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The Finite-Difference Time-Domain (FDTD) method
is one of the most popular schemes for the transient
simulation of interconnect structures. It provides quite
accurate results as far as the number of discretization
points per wavelength is high. Otherwise, it is well
known that numerical dispersion strongly affects the ac-
curacy of the simulation. This can be a relevant problem
when nonlinear terminations are to be handled, since in-
teraction of incident pulses with nonlinear circuits may
lead to spikes and sharp variations that may not be well
represented on the FDTD mesh.

To overcome these limitations, we propose to use
high-order difference schemes for the transient simula-
tion of interconnects with nonlinear loads. In partic-
ular, we focus our attention on centered fourth-order
schemes [3, 2], which offer significant improvement with
respect to the standard second-order FDTD scheme.
As an example, we report a numerical dispersion test
obtained by launching a gaussian pulse on an infi-
nite length transmission line (modeled through periodic
boundaries). Both the FDTD results and the fourth-
order scheme results are shown in Fig. 1. Time stepping
is provided by the standard fourth-order Runge-Kutta
(RK4) integrator, which has been selected for its very
large stability region and because its approximation or-
der is matched to the order of the spatial discretization.
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Figure 1: Accuracy of FDTD (left), and fourth-order implicit
scheme with RK4 time integrator (right). The degrees of
freedom are the same in the two cases, and p denotes the
Courant number.

The numerical treatment of boundary conditions with
high-order schemes presents some difficulties. It is well

known that a standard treatment through elimination
of the boundary unknowns and direct insertion of the
termination equations into the difference scheme may
lead to late time instability [2]. In this paper we show
how this problem can be overcome by following a com-
pletely different strategy, based on a weak implementa-
tionon of the boundary conditions. The basic idea is to
allow an approximation error in the imposition of the
boundary conditions, provided that this error is of the
same order of the difference scheme performing the spa-
tial discretization of the interconnect equations. Since
any numerical simulation leads to approximate results,
it does not matter where exactly in the scheme the er-
ror is generated. It is crucial to keep this error under
control, in terms of both local truncation error and its
growth in time (i.e., stability).

The weak implementation of the boundary conditions
is performed as follows. First, the transmission line
equations are discretized in space throguh a fourth-order
difference operator, including the boundary nodes. The
basic principle is to treat the voltages and currents at
the interconnect edges as dinstinct unknowns with re-
spect to the voltages and currents of the termination
networks. Their difference is regarded as an approxima-
tion error in the imposition of the boundary equations.
Special penalty terms proportional to these errors are
simply added to the discretized interconnect equations.
They act as a "numerical glue”, so that the dynamics of
the resulting evolution equations lead to a stable control
of the overall approximation error with the same order
of accuracy both at inner and at boundary nodes. The
formal proof, together with the precise formulation of
the method for lossy multiconductor lines with nonlin-
ear static loads, can be found in [4]. The extension to
arbitrary transmission-line networks with either linear
or nonlinear junctions is straightforward.

We show now a comparison between the standard
second-order accuate FDTD method and two (explicit
and implicit) fourth-order schemes. A normalized scalar
transmission line (Z¢ = 1, Tp = 1) is loaded with highly
unmatched resistances, Rg = 1073, Ry = 103, with
gaussian excitation. Table 1 reports the maximum er-



N FDTD Explicit Implicit

40 [1.6x10°T [ 1.8x10°2 | 1.2x 1071
60 | 70x 1072 | 4.0x 1073 | 3.0 x 102
90 | 3.0x1072|93x107* | 6.0x 1073
135 | 1.3x 1072 | 2.1 x107* | 1.2x 1073
200 | 6.1 x1073 | 5.1 x107% | 2.3 x 10~

Table 1: Accuracy of FDTD and fourth-order schemes ap-
plied to a terminated line. Each entry reports the maximum
voltage error at the right termination.
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Figure 2: Near-End (continuous line) and Far-End (dashed
line) crosstalk voltages for a low-loss three-conductor PCB
line simulated with two fourth-order schemes.

ror at the right boundary between the exact solution and
the numerical solution obtained with FDTD and with
the fourth-order schemes with RK4 time advancement.
The Courant number was set in all cases to p = 0.8, i.e.,
close to the stability limit of the FDTD scheme. It is evi-
dent that the fourth order schemes perform much better
than FDTD in terms of both error values and decay rate
under grid refinement. The achievement of a maximum
error below a given threshold, say ¢ = 1073, would re-
quire a very fine grid or, equivalently, a very large num-
ber of unknowns for the FDTD method (as the decay
rate is N2, a simple extrapolation gives approximately
N ~ 1000). The same error can be obtained with the
fourth-order schemes with much less grid points, about
N = 140 for the explicit one and N = 90 for the implicit
one. In addition, the FDTD error is extremely sensi-
tive to small variations of the Courant number p, while
the high-order schemes, due to the choice of RK4 time
advancement algorithm, are very stable. This means
that the application of high-order schemes to the mul-
ticonductor case, where all propagation speeds for the
various modes are different, allows to treat all modes
approximately with the same approximation. This is
obviously not possible with FDTD, which treats with
high accuracy only the faster modes and deteriorates its
performance for the slow modes.

Figure 2 illustrates a numerical test consisting of the
crosstalk analysis of a PCB structure (see [1], pp. 317
and 351). The line is made on three PCB lands placed
on one side of a glass epoxy (¢, = 4.7) substrate 47 mils
thick. The lands have width 15 mils, thickness 1.38 mils,
and their separation is 45 mils. The line is 10 inches long
and is terminated with diagonal 50 €2 loads. The exci-
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Figure 3: Currents at the right termination obtained with
Scalar line (Z, = 50 Q, Tp =
3.33 ns) loaded with a diode (a) and with a voltage protection
circuit (b).

the fourth order scheme.

tation is a 50 ps rise-time step function applied between
the two edge conductors, one of which is taken as the
reference.

A further example illustrates the inclusion of nonlin-
ear terminations. The results (see Fig. 3) obtained by
loading a scalar line with a shunt diode (with a 10 V
Gaussian source) and with a simple voltage protection
circuit (with a 10 V step source) show no difference with
the SPICE simulation, also reported in the plots.

The proposed schemes allow very accurate simulation
of quite general types of interconnects with nonlinear
loads. The interconnects can be lossy. In addition, also
interconnect networks can be treated. These schemes
can also be applied without modification to the analy-
sis of nonuniform lines, characterized by per-unit-length
parameters with longitudinal variations. These struc-
tures cannot be analyzed with SPICE. The presented re-
sults show that the transient simulation is performed at
higher accuracy and reduced numerical dispersion with
respect to the standard FDTD scheme. Therefore, the
proposed discretizations seem to be very promising for
the simulation of highly interconnected systems typi-
cally found in fast applications.
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