75p 5 1 / 30 sec 603 0,99 6,28 msec 88,11% 11,89%
exp50-x1-f5-90p 5 1 / 30 sec 725 0,99 7,68 msec 87,93% 12,07%
exp50-x1-f5 5 1 / 30 sec 798 0,99 8,72 msec 88,41% 11,59%  

Figure 9. Recognition rates vs. number of training sequences 

Sequence 
frames (n)

Training 
step time 

(t)

Training 
sequences 

(S)

Eigenvector 
threshold 
(epsilon)

catalogation 
time average true % false % 

exp50-x1-f5-e80 5 1 / 30 sec 798 0,8 7,56 msec 76,64% 23,36%
exp50-x1-f5-e90 5 1 / 30 sec 798 0,9 7,48 msec 84,47% 15,53%
exp50-x1-f5-e99 5 1 / 30 sec 798 0,99 8,72 msec 88,41% 11,59%  

Figure 10. Recognition rates vs. ε 
Out

In Run Wait Walk Rowing Slips Squat Jumps
Run 96,37% 0,00% 0,00% 0,00% 0,00% 1,21% 2,42%
Wait 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Walk 0,00% 0,00% 75,00% 0,00% 0,00% 0,00% 25,00%

Rowing 0,00% 0,00% 0,00% 100,00% 0,00% 0,00% 0,00%
Slips 0,00% 0,00% 0,27% 14,52% 81,64% 2,19% 1,37%
Squat 0,00% 0,00% 0,00% 2,03% 2,54% 95,43% 0,00%
Jumps 0,54% 0,00% 0,00% 0,00% 0,00% 27,72% 71,74%  

Figure 11. Confusion matrix 

true % false % true % false % 
exp50-x1-f5 88,41% 11,59% 88,11% 11,89%
exp50-x2-f5 88,11% 11,89% 88,89% 11,11%
exp50-x3-f5 88,23% 11,77% 87,63% 12,37%
exp50-x4-f5 89,67% 10,33% 89,31% 10,69%

direct data reconstructed data

 
Figure 12. Direct data vs. reconstructed data 

Sequence 
frames (n)

Training 
step time (t)

Training 
sequences 

(S)

Eigenvector 
threshold 
(epsilon)

catalogation 
time average true % false % 

long1-x1-f5 5 1 / 30 sec 393 0,99 6,08 msec 79,41% 20,59%
long1-x1-f10 10 1 / 30 sec 353 0,99 5,97 msec 76,47% 23,53%
long1-x1-f15 15 1 / 30 sec 313 0,99 5,89 msec 75,59% 24,41%
long1-x1-f20 20 1 / 30 sec 273 0,99 5,83 msec 76,18% 23,82%
long2-x1-f5 5 1 / 30 sec 798 0,99 10,76 msec 82,65% 17,35%
long2-x1-f10 10 1 / 30 sec 728 0,99 10,76 msec 80,59% 19,41%
long2-x1-f15 15 1 / 30 sec 658 0,99 9,61 msec 79,41% 20,59%
long2-x1-f20 20 1 / 30 sec 588 0,99 9,61 msec 80,00% 20,00%  

Figure 13. Reconstruction of complex sequences 


