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MACROMODELING OF ELECTRICAL INTERCONNECTS
AND PACKAGES VIA PEEC APPROACH

E. Vialardi, F. G. Canavero
Dipartimento di Elettronica

Politecnico di Torino
C.so Duca degli Abruzzi 24

10129 Turin, Italy

Abstract  -  This paper deals with model order reduction
of multi-input-multi-output structures described by
Partial Element Equivalent Circuits (PEEC). A Krylov-
based algorithm is adopted, that guarantees the stability
and the passivity of the obtained reduced circuit with
good accuracy.
Our procedure is validated by means of a simple
example made of two parallel stacked traces with air
filling, representing an ideal interconnect. Comparisons
showing the frequency behaviour of the interconnect
scattering parameters with analytical expressions based
on Telegrapher’s equations are presented. We then apply
the proposed modeling process to analyze, both in the
time and in the frequency domain, the crosstalk between
two microstrip traces either in the case of air dielectric
and in the case of relative dielectric constant of 4.7. The
influence of the model order on the results is also
discussed.

I. INTRODUCTION

The continuous progress in computer-aided design
techniques and in microelectronics technology are
leading to ever denser and geometrically more complex
layouts and to the use of ever-increasing operating
frequencies, at both the chip and package level. Signal
rise times of hundreds of picoseconds are becoming
quite common and the previously negligible effects of
interconnects represent the major limiting factor of the
system performances.
Increased speeds and reduced geometric distances
between the traces and the planes lead, in fact, to high
signal couplings and distortions, which can cause the
electronic device not to meet the required Signal
Integrity (SI) and EMC specifications. Engineers must
then consider the phenomena of crosstalk, ringing, signal
delay and reflections during early design stages, by
means of efficient and low computational costs models.
Unfortunately, at high frequencies, conventional signal
integrity tools, being based on a circuit approach that
only considers the length of the traces and not their
shape, become inaccurate and 3D techniques are
necessary to take into account all the geometric features
of the structure under examination.
The Partial Element Equivalent Circuit (PEEC) method
applied in this paper represents a well-suited modeling
technique for analyzing interconnects performances,

because of its ability to handle 3D complex irregular
structures. This formulation transforms the geometry
under examination into a passive RLC equivalent circuit,
where the signal propagation phenomena are modeled by
means of resistances, inductances and capacitances. The
mutual coupling between the traces and the planes are
taken into account by mutual inductances and by current
controlled current generators. Besides, we can easily
connect electrical model of drivers and receivers to the
ports and perform simulations within a SPICE-like
environment, both in time and in frequency domain.
Because of the large equivalent circuit complexity of the
PEEC approach, a model order reduction (MOR)
technique must be applied to perform circuit simulations
in a reasonable amount of time. Recently, several
moment-matching algorithms based on Padé direct
approximations (AWE [1], CFH [2]) or on Krylov
subspaces (PVL [3], Arnoldi [4]) were proposed.
However, they suffer of ill-conditioning problems or do
not ensure the passivity of the reduced model.
Consequently, we choose a different Krylov-space
technique: the Passive Reduced-order Interconnect
Macromodeling Algorithm (PRIMA) [5], because it
guarantees the stability and the passivity of the obtained
reduced circuit with good result accuracy. Besides, as
this approach handles model order reduction on multi-
input-multi-output structures, its application to
macromodeling of general electrical interconnects and
packages will be easy and immediate.

II. PEEC MODEL

The PEEC method allows the electromagnetic analysis
of all structures composed by finite size dielectric and
conductor regions. It transforms the structure under
examination into a passive RLC equivalent circuit. In
this section, we briefly give an overview of the method
and of the MNA formulation of the equivalent circuit
with the ports connected.
In the absence of an applied external field, the Electric
Field Integral Equation (EFIE) holds in a volume 'V ,
with 'S  representing the external surface and the
interfaces between different material regions. By
subdividing the volume 'V  and the surface 'S  into
elementary cells, as shown in Figure 1, and by
substituting the unknowns (the current and the charge



Figure 1: Elementary volume and surface cells

density) with their average values on the respective
cells, we come up with equation (1) below describing
the equivalent circuit of a volume cell in the generic �
direction. �Nv  denotes the number of volume cells in
the �  direction, Ns  is the total number of surface cells,

ia  is the cross-section of the i-th cell and j it  is the
time-of-flight between the center points of the i-th and
the j-th cell. The first term of equation (1) describes the
electromagnetic behaviour of the cell (conductor or
dielectric); the second one takes into account the
coupling  with  the  other  volume  cells  and the last one

expresses the potential difference between the cell
nodes.
By replacing the �-component of the total electric field
with its well-known expression for conductor or
dielectric cells, we can interpret the equation as an
equivalent circuit in terms of resistances, inductances,
capacitances and controlled generators [6], getting the
partial models shown in Figure 2.

iR
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, iiL
�

, iC �

�  and iC
�

 are the resistance, the
inductance and the excess capacitance of a volume cell
and the pseudocapacitance of a surface cell,
respectively; inM

�
 and inp

�
 denote the mutual

inductance between volume cells and the coefficient of
potential between surface cells.
The development of the overall PEEC circuit is
performed by properly connecting the partial models of
the elementary cells, i.e. by enforcing the Kirchoff’s
current law at each electric node of the resulting PEEC
circuit. This means that we comply with the discrete
version of the conservation of charge equation for the
examined structure.
As the partial elements method produces non-sparse
matrices of large dimensions, the solution of the
problem, necessarily based on matrix inversion, is very
expensive in terms of computational efforts. Therefore,
an efficient and accurate MOR technique becomes
necessary to perform real-world structure analysis in a
reasonable run time.
In order to prepare the formulation for the MOR
algorithm, we need to connect voltage sources to the
examined structure ports and assemble the mathematical
model by using the MNA approach for the equivalent
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Figure 2: PEEC models for volume and surface cells



circuit [7], i.e.
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where z  is the vector of the MNA variables, i.e. the
unknown node voltages and the branch currents for
voltage sources and inductors. The vectors pv  and pi
denote respectively the voltages and currents at the
N ports of the structure and the matrices C , G  and B
of dimension nn �  describe the circuit topology. The
independence of these matrices from the time variable
indicates that retardation, i.e. time-of-flight between
cells, has been neglected and the assumed model is the
lumped circuit known in literature as � �R,P,Lp  PEEC.

III. MODEL ORDER REDUCTION ALGORITHM

From the variety of approaches for reducing the PEEC
network order, we select the PRIMA method [5],
because of its robustness and its ability to preserve the
stability and the passivity of the circuit. Such technique
is a Krylov-space order reduction method that performs
MOR on multi-input-multi-output structures and that
overcomes the ill-conditioning associated with the direct
Padé approximation.
The algorithm is based on the construction of a matrix
X  whose columns constitute an orthonormal basis for
the corresponding Krylov subspace [5], i.e.
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The matrix X  has q  columns, where q  is the order of
reduction, while the number of rows matches the size of
the original MNA system; N  is the number of ports.
Through the matrix X , which defines a change of
variable )  ( zz ~

�  in the MNA system, the corresponding
congruence transformation of the model is computed
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To the reduced order circuit, defined through its MNA
formulation,
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we can connect electrical, linear or non-linear, model of
drivers and receivers and perform its simulation in a
reasonable run time, since the system dimension is
reduced to nq �� .
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Figure 3: Two parallel stacked traces

On the other hand, we can extract a macromodel of the
structure by representing the N-port by its reduced order
admittance matrix � �s ~Y

� � � � BCGBY
1T ~ ~ s ~ ~  s ~ �

��                                   (6)

or its reduced scattering parameters � �s ~S
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provided that the proper matrix of reference admittances

0Y  is defined.

IV. COMPUTATIONAL RESULTS

The proposed method, based on PEEC methodology and
PRIMA algorithm, is tested on two simple structures for
which an analytical solution exists. The first example
considers the electromagnetic behaviour of two parallel
stacked traces placed in air, by analyzing the scattering
parameters of the structure. The second one studies the
crosstalk between two microstrip traces: in the time
domain for no dielectric substrate, and in the frequency
domain for a relative dielectric constant of 4.7.

IV.1 Two Parallel Stacked Traces

The geometrical characteristics of the examined
interconnection are shown in Figure 3: the traces are
100-mm long, 1-mm wide and 0.2-mm thick, while their
distance is 1 mm. The S  matrix is computed with
respect to reference resistances of 50 Ω.
To validate our results, we first calculate the analytical
expression of the scattering parameters using the
Telegrapher’s equations and the characteristic
impedance value computed according to the
conventional equations [8]. In parallel, we perform the
simulation of the original PEEC circuit using Spice. We
next apply the PRIMA algorithm to the MNA
formulation to generate the simplified equivalent circuit
and we evaluate the reduced scattering matrix through
the equation (7) above.
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Figure 4: Scattering parameters of two parallel stacked traces, evaluated by Telegrapher’s equations (dotted line), by
original PEEC circuit (solid line) and by reduced order PEEC model (dash-dotted line)
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Figure 5: Effect of the reduced order q on the amplitude of the scattering parameters: original PEEC circuit (solid
line), q = 8 (dashed line), q = 16 (dash-dotted line) and q = 24 (dotted line)

As we discretize each trace with 21 nodes, generating 20
volume cells and 21 surface cells, and the structure has 2
ports, the original MNA system has size 84. The order
of the performed reduced system is instead 16.
Figure 4 shows the obtained results and validates our
PEEC original model: neglecting the time-of-flight
between the cells causes, beyond 5 GHz, the mismatches
of amplitude and of resonance frequencies in
comparison to the Telegrapher’s equations solution.

These differences obviously increase as frequency
increases. Besides, the scattering parameters evaluated
via the original non-reduced PEEC circuit and via the
reduced order model agree very well in the low
frequency range, because the implemented PRIMA
algorithm guarantees the transfer function moment
matching in the origin of the Laplace domain. In
particular, having the structure two ports, an order
reduction with 16�q  guarantees the matching of the



w ws

d

t

t
h

L

L = 80 mm d = 51 mm
w = 4 mm s = 3 mm
h = 3 mm t = 50 �m

Figure 6: Microstrip structure
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Figure 7: Active line excitation

0 5 10 15 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time  [ns]

V
ol

ta
ge

  [
V

]

0 5 10 15 20
-15

-10

-5

0

5

10

15

Time  [ns]

V
ol

ta
ge

  [
m

V
]

Figure 8: Voltage waveform on active line input termination and on victim line far end evaluated by transmission
line model (dotted line), by original PEEC circuit (solid line) and by reduced order PEEC model (dash-dotted line)

first eight moments.
Increasing the order q  of reduction allows extending
the frequency range of validity for the simplified model,
as shown in Figure 5: with 24�q  PRIMA captures
almost the entire spectrum. Establishing a priori a
relationship between q  and the maximum frequency is
not easy, since it depends on the location of original
PEEC poles, whose computation we want to avoid,
being prohibitive in terms of memory requirements. In
fact, after having captured the dominant poles in the low
frequency range, extending the frequency spectrum of
validity requires a remarkable increment of the order
reduction: the PEEC discretization generates a large
quantity of poles in a limited frequency range and
PRIMA tends to capture redundant poles [9]. In order to
overcome this issue, a block order reduction algorithm
should be applied.

IV.2 Microstrip Structure

The second example firstly studies the crosstalk voltage
waveforms between two microstrip traces with no
dielectric substrate, whose geometric characteristics are
reported in Figure 6. Obviously, only one line is excited
by an 8 ns quasi-square pulse with 2 ns rise and fall time

(see Figure 7), whereas the other one is the coupling
victim. All terminations are loaded by a 50 Ω
impedance.
We construct the PEEC model, which is of dimension
263, as expressed by equation (2) and, by applying
PRIMA algorithm, we generate the simplified equivalent
circuit of order 16�q , according to equation (5). We
then compute the port voltages by solving the respective
ODE system. Results validation is obtained through a
transmission line model based on per-unit-length
parameter evaluation via the software LINPAR and on
circuit solution via Spice.
Figure 8 shows obtained voltage waveform on active
line input termination and on victim line far end: results
agree very well. And it is important to note that the
solutions of original PEEC circuit and of reduced order
model are performed, by means of a computer with 512
MB RAM and 1.8 GHz clock, in 577 seconds and in
3.125 seconds of CPU time, respectively, with a speed-
up of 185.
We then add to the examined structure a substrate of
relative dielectric constant 4.7, between the plane and
the traces, and we analyze the crosstalk coefficients in
the frequency domain. We follow the same approach as
above, unless that the excitation is provided by an ideal
pulse and we compute the port voltages by matrix
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Figure 9: Amplitude and phase of the far end crosstalk coefficient evaluated by transmission line model (dotted line),
by original PEEC circuit (solid line) and by reduced order PEEC model (dash-dotted line).

inversion, as suggested by equation (6), instead of
solving the ODE systems.
The original PEEC circuit and the reduced order model
are respectively of dimension 2126 and 150 and their
solutions at each frequency value are performed in 209
seconds and in 72 ms of CPU time, respectively, with a
speed-up of 2900. As shown in Figure 9, a transmission
line model validates the obtained results.

V. CONCLUSION

PEEC method, in conjunction with the PRIMA
algorithm, has been used to study the electromagnetic
behaviour of two parallel stacked traces placed in air.
The amplitude of the scattering parameters obtained
before and after the model reduction has been compared
to that calculated via the analytical expression extracted
by the Telegrapher’s equations.
Analyzing both in the time domain and in the frequency
domain the crosstalk voltages between two microstrip
traces has further tested the proposed method. It has also
shown the possibility to perform simulations of the
equivalent circuit in a much reasonable time, without
losing accuracy in a limited frequency range close to the
expansion point.
Future works will analyze more complex and real-world
structures and will investigate the possibility of reducing
the PEEC model at expansion points different from the
origin of the Laplace domain. We could then combine
portions of each reduced circuit to obtain a lower-order
macromodel approximating the original system over a
larger frequency range.
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