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Abstract

This paper presents a mathematical model of normal and abnormal tissue growth. The modelling focuses
on the potential role that stress responsiveness may play in causing proliferative disorders which are at the
basis of the development of avascular tumours. In particular, we study how an incorrect sensing of its
compression state by a cell population can represent a clonal advantage and can generate hyperplasia and
tumour growth with well known characteristics such as compression of the tissue, structural changes in the
extracellular matrix, change in the percentage of cell type (normal or abnormal), extracellular matrix and
extracellular liquid. A spatially independent description of the phenomenon is given initially by a system
of nonlinear ordinary differential equations which is explicitly solved in some cases of biological interest
showing a first phase in which some abnormal cells simply replace the normal ones, a second phase in which
the hyper-proliferation of the abnormal cells causes a progressive compression within the tissue itself, and a
third phase in which the tissue reaches a compressed state, which presses on the surrounding environment.
A travelling wave analysis is also performed which gives an estimate of the velocity of the growing mass.

1 Introduction

Over the last few years there has been a lot of attention paid to modelling avascular tumour growth and tumour
invasion of host tissue, as can be seen from the books [1, 90], the special issues [9, 12, 29, 30] specifically devoted
to these topics, and the references therein. Most of the modelling carried out in these papers starts from the
observation that tumour cells become insensitive to anti-growth signals and evade apoptosis. Having lost their
internal programme-for-cell-death, they acquire a limitless replicative potential, grow rapidly and invade the
surrounding tissue (see [9, 13] and [31] for recent reviews). Attention is then focussed on how the nutrient
(e.g., oxygen) diffusing through the tumour boundary affects the growth of the tumour, with the formation
of a necrotic core, of an intermediate layer of quiescent cells and an outer rim of proliferating cells. Most
mathematical models are characterised by the existence of a limiting radius, as is well-known from experiments
[46, 103].

In this paper we start from a different point of view and examine certain important biomechanical factors.
Specifically, we focus on the role of how a cell senses the presence of other cells and its own compression state,
how this affects its proliferative ability and how an imperfect perception may cause hyperplasia, which here is
considered as an early event of tumorigenesis. Thus for the purposes of our model, we neglect the effects of
external nutrients and other chemical/growth factors and choose to focus solely on biomechanical effects.

As will be discussed in the following section which will focus on the description of the experimental evidences,
several papers have studied the effect of stress on the process of mitosis and apoptosis of tumour cells. In order
to deal with growing biological tissues, recently the concepts of multiple natural configuration and of accretive
forces have been introduced to model tissues as continua which continuously remodel while undergoing large
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deformations [3, 4, 5, 43, 48, 61, 94]. In fact, the simultaneous presence of growth and deformation make it
impossible to use standard continuum mechanics. This approach was used by Ambrosi and Mollica [6] to model
the growth in vitro of a multicellular spheroid in gels of variable stiffness obtaining results in good qualitative
agreement with the experiment by Helmlinger et al. [57].

On the other hand, to take into account the different constituents present in a tumour, the use of the theory
of mixtures was proposed in [23]. This approach also enables the stresses within the tumour to be evaluated.
The link between the model proposed here and the one in [23] consists in the inclusion of the dependence of the
cell proliferation rate on the cellular stress. Many other applications of multiphase models have been proposed
in [7, 17, 18, 19, 22, 45, 91], some of them also including the effect of the mechanical interactions with the
sorrounding tissues.

The main aim of this paper is to show how an underestimation of the compression state of the local tissue
and then of the subsequent stress which is exerted on a cell, can generate by itself a clonal advantage on the
surrounding cells leading to the replacement and the invasion of the healthy tissue.

In addition to biomechanical effects, the model also takes into account the effect of the production of
extracellular matrix (ECM) and of matrix degrading enzymes (MDEs). In fact, cells produce extracellular
matrix which is important for cell adhesion, spreading and motility. Therefore, on the one hand the extracellular
matrix may constitute a barrier to normal cell movement, and on the other hand it provides a substratum cells
may use to adhere and move. Most mammalian cell types require at least some elements of the extracellular
matrix to be present for growth and survival and will indeed migrate up a gradient of bound (i.e. non-diffusible)
cell adhesion molecules in culture in vitro [24, 68, 69, 71, 80, 93].

On the other hand, matrix degrading enzymes are also important at many stages of tumour growth, invasion
and metastasis, and the manner in which they interact with inhibitors, growth factors and tumour cells is very
complex. However, it is well known that tumour cells produce matrix degrading enzymes which degrade the
extracellular matrix.

In summary, we start from the assumption that when cells are in a crowded environment they sense the
presence of other cells and their behaviour then crucially depends on how they can stand the pressure. We
then focus on how this can affect both mitosis and production of extracellular matrix and matrix degrading
enzymes. We start from the following phenomenological observations which are described with further detail in
the following section:

• Cells replicate if they sense there is sufficient space to accomplish this. If, on the other hand, they sense
that there is a sufficient number of cells around them, they can alter their activity and enter a quiescent
state ready to re-activate their replication programme if, for instance, a neighbouring cell dies;

• Cells constantly produce ECM and matrix degrading enzymes;

• Cells move preferentially toward regions with lower stress.

Of course, we are well aware that cellular mechanotrasduction is not the only cause of formation of hyper-
plasia and tumours and that chemical factors will operate to regulate the reproduction rates. However, in this
paper we want to focus specifically on the role of cell contact and compression. In fact, we assume that the
only thing that changes a normal cell into an abnormal (transformed) cell is how it senses and responds to the
stress exerted on it. If a cell does not sense stress correctly, it continues to replicate even when there are already
other cells around it and insufficient space for the daughter cells. This gives rise to hyperplasia and tumours in
the local tissue. In this paper then the stress and therefore its influence on the evolution of the cell population
occurs through three contributions: cell replication, the production of extracellular matrix and the release of
matrix degrading enzymes.

The paper is laid out as follows. The following section is devoted to a detailed description of the biological
aspects covered by the model deduced in Section 3. We then study in Section 4 the properties of the model
starting from the simplest version and then including more complicated effects along the way, giving analytic
solutions and qualitative behaviours whenever possible. More precisely, Section 4.1 describes how the model is
able to describe the generation of confluent distributions in vitro in view of the identification of some parameters.
Section 4.2 focuses on the re-construction of a normal healthy tissue with matrix degrading enzymes controlling
the content of extracellular matrix and allowing a continuous renewal of extracellular matrix. Section 4.3
describes how the occurrence of a genetic change in a cell causing only an inadequate sensing of stress which
affects only cell replication, can lead to the complete replacement of the healthy tissue and to an overcompression
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Figure 1: Growth of human breast epithelial cells. The squares refer to the experimental results by Tsukatani
et al. [107], the lines to the simulation obtained using the model (14) solved by (15) for the duplication time
given there (22.3 days) and for different values of σ. From above to below σ = 0.01, 0.1, 0.2.

of the tissue. In particular, the normal extracellular matrix is completely replaced by the tumour-generated
matrix. Section 4.4 describes what happens in the case of a hyper-production or hypo-production of extracellular
matrix or matrix degrading enzymes by tumour cells. This incorrect balance is, for instance, characteristic of
fibrosis. Finally, Section 5 considers the spatially-dependent situation showing how the phenomena described
from an analytical point of view in Section 4 manifest themselves in a spatial domain where however the
overcompression of hyperplasia with respect to the healthy tissue causes the progressive invasion of the tissue.
A qualitative description of the travelling wave solution is also given. The velocity of invasion grows with the
level of incorrect sensing of stress, in particular it is proportional to the square root of the difference of the
volume ratio at which abnormal and normal cells stop duplicating.

2 Phenomenological Description

It is well known that the rate of proliferation of most cells decreases when they come in contact. This phe-
nomenon is often called contact inhibition of growth [42, 44, 65, 81, 88, 99]. A quantification of this phenomenon
is represented in Fig. 1 that reports some experimental results by Tsukatani et al. [107] on human breast ep-
ithelial cells grown in vitro over a suitable substratum. It can be seen that after an initial exponential growth
cell density saturates.

Several experimental papers describe how the starters of the phenomenon are the cadherins, the transmem-
brane receptors involved in homophilic cell-cell interactions, because of their crucial role in cell-cell adhesion and
in mechanotrasduction. It seems that the link between overexpression of cadherins and growth inhibition is a
characteristic shared by all types of cadherins. For instance, there are results regarding N-cadherins in Chinese
Hampster Ovary [73], in vascular smooth muscle cells [110], and in epithelial cells of the inner ear [112], E-
cadherins in human breast epithelial cells [99, 107], and in epithelial and fibroblastoid cells [101], VE-cadherins
in vascular endothelial cells [27, 81], T-cadherins in neuronal cells [105].

The direct involvement of cadherins was checked in several ways. For instance, Warchol [112] found that the
interaction of cells with synthetic beads coated with N-cadherin ligands spread over the substratum on which
the cells live leads to growth arrest at the G1 phase of the cell-cycle. Similarly, Caveda et al. [27] found that
coating the underlying substratum with the extracellular domain of recombinant VE-cadherin suppresses cell
proliferation.

In addition to confirming that the expression of exogenous E-cadherin arrests cell growth Stockinger et al.
[101] also found that a prolonged expression of E-cadherin may cause apoptosis.
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Figure 2: Sketch of the protein cascade involved in contact inhibition of growth. cdk stands for cyclin-dependent
kinase, pRB for hypophosphorilated retinoblastoma, and the added p’s indicate its phosphorilation. Partly
modified from [44]. The usual arrow indicates a stimulatory action, while the other arrow indicates an inhibitory
action. The curly bracket indicates that p27 binds to the cdk2/cyclin complex.

Conversely, Castilla et al. [25] found that the disruption of the intercellular cadherin junctions triggers the
production of growth factors which contribute to induce proliferation.

By this mechanism the loss of contact responsiveness can lead to deregulated growth, a phenomenon which is
commonly associated with the formation of hyperplasia and malignant transformation such as gastric carcinoma
[11, 83], adenocarcinoma [108], epithelial tumours [26, 36], colon polyps and carcinoma [52], gynecological
cancers [95], intimal thickening [109] (see also the review by Hajra and Fearon [56]). Actually, Cavallaro et
al. [26] considered this misperception of the presence of neighbouring cells as a fundamental milestone in the
development of tumours naming it “cadherin switch” in analogy with the “angiogenic switch” leading to the
vascularization of tumours.

However, cadherins represent the visible side of the process because of their transmembrane location. In
fact, there are many other actors on the backstage that can be involved in the incorrect mechano-transduction,
first of all catenins, the proteins cadherin link to for a functional cell adhesion. The cadherin-catenin relation is
well described by George and Dwivedi [51]. For instance, Stockinger et al. [101] found that when epithelial cells
are grown in vitro at low densities (≤ 40% confluency), they exhibited an increased β-catenin activity, which
was five- to sevenfold reduced when cells reached a confluency > 80%. Then in physiological conditions upon
reaching confluency the expressed cadherins sequester catenins downregulating their activity, so that as a final
result cell adhesion negatively affects cell proliferation.

Conversely, upregulation of catenins is known to induce cell proliferation by a cascade of events which will
be explained in the following and is sketched in Fig. 2. In order to test the association with catenins Caveda et
al. [33] transfected Chinese Hampster Ovary cells with a cytoplasmic truncated mutant of VE-cadherin. They
found that the deletion of the cytoplasmic tail does not affect the adhesive properties of VE-cadherin. However,
it abolishes its growth inhibitory activity.

In more detail, as explained in Dietrick et al. [44], the mechanism of contact inhibition of growth seems
to be the following: the underexpression of catenins, which can be due to cell contact and overexpression of
cadherins, determines the accumulation of the cyclin-dependent kinase (cdk) inhibitors p16, p21, and p27. Their
overexpression inhibits the entry in the S phase causing cell cycle arrest in the G1 phase [38, 65, 88]. The increase
of cellular levels of the cdk inhibitor p27 was for instance observed in epithelial cells growing to confluence by
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Polyak et al. [88] and in fibroblasts by Hengst et al. [58] and Winston et al. [113]. The accumulation is partly
due to a translational upregulation, partly due to increased half-life of p27 in response to decreased degradation
by the ubiquitin-proteasome pathway [59]. In more detail, referring to Fig. 2, p16 blocks the activity of cdk4
by dissociating cyclin D from cdk4 and binding to cdk4. On the other hand, p27 inhibits cdk2-cyclin E directly
by binding to the complex (see also [89] who also study the influence of transforming growth factor-β in the
process).

Conversely, still referring to Fig. 2, upregulation of catenins leads to the expression of cyclin dependent
kinase and then to DNA replication and mitosis.

As a further confirmation of the above cascade of events Dietrick et al. [44] found that in contact inhibited
cells the relative levels of hypophosphorilated retinoblastoma (pRB) increase.

It seems that catenin is an important crossing of several cascades leading to contact inhibition of growth.
For instance, it has been recently found that α and β-catenins bind to the tumour suppressor gene product
adenomatous polyposis coli (APC) and APC mutations in the region responsible for binding to catenins are
associated with the developement of hyperplasia, which, as already mentioned, is an early event in tumorigenesis
[97, 102].

Barker and Clevers [10] describe how the growth suppressive-effect of E-cadherin requires the presence of
its cytoplasmic β-catenin interaction domain, how catenin overexpression is related to Wnt signalling, and how
catenin transcriptional activity is implicated in inducing hyper-proliferation in various tumours. In fact, it
was found that increased β-catenin transcriptional activity upon overexpression of stable activated β-catenin
in the intestine [55] or of truncated β-catenin in the skin [49] of transgenic mice leads to the development
of intestinal polyp and hair tumours, respectively. β-catenin mutations have been detected in many other
tumours, suggesting that a decreased cadherin/catenin association contributes to neoplastic formation [56]. In
this paper, without being specific, we work under the assumption that something goes wrong in the cascade
of events mentioned above generating an imperfect mechano-transduction relative to the compressed state of a
cell and therefore an abnormal duplication of cells.

Another issue to keep in mind in developing a macroscopic model of growing tissues is that they are not in a
stress-free configuration (see [37, 47, 98, 104]). Actually, it seems that cells prefer to feel a moderate amount of
stress (see [96] and references therein). A residual stress is in fact present in many cases and may be related to
differential growth [3, 6, 61]. For this reason in the model to follow we will include the possibility of duplication
at moderate levels of compression.

The other main component considered in this paper is the extracellular matrix (ECM) which is composed
by many constituents produced by a variety of stromal cells, mainly fibroblasts. In this paper we do not
distinguish among the different types of cells in the tissue, but only distinguish between normal and abnormal
cell populations and stroma. In this sense, we will generally say that the cell population produces ECM.

The percentage of cells and ECM changes considerably from tissue to tissue. For instance, the skeletal
muscle collagen volume fraction is 14%, that for corneal stroma is 29% and that for subcutaneous tissue is 21%
[74]. Tendons consists of 55-70% of water and a substantial part of this is associated with proteoglycans in the
ECM. Of the tendon dry weight, 66-85% is collagen [67].

Regarding the rate of production, in vitro endogenous proteins such as fibronectin and von Willebrand factor
are released by endothelial cells so that a complex matrix is organised within a few hours after seeding [33, 41].

The ECM is then continuously renewed and remodelled through both the production of matrix metallo-
proteinases (MMP) and the synthesis of new ECM components. In stationary physiological conditions the
remodelling of ECM is much slower than when a new tissue has to be produced. For instance, in the human
lung the physiological turnover of total ECM is 10-15% per day [63], which means that a complete turnover
occurs in nearly a week. Our understanding is that upon reaching confluency the cells slow down the production
of ECM components.

It is however well known that the remodelling process is strongly affected by the stresses and strains the
tissue is subject to. This is classically known for bones and teeth [77] and muscles [66, 67] and is physiologically
functional because it allows to keep the stroma young and reactive. In fact, prolonged rest or space flight are
detrimental for bones and muscles, while exercise and physical training have an opposite effect. It is common
knowledge that traction is applied to heal fractures or to govern the growth of mandibular bones in children.
More specifically, in bones mechanical strain induces MMP-13 expression through MEK-ERK signalling pathway
[115].

Experiments to quantify the production of ECM mainly under cyclic stretch conditions have been performed
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by several authors (see, for instance, [16, 34, 39, 66, 72, 115]). Increased production of ECM, growth factor
production and collagenase activity was also generated by mechanically stimulating cardiac fibroblasts [76].

Several authors studied the differences between the chemical and morphological characteristics of the ECM
of normal tissues and that of tumours. For instance, Takeuchi et al. [106] found that breast tumours presented a
denser and more fibrous stroma, with variation in the content of hyaluronic acid, glycosaminoglycans, condroitin
sulfate and dermatan sulfate among other components (see also [2, 78, 111]). Variations in the contents of type I
collagen [70], fibronectin and laminin [21, 35] were also observed. Christensen [35] also argued that the variations
above can be due to increased production by the tumour cells.

Increased expression of fibronectin not balanced by increased collagenase activity was also observed in other
occasions like cardiac hyperthrophy, cardiac fibrosis, liver fibrosis, pulmonary fibrosis, asthma, glomerulonephri-
tis, colon cancer [20, 63, 76, 92]. In intima hyperplasia, both the amount of cells and of ECM increase [82].
Johnson [63] argued that the alteration in the ECM components can be due to several probably concurring
reasons: increased de novo synthesis of ECM proteins, decreased activity of its degrading enzyme (MMP), and
upregulation of the tissue-specific inhibitors of metalloproteinases (TIMP).

On the other hand, excessive degradation of ECM due to excessive production of MMP-13 characterizes
chronic inflammatory diseases such as osteoarthritic cartilage, rheumatoid synovium, chronic ulcer, intestinal
ulcerations, periodontitis, and many malignant tumours [115].

The composition of ECM also changes with tumour progression and is so important in determining cell
growth, differentiation and movement that Liotta and Kohn [75] mention the possibility of finding a “stromal
therapy as a new strategy” against cancer. Referring to the changes of ECM content with tumour progression,
for instance, Zhang et al. [116] showed that the content of collagen fibers increased with prostate cancer grade
ranging from nearly 7% to 26% of the area analysed.

3 The Mathematical Model

In constructing the model we refer to the volume ratio related to both normal and abnormal cells and extracel-
lular matrix, i.e. the fraction of volume occupied by the single constituents. We will use the term “abnormal
cells” to denote in general those cells which respond in a physiologically different way to compression and might
give rise to a tumour at some later stage in their evolution. Abnormal extracellular matrix will be that produced
by such abnormal cells.

To be more precise

• n is the volume ratio occupied by normal cells;

• a is the volume ratio occupied by tumour cells;

• mn is the volume ratio occupied by host extracellular matrix (ECM).

• ma is the volume ratio occupied by extracellular matrix produced by tumour cells, which is known to be
structurally and chemically different from that produced by normal cells [2, 70, 78, 106, 111].

These state variables are then already dimensionless and are in the range [0, 1]. Considering that, as explained
in the previous section, their values strongly depend on the tissue considered, throughout the paper we will
work with a virtual tissue made of 50% of cells, 20% of ECM and 30% of extracellular liquid, which means that
n ≈ 0.5 and mn ≈ 0.2.

In addition to the volume ratios above, another fundamental state variable is

• c, the concentration of matrix degrading enzymes (MDEs), e.g. the plasminogen activators or matrix
metalloproteinases.

On the contrary of cells and ECM, MDEs are considered as macromolecules which diffuse in the extracellular
liquid without occupying space.

In the following an important role will be played by the overall volume ratio occupied by cells and extracellular
matrix

ψ = n+ a+mn +ma . (1)
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and by its relation with the stress. In using (1) it is assumed for simplicity that all cells and matrix constituents
of any origin contribute equally to the sensing of stress by the cells. A discussion of this hypothesis is given in
[40] where alternatives are also proposed.

Several forms of stress-volume ratio relations can be taken into account [7, 23]. The simplest features char-
acterizing stress are that it vanishes below a value ψ0, which we denote stress-free volume ratio and corresponds
to the confluent volume ratio, is increasing for ψ > ψ0 and tends to infinity at ψ = 1, e.g.

Σ(ψ) = E(1− ψ0)

(
ψ − ψ0

1− ψ

)

+

, (2)

where f
+

is the positive part of f and E is the value of the derivative in ψ = ψ0, a sort of Young modulus for
moderate compressions. However, since usually ψ ≈ ψ0, then one can also approximate Eq.(2) with Σ(ψ) =
E(ψ − ψ0)+. We explicitly mention that the constitutive relation (2) is not able to describe the response to
tensile stresses and adhesion-like behaviours.

The mass balance equations for the two types of cells in our model then write as

∂n

∂t
+∇ · (nvn) = Γnn− δnn ,

∂a

∂t
+∇ · (ava) = Γaa− δaa .

(3)

where we will consider the death coefficient to be constant, though apoptosis may be influenced by the stress
level [57].

Referring to the phenomenological discussion presented in the previous section, we assume that cells replicate
if they feel there is sufficient space to do this, that is if they can sense a sustainable level of compression (ψ 6 ψn),
or equivalently stress (Σ 6 Σn with Σn = Σ(ψn)). Our assumption is that the threshold value ψn is nearly equal
to the stress-free value ψ0 for normal cells and slightly larger for abnormal ones (ψa > ψn). Actually, growth
might even be independent of ψ (or equivalently ψa ≥ 1), meaning that the cells are completely insensitive to
mechanical cues and continue replicating independently of the compression level.

To describe what stated above, we choose the simplest possible switch mechanism depending on compression
for the growth coefficient

Γn(ψ) = γnHσ(ψ − ψn) ,

Γa(ψ) = γaHσ(ψ − ψa) ,

(4)

where Hσ is a monotonic mollifier of the step function with the properties that it is a continuous function with
Hσ(φ) = 1 if φ 6 0 and Hσ(φ) = 0 if φ > σ. In particular, we will choose

Hσ(φ) =





1 if φ ≤ 0;
0 if φ > σ;

1− φ
σ otherwise;

(5)

We explicitly notice that for ψn > ψ0, Hσ can be equivalently defined as a switch mechanism based on the stress
level. In fact, in the following we will often make use of the correspondence between compression and stress.

Of course, the growth term depends on other quantities, e.g. the amount of nutrient and growth factors. In
this paper, however, we want to focus on the possible role of compression and stress on tumour invasion and
therefore assume that all nutrients are abundantly supplied and neglect the effect of growth factors. In doing
this we tacitly assume that all the constituents necessary for the cell to grow and undergo mitosis can be found
in the extracellular liquid that is a passive constituent in the global mass balance equation. Actually, in the
following examples we will consider the case in which γn = γa meaning that the reproduction rate is the same
and only the stress perception is different ψn < ψa. For the same reason we will not consider other mechanisms
such as the reduced viability of normal tissue in a low pH-environment [50].
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Regarding the motion of normal cells, observing that they move in the intricate network formed by the
extracellular matrix (see the supplementar material for [114]), we model the ensemble of cells as a granular
material in a porous medium. Therefore, following [7, 91], we can write the momentum equation for the cells

ρn

(
∂vn
∂t

+ vn · ∇vn

)
= ∇ ·Tn + mn , (6)

which neglecting inertia and introducing the usual porous media assumptions on the stress tensor Tn and on
the interaction force mn leads to

vn = −K∇Σ(ψ) , (7)

where K is related to the permeability of the medium.
In addition, we explicitly mention that in many of the cases that we will deal with in the following sections,

the exact form of the stress-volume ratio relation is of minor importance.
The coefficient K is not only related to the pure permeability of the porous medium but also to the ability

of cells to move through the ECM network. It will in fact depend on the amount of ECM for two main reasons:
space occupation and presence of adhesion sites. Actually, increased motility is observed for regions with higher
concentration of ECM. However, it decreases again for large values of ECM concentration because of the increase
of adhesive sites (see [60, 85, 87]).

The closure (7), phenomenologically introduced in [15, 53], has the effect to push cells away from the over-
crowded region where they feel pressed, until they reach, if possible, a stress-free configuration. In mathematical
terms this means that the motion is down the stress gradient, or the overall density gradient.

In the following we will assume that normal and abnormal cells behave in the same way under compression,
i.e.

v ≡ va = vn = −KΣ′(ψ)∇ψ , (8)

so that Eq.(3) rewrites as

∂n

∂t
= ∇ · [nKΣ′(ψ)∇ψ] + [γnHσ(ψ − ψn)− δn]n ,

∂a

∂t
= ∇ · [aKΣ′(ψ)∇ψ] + [γaHσ(ψ − ψa)− δa]a .

(9)

Coming to the extracellular matrix, as has already been mentioned, this is a intricate network of fibrous
material made of many macromolecules, including fibronectin, laminin and collagen, which can be degraded
by MDEs [28, 79, 86, 100]. Active MDEs are produced (or activated) by the cells, diffuse throughout the
tissue and undergo some form of decay, either passive or active. The equation governing the evolution of MDE
concentration is therefore given by

∂c

∂t
= κ∇2c+ P (n, a, c,Σ)−D(c,m)c . (10)

The functions P and D model the production of active MDEs by normal and abnormal cells and their decay,
respectively. We will take D = 1/τ to be a constant (other functional forms for D have also been investigated,
see [8] for details) and P to be of the following form

P = πn(Σ)n+ πa(Σ)a . (11)

In the following we will consider in more detail the case in which πn and πa are constant.
Upon contact, MDEs degrade the extracellular matrix produced by the cells in a stress-dependent way.

Hence the degradation process can be modelled by the following simple equations

∂mn

∂t
= µn(Σ)n− νcmn ,

∂ma

∂t
= µa(Σ)a− νcma ,

(12)
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where ν is a positive constant and µn and µa depend on whether the cells are in a confluent situation or not,
or on the fact that the tissue is subject to strain. In most of the simulations to follow we will take them as
constant. The study of the case in which πi and µi (i = n, a) depend on the level of stress, which as already
mentioned is of great interest in tissue remodelling, is left as a future development when more quantitative
experimental data on these dependences are available.

In (12) we distinguish the production of ECM by normal and abnormal cells, because as explained in the
previous section, they are morphologically and chemically different. In addition, the production rates can be
different, while it is known that the degradation by MDEs does not distinguish between the two types of ECM.

Summarizing, the complete system of equations is





∂n

∂t
=

response to compression︷ ︸︸ ︷
∇ · [nKΣ′(ψ)∇ψ] +

growth︷ ︸︸ ︷
γnHσ(ψ − ψn)n−

apoptosis︷︸︸︷
δnn ,

∂a

∂t
=

response to compression︷ ︸︸ ︷
∇ · [aKΣ′(ψ)∇ψ] +

growth︷ ︸︸ ︷
γaHσ(ψ − ψa)a−

apoptosis︷︸︸︷
δaa ,

∂mn

∂t
=

host production︷ ︸︸ ︷
µn(Σ(ψ))n −

degradation︷ ︸︸ ︷
νcmn ,

∂ma

∂t
=

tumour production︷ ︸︸ ︷
µa(Σ(ψ))a −

degradation︷ ︸︸ ︷
νcma ,

∂c

∂t
=

diffusion︷ ︸︸ ︷
κ∇2c +

host production︷ ︸︸ ︷
πn(Σ(ψ))n +

tumour production︷ ︸︸ ︷
πa(Σ(ψ))a −

decay︷︸︸︷
c

τ
.

(13)

where Hσ and Σ are defined by (2) and (5), respectively and we recall that ψ = n+a+mn+ma is the percentage
of volume not occupied by the extracellular liquid.

4 Qualitative Behaviour of Spatially Independent Solutions

Before proceeding with the numerical simulation of the full model, we consider some simple cases in order to
understand and describe the main features of the model presented above working in the spatially homogeneous
case. This allow to give the analytical form of some significant spatially independent solutions.

4.1 Generation of Confluent Distribution in Vitro

In order to compare the results of the models with some experiments in vitro as the one shown in Fig. 1 and
to identify some of the parameters of the model, we start with the easiest situation in which a few cells are
uniformly seeded on a suitable substratum in a Petri dish and, duplicating on the surface of the substratum,
grow to confluence with no production of extracellular matrix. This situation is modelled by

∂n

∂t
= [γnHσ(n− ψn)− δn]n , (14)

which for Hσ given by (5) can be easily solved by

n =





n0 exp[(γn − δn)t] for t ≤ t0;

ψn +
(

1− δn
γn

)
σ

1 +
(

1− δn
γn

)
σ
ψn

exp
[
−
(
γn − δn + γn

ψn
σ

)
(t− t0)

] for t > t0;

(15)
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Duplication Growth rate
Cell type time (hours) (days−1) Source
CHO 18–19 0.86–0.91 [73]
CHO 14–21 0.8–1.2 [27]
L929 10–12 1.4-1.6 [27]
Fibroblast 16.2 1.03 [101]
HBE 22.3 0.746 [107]
BPAEC 38–44 0.38–0.44 [81]

Table 1: Growth rates for different cell types. CHO stands for Chinese Hampster Ovary cells, HBE for Human
Breast Epithelial cells BPAEC for Bovin Pulmonary Artery Endothelial Cells.

where n0 < ψn is the initial volume ratio of cells and

t0 =
1

γn − δn
ln
ψn
σ

(16)

is when confluency starts. The solution will tend toward the volume ratio

n∞ = ψ̂n := ψn +

(
1− δn

γn

)
σ , (17)

which, even if ψn = ψ0, implies a small compression of the tissue Σ ≈ E(1 − δn
γn

)σ. In Fig. 1 we compare

the results of the experiments by Tsukatani et al. [107] and Eq.(15) for the doubling time T = 22.3 h (γn =
0.746 days−1) measured therein and for different values of σ assuming that the stationary cell density measured
there (N = 69000 cells over a 35 mm dish) correspond to ψn + σ = 0.7. In the experiments by Tsukatani et al.
[107] an unexplained decrease of cell population in the first day is measured. For this reason the cell density
measured 48 hours after seeding was taken as initial condition for Eq. (14) (N0 = 45000 cells over a 35 mm
dish, corresponding to n0 = 0.495). From the simulation it appears that σ ≈ 0.2. For sake of completeness in
Table 1 we report the growth rates measured for different cell types.

4.2 Generation of Normal Tissue

We consider now how the model describes the re-construction of a normal tissue starting from few cells n0 < ψn
constantly distributed in space. Possibly, in the same region there might be a small constant amount of
extracellular matrix, so that at least initially n+mn < ψn. In this case the system initially reduces to





∂n

∂t
= [γnHσ(n+mn − ψn)− δn]n ,

∂mn

∂t
= µnn− νcmn ,

∂c

∂t
= πnn−

c

τ
,

(18)

Denoting by ψ̂n ∈ [ψn, ψn + σ] the value such that Hσ(ψ̂n − ψn) = δn/γn (given by (17) if Hσ is given by
(5)), the steady state can easily be written down.

n = ψ̂n −Mn , mn = Mn , c = πnτ(ψ̂n −Mn) , (19)

where

Mn =
µn
νπnτ

. (20)

10



In particular, the ratio of cells to ECM is

η :=
n

mn
=
νπnτ

µn
ψ̂n − 1 , (21)

which is an easily measurable value (approximately η = 2). We observe that Mn has to be smaller than 1,
otherwise the production of ECM would never be balanced by degradation leading to the formation of a tissue
only made of ECM with no cells.

In order to explicit the analytical form of the solution, the discussion proposed in this and in the following
subsections holds in the limit σ → 0. In fact, for instance, in this case Eq.(18) can be solved in cascade.
However, for sake of simplicity, considering that MDE production and degradation is much faster than cell
duplication we only write here the solution obtained under the assumption that c(t) ≈ πnτn(t). In this case
the solution writes as

n = n0 exp[(γn − δn)t] , (22)

mn = Mn + (m0 −Mn) exp

[
νπnτn0

γn − δn

(
1− e(γn−δn)t

)]
, (23)

till mn(t) + n(t) reaches ψn. From this instant, which will be denoted by t̂ and can be determined through an
implicit relation, n(t) = ψn −mn(t) where mn(t) satisfies

∂mn

∂t
= µn

(
1− mn

Mn

)
(ψn −mn) , (24)

which is solved by

mn =
Mn + ψn

m̂n−Mn

ψn−m̂n exp
[
−µn

(
ψn
Mn
− 1
)

(t− t̂)
]

1 + m̂n−Mn

ψn−m̂n exp
[
−µn

(
ψn
Mn
− 1
)

(t− t̂)
] , (25)

where m̂n = ψn − n0 exp[(γn − δn)t̂] is the ECM volume ratio reached at t = t̂.
(Ricontrolla tutto questo)
Before proceeding with the simulation let us quantify, as far as possible, the parameters involved. From

the observation that in vitro cells organise an ECM within a few hours after seeding [33, 41] we infer that
µn ≈ 10 days−1. On the other hand, from the fact that 10-15% of the lung ECM is renewed every day [63] we
can evaluate µn ≈ 0.1 days−1. This suggests that the ECM production decreases while cells achieve a confluent
configuration. In most of the following simulations we will use a value near the lower bound because we usually
deal with ECM remodelling.

The other parameters directly measured are the diffusion coefficient of MDEs κ = 0.85× 10−6cm2/sec [14]
and the MDEs half life which of course depend on the specific enzyme and may span in the range 10−4− 0.13 h
[62, 84]. This means that the range of action ξ =

√
κτ of the various MDEs span from few microns, i.e. a

very local action, to few hundred of microns, which is one order of magnitude less than the typical size of an
avascular tumour in its steady state. However, to consider the entire chain of reactions we will take a value
near the upper limit for τ .

Since it seems that the usual concentration of MDEs is about 15000 molecules/µm2 [64] and the steady
value foreseen by the model is c∞ = πnτn∞, then we assume that πn ≈ 106 − 107 molecules/µm2 days. Since
we are working with an ideal tissue made of 20% ECM, then ν ≈ ×10−5 µm2/molecules days.

Finally, the apoptotic rate δn which has to be less than γn is assumed to be 0.1 days−1.
The corresponding values for abnormal tissue are slight modification of the values above.
The estimates above have been used in the simulation given in Fig. 3. The solution presents an overshooting

because of the fact that the volume ratios of ECM and cells do not reach the stationary value at the same
time. In fact, production rates are different. In particular, in Fig. 3a the production of ECM is quite slow,
because right from the beginning the ECM production rate is of the order of the value estimated at the steady
state. Instead, in Fig. 3b µn = 10(1 − ψ)4 days−1 is chosen as an example of decreasing production of ECM.
The difference with Fig. 3a consists in a larger production of ECM at earlier times which determines an initial
overproduction of ECM occupying up to twice the volume in the final configuration. The extra ECM is then
progressively degraded by the MDEs to reach the stationary value µ(ψ̂n)/νπnτ .
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Figure 3: Generation of a normal tissue in the case of a constant slow production of ECM (a) and of a density
dependent production approximating a fast production at early times and a slow stationary production at
confluency (b). The values of the parameters are γn = 0.746 days−1, δn = 0.1 days−1, πn/c0 = 400 days−1,
νc0 = 0.25 days−1, τ = 0.005 days, ψn = 0.6, σ = 0.1 where c0 is the reference concentration value 15000
molecules/µm2. In (a) µn = 0.1 days−1. From bottom to top, volume ratio of ECM, cells and overall volume
ratio and normalized MDE concentration. In (b) µn = 10(1− ψ)4 days−1 leading to a faster initial production
of ECM and a temporary hyperproduction of ECM.

Parameter Estimated value Source
δ 0.1 days−1 see text

µn 0.1− 10 days−1 [33, 41, 63]

ν 10−5 µm2

molecules days see text

πn 106 − 107 molecules
µm2 days see text

τ 1
6 sec - 0.13 h [62, 84]

κ 0.85× 10−6 cm2

sec [14]

Table 2: Parameter estimate.
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4.3 Development of Abnormal Tissue

Assume now that by a clonal differentiation some abnormal cells appear in the fully developed tissue. We first
assume that they appear constantly throughout the domain, so that we can take for the system





∂n

∂t
= [γnHσ(ψ − ψn)− δn]n ,

∂a

∂t
= [γaHσ(ψ − ψa)− δa]a ,

∂mn

∂t
= µnn− νcmn ,

∂ma

∂t
= µaa− νcma ,

∂c

∂t
= πnn+ πaa−

c

τ
,

(26)

a natural modification of the stationary solution (19)

n(t = 0, x) = ψn − a0 −Mn ,

a(t = 0, x) = a0 ,

mn(t = 0, x) = Mn ,

ma(t = 0, x) = 0 ,

c(t = 0, x) = πnτ(ψn −Mn) ,

(27)

as initial conditions where Mn is defined in (20).
We start by assuming that the rates of productions of ECM and MDEs are equal (µn = µa and πn = πa).

The equations for the ECM can then be added to give

∂m

∂t
= µn(n+ a)− νcm , (28)

where m = mn +ma.
Observing, as in the previous subsection, that the timescales of production and degradation of MDEs are

much faster than the time of reproduction of the cells and of production of the more complex ECM (minutes
with respect to hours or days, see Table 2), we can state that the concentration of MDEs quickly reaches the
value

c = πnτ(n+ a) , (29)

which can be substituted back in (28) to obtain

∂m

∂t
= µn

(
1− πnντ

µn
m

)
(n+ a) . (30)

Therefore, from the initial conditions, one has that

m(t) = mn(t) +ma(t) = Mn ,

remains constant which, in particular, implies ψ(t) = n(t) + a(t) +Mn at all times.
We can then focus on the first two equations to explain first how the abnormal cells progressively replaces

the normal ones in the tissue.
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Since ψn < ψa, initially the abnormal tissue continues its proliferation and

a(t) = a0e
(γa−δa)t . (31)

A similar solution would hold for the normal tissue if ψ 6 ψn, but this contradicts the fact that all populations
grow starting from an initial condition with ψ = ψn. Hence throughout the process ψ > ψn.

On the other hand, whenever ψ > ψn normal cells would decay exponentially. So n cannot overcome the
value of the volume ratio corresponding to the natural configuration (actually, when using a mollifier of width
σ, the volume ratio ψn + σ).

Similarly to what we have just discussed, initially we cannot have ψ > ψn positive, otherwise the total
volume ratio would be

ψ(t) = (ψn −Mn − a0)e−δnt + a0e
(γa−δa)t +Mn , (32)

which is smaller than ψn for small values of a0. This simply corresponds to the fact that in an interval of time
∆t, an amount a0(γa− δa)∆t of abnormal cells is produced and a larger amount (ψn−Mn−a0)δn∆t of normal
cells dies (if a0(ψn−Mn) < δn/(γa−δa+δn).) What happens is that an amount of normal cells is still produced
to adjust ψ to the maximum stress-free value. Therefore,

n(t) = ψn −Mn − a0e
(γa−δa)t , (33)

so that n + a = ψ −Mn is constantly equal to ψn. This situation continues until the amount of abnormal
cells produced equals the amount of normal cells that would normally die. This occurs when the amount A of
abnormal cells is such that

A(γa − δa)∆t = (ψn −Mn −A)δn∆t . (34)

Hence

A =
(ψn −Mn)δn
γa − δa + δn

, (35)

and since A = a(t1) = a0e
(γa−δa)t1 , the instant is given by

t1 =
1

γa − δa
log

(
δn

γa − δa + δn

ψn −Mn

a0

)
, (36)

and

n(t1) =
γa − δa

γa − δa + δn
(ψ0 −Mn) . (37)

Referring to Fig. 4a, the period [0, t1] is characterized by a simple partial replacement of normal cells by
abnormal cells, keeping the total volume ratio constantly equal to ψn (therefore in this phase there is no
compression). For this reason we will call this phase relaxed replacement or Phase I.

Notice that if the only difference in the behaviour of normal and abnormal cells is in the sensing of stress
by the cells, i.e. γn = γa = γ and δn = δa = δ, then

t1 =
1

γ − δ log

(
δ

γ

ψn −Mn

a0

)
, (38)

and

n(t1) =

(
1− δ

γ

)
(ψn −Mn) , a(t1) =

δ

γ
(ψn −Mn) . (39)

After the end of the relaxed replacement phase the amount of abnormal cells produced is larger than the
amount of normal cells dying, so the total volume ratio starts exceeding the stress-free value ψn. Abnormal
cells continue to grow satisfying (31) while

n(t) =
γa − δa

γa − δa + δn

(
δn

γa − δa + δn

ψn −Mn

a0

) δn
γa−δa

(ψn −Mn)e−δnt. (40)
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Figure 4: Replacement of normal with abnormal cells. In (a) definition of phases of growth and of analytical
solutions (dotted lines) in the limit case σ = 0 (and m = 0). The cartoons at the bottom of the Fig. sketch
the phenomenological evolution (modified from [54]). In (b) simulation for γn = γa = 1 days−1, δn = δa =
0.1 days−1, a0 = 0.00001, ψn = 0.6, ψa = 0.8, and σ = 0.1. All values of the parameters are equal for the
two populations but the stress related thresholds for stopping replication. This implies that the volume ratio
of ECM is constantly equal to the initial value m0 = 0.2.
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Figure 5: Replacement of ECM in the tissue. Normal ECM (full) is replaced by the one produced by the tumour
cells (dashed). Their sum is constantly equal to 0.2. The dotted line describes the evolution of the concentration
of MDEs (normalized with respect to the reference value c0 =15000 molecules/µm2) that starting from a value
controlling the production of normal ECM goes to a value which controls the production of tumour produced
ECM. This value is higher because the density of cells is higher (see Fig.4b). The values of the parameters are
as in Fig. 4 and µn = µa = 0.1 days−1 πn/c0 = πa/c0 = 400 days−1, νc0 = 0.25 days−1, τ = 0.005 days.

This change can be identified in Fig. 4 by the change of convexity of the curve related to n. In this second
phase

ψ(t) =
γa − δa

γa − δa + δn

(
δn

γa − δa + δn

ψn −Mn

a0

) δn
γa−δa

(ψn −Mn)e−δnt + a0e
(γa−δa)t +Mn > ψn , (41)

giving rise to a progressive compression of the tissue as in the last cartoon in Fig. 4a. For this reason this phase
is called compressing phase or Phase II. This situation continues till ψ reaches the value ψa.

After this a situation in some sense reciprocal to the relaxed replacement phase occurs, with a decreasing n
satisfying (40) while abnormal cells replicate to replace the space left available by n, i.e.,

a(t) = ψa − n(t) , (42)

so that the total volume ratio is constanly equal to ψa. This phase then will be called over-compressed replace-
ment or Phase III. Eventually, abnormal cells completely replace normal cells.

Focussing now on the two types of ECMs, using (31), (33), (40), and (42) it is possible to solve the related
ODEs explicitly. As expected, it is found that ma increases and mn correspondingly decreases to zero keeping
the sum constant. The concentration of MDEs starting from a value controlling the production of normal ECM
goes to a value which controls the production of tumour produced ECM. This value is slightly higher because
of the increased density of cells. So, eventually the abnormal stroma completely replaces the normal one, as
shown in Figs. 4 and 5.

In conclusion, a very small incorrect sensing of the state of compression by the cells will lead to a clonal
advantage and a complete replacement of normal tissue by hyperplasic over-compressed tissue with a = ψa−Mn,
and ma = Mn.
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4.4 Hyper- and Hypo-Production of ECM and MDEs

If the production of MDEs and/or ECM by the two types of cells occurs at different rates, i.e. πn 6= πa and/or
µn 6= µa, the steady state mentioned in the previous section modifies to

n = mn = 0 , a = ψa −Ma , ma = Ma , c = πaτ(ψa −Ma) , (43)

where

Ma =
µa
νπaτ

, (44)

i.e., as in the case of equal production of ECM and MDEs by the two types of cells, the abnormal ECM produced
by the abnormal tissue will completely replace the ECM produced by the normal cells. However, in this case
the final ECM volume ratio might be different from the initial one and depends on the dimensionless parameter
Ma.

In particular, the ratio of the content of ECM produced in the normal and in the abnormal case is

mn

ma
=
µn
µa

πa
πn

,

coherently with Johnson’s observation [63] that the alteration in the ECM components can be due to both
increased de novo synthesis of ECM proteins, and decreased activity of its degrading enzyme (MMP), probably
together with an upregulation of the tissue-specific inhibitors of metalloproteinases (TIMP).

In Fig. 6 we consider the pathological situation in which the abnormal cells are also characterised by a
doubling or halving of the rate of production of ECM (Fig. 6b and 6a, respectively) or of MDEs (Fig. 6c and 6d,
respectively).

A hyper-production of ECM (Fig. 6b) and a hypo-production of MDEs (Fig. 6d) lead to a more fibrotic
tissue with a ratio of cells versus ECM content nearly equal to 1.22, compared with 2.45 in the physiological
situation. On the other hand, a hypo-production of ECM (Fig. 6a) and a hyper-production of MDEs (Fig. 6c)
lead to a tissue characterised by a ratio of cells versus ECM content nearly equal to 7.86. In all cases the
evolution of ψ and n is very similar to that in Fig. 4b.

If, for instance, both production rates increase keeping the same ratio, then the final configuration would be
as in Figs. 4b and 5 and also the evolution of the cell volume ratios would be as in Fig. 4b. However, the ECM
turnover would be faster than that shown in Fig. 5.

5 Invasion of Tissue

We now assume that the abnormal tissue is generated (inhomogeneously) only in a certain region of the domain.
In order to focus on the effect of the sensing of compression on cell proliferation and extracellular matrix
production and degradation, we assume that the behaviour of normal and abnormal cells differs only for the
coefficients involving the sensing of stress. Therefore γn = γa = γ and δn = δa = δ. The non-dimensional model
is then given by





∂n

∂t̃
= ∇ · (nΣ̃′(ψ)∇ψ) +

(
Hσ(ψ − ψn)− δ̃

)
n ,

∂a

∂t̃
= ∇ · (aΣ̃′(ψ)∇ψ) +

(
Hσ(ψ − ψa)− δ̃

)
a ,

∂mn

∂t̃
= µ̃nn− ν̃c̃mn ,

∂ma

∂t̃
= µ̃aa− ν̃c̃ma ,

∂c̃

∂t̃
= κ̃∇2c̃+

1

τ̃
(n+ π̃aa− c̃) ,

(45)
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Figure 6: Hyperplasia with complete replacement of the tissue in the case of a pathological production of ECM
and/or MDEs with respect to the situation in Figs. 4b and 5. In all Figs. full lines refer to scaled concentration
of cells, thick full lines to the volume ratio of abnormal cells, dashed lines to the volume ratio of ECM produced
by abnormal cells, doted lines to that produced by normal cells and thick dotted lines to their sum. The
evolution of ψ and n is very similar to the one in Fig. 4b and is almost unaffected by the parameters used. In
(a) µa = 0.05 days−1, in (b) µa = 0.2 days−1, in (c) πa/c0 = 800 days−1, and in (d) πa/c0 = 200 days−1 with
all other parameters as in Figs 4 and 5.
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where

t̃ = γt, x̃ =

√
γ

KE
x , c̃ =

c

πnτ
. (46)

and where

µ̃i =
µi
γ
, i = n, a ,

π̃a =
πa
πn

, τ̃ = γτ , κ̃ =
κ

KE
, δ̃ =

δ

γ
, ν̃ =

νπnτ

γ
, Σ̃′(ψ) =

Σ′(ψ)

E
.

(47)

We recall that n, a, mn, and ma are already dimensionless and observe that ν̃/µ̃n = Mn and ν̃/µ̃a = Ma defined
in (20) and (44), respectively. We observe that measurements of K and E are not available in the literature,
to our knowledge. However, from the fact that the order of magnitude of cell velocity is microns per hours and
assuming a change of volume ratio of 0.1 over a cell diameter, we can argue that the order of magnitude of the
product KE is 1 µm2/s. Hence, the characteristic length in Eq.(46) is of the order of 100 µm and κ̃ is of the
order of 100.

The domain of integration in the following simulations is the entire space. However, when for numerical
reasons we restrict to a finite domain zero-flux boundary conditions for the cells and the MDEs are imposed on
the boundaries of the domain.

To start with we consider the spatially dependent version of the problem dealt with at the beginning of
Section 4.3





∂n

∂t̃
= ∇ · [nΣ̃′(n+ a)∇(n+ a)] + [Hσ(n+ a− ψn)− δ̃]n ,

∂a

∂t̃
= ∇ · [aΣ̃′(n+ a)∇(n+ a)] + [Hσ(n+ a− ψa)− δ̃]a

(48)

with no-flux boundary conditions and the initial conditions a(t̃ = 0, x̃) = a0 exp{−x̃2/2σ0} and n(t̃ = 0, x̃) such
that the overall volume ratio corresponds to the homogeneous stationary configuration.

At the beginning, the same process occurring in the relaxed replacement phase (Phase I) occurs, with the
abnormal population partially replacing the normal one (see Fig. 7), i.e.

a(t̃, x̃) = a0e
−ex2/2σ0e(1−eδ)et and n(t̃, x̃) = ψn −Mn − a(t̃, x̃) , (49)

until

t̃ ≈ 1

1− δ̃
log

δ̃(ψn −Mn)

a0
, (50)

for small σ. The simulation presented in Fig. 7 follows the estimate above. In fact, for the values of the param-
eters used Eq.(50) predicts that compression starts for t̃ > 4.1 and coherently in Fig. 7c the line corresponding
to t̃ = 5 barely departs from the initial value. At this point in x̃ = 0 compression starts and cells start moving
away from the compressed regions. So Phase II and Phase III are different than in the spatially independent
case treated in the previous sections. In the overcompressed regions where ψ > ψn something like Phase II
occurs with n exponentially decaying to zero and replaced by a. In the simulation the maximum overall com-
pression characterising Phase III is achieved after about 40 (days, if γ = 1 days−1), corresponding to a size of
the hyperplasia which depends on

√
KE and can be evaluated of the order of 1mm. This means that if the

product of the permeability coefficient and the “Young’s modulus” increases by two order of magnitude, i.e.
for more permeable tissues and stiffly reacting cells, then the size needed to reach the overcompressed status
increases by an order of magnitude. Of course, if growth is too slow with respect to motion, then the time
needed to reach this phase increases further.

It is interesting to notice that, as observed experimentally, the growth of the hyperplasia is accompained
by a compression of the normal tissue near the interface separating the two tissues as shown by the peaks in
Fig. 7a and qualitatively by the cartoon in Fig. 4a.

Recalling the characteristics of Hσ(φ) in (5) and in particular that it is non constant for φ ∈ [0, σ], in the
hyperplasic tissue the solution tends to achieve an overall volume ratio in the interval [ψa, ψa + φ], while in the
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Figure 7: Tissue invasion for the following set of parameters δ̃ = 0.1, ψn = 0.6, ψa = 0.8, σ = 0.1, Mn = 0.2, and
at times t = 0, 2.5, 5, 10, 20, 40, 60, 80. At smaller times the dynamics follows the one described in Section 4.3.
At larger times the travelling wave characteristic and the transition layer are evident. The compression of the
normal tissue due to the expansion of the hyperplasia is also put in evidence by the peaks in (a) (see cartoon in
Fig. 4a). In (c) the overall cell volume ratio (n + a) at early times keeps its initial value following the relaxed
replacement phase depicted in Fig. 4a.
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normal tissue it tends to keep an overall volume ratio in the interval [ψn, ψn +φ]. Actually, from the maximum
principle n+ a+Mn ∈ [ψn, ψa + φ] (see Fig. 7c).

This is true even if one starts from a segregated initial condition, i.e.

n(t = 0,x) = 0 and a(t = 0,x) 6= 0 in Ω ,

n(t = 0,x) 6= 0 and a(t = 0,x) = 0 in R3 − Ω .

(51)

In this case, because of the degenerate character of the parabolic equations, the solution for a will always have
compact support with a sharp front xT (t) separating the two tissues. Coherently, the two populations move
with the same velocity at the interface

ṽ = −n · ∇n = −n · ∇a on ∂Ω . (52)

On the other hand, though the equation governing the evolution of n + a is still degenerate parabolic, its
solution is regular everywhere because the solution stays away from zero. In fact, in addition to (52), one has

n = a , on ∂Ω . (53)

This leads to the formation of a transition layer near the interface linking the solution with n + a = a ∈
[ψa, ψa + σ] in the hyperplasic tissue and that with n+ a = n ∈ [ψn, ψn + σ] in the normal tissue.

In order to approximate such a solution and to identify the velocity of invasion of the hyperplasia we will
look for a solution in the form of a travelling wave in the limit of small σ. Assuming ψ̃a − ψ̃n � ψ̃n where,
for instance, ψ̃n = ψn −Mn, and introducing the perturbations n̂ = n − ψ̃n and â = a − ψ̃n one can write to
leading order the following problem





−ṽâ′ = ψ̃nâ
′′ + (1− δ̃)ψ̃n , z < 0

−ṽn̂′ = ψ̃nn̂
′′ − δ̃ψ̃n , z > 0

â = ψa − ψn at z = z1 ,

n̂ = 0 at z = z2 ,

n̂ = â and n̂′ = â′ = −ṽ at z = 0 ,

(54)

where the primes denote derivation with respect to z = x̃− ṽ t̃ and ṽ is the velocity of the propagating front.
In order to identify z1, z2 we also assume

â′ = 0 at z = z̃1 ,
n̂′ = 0 at z = z2 .

(55)

One then has

â = ψ̃a − ψ̃n +
(δ̃ − 1)ψ̃n

ṽ
(z − z1) +

(δ̃ − 1)ψ̃2
n

ṽ2

{
exp

[
− ṽ(z − z1)

ψ̃n

]
− 1

}
for z ∈ [z1, 0] ,

n̂ =
δ̃ψ̃n
ṽ

(z̃ − z2) +
δ̃ψ̃2

n

ṽ2

{
exp

[
− ṽ(z − z2)

ψ̃n

]
− 1

}
for z ∈ [0, z2] ,

(56)

where

z1 =
ψ̃n
ṽ

ln

(
1− ṽ2

ψ̃n(1− δ̃)

)
,

z2 =
ψ̃n
ṽ

ln

(
1 +

ṽ2

ψ̃nδ̃

)
,

(57)
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Figure 8: Travelling wave solution. Comparison between numerical (full line) and analytical results (dashed

line) given by (56) for δ̃ = 0.1, ψ̃n = 0.5 and ψ̃a = 0.55. z = 0 represents the moving interface between the
normal and the abnormal tissue (on its right and left, respectively).

and the velocity of propagation is implicitly given by

ψ̃a − ψ̃n = − ψ̃2
n

ṽ2

[
δ̃ ln

(
1 +

ṽ2

ψ̃nδ̃

)
+ (1− δ̃) ln

(
1− ṽ2

ψ̃n(1− δ̃)

)]
. (58)

In the limit ṽ � 1, corresponding to ψa ≈ ψn, one has the following approximations for the transition layer
width

z2 − z1 ≈
√

2(ψa − ψn)

δ̃(1− δ̃)
, (59)

and for the velocity of propagation

ṽ ≈
√

2δ̃(1− δ̃)(ψa − ψn) , (60)

which in dimensional form writes

v ≈
√

2KEδ

(
1− δ

γ

)
(ψa − ψn) . (61)

Fig. 8 shows a comparison between the travelling wave solution (56) and the one obtained numerically, while
Fig. 9 compares the theoretical values of ṽ, z1, z2, and then of the transition layer thickness with the one
obtained from the simulations.

The simulation presented in Fig. 10 instead refers to the numerical solution of the full system of PDEs (45).
In this case the normal ECM is constantly digested and produced by the cells, but as the hyperplasic tissue is
replacing the normal one, the abnormal ECM is now also replacing the normal one, as explained in the space
independent case discussed in Section 3. Also in this case the travelling wave characteristic of the solution is
evident. The evolution of the normal and abnormal cell populations are as in Fig. 7.

The concentration of MDEs increases because of the increase in the density of cells. Dynamics like the
one discussed in Section 4.3 would be obtained for different values of the production rates of ECM by the two
populations of cells, with the formation of an abnormal matrix which fills more space than normal.
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Figure 9: Travelling wave solution. (a) Velocity of propagation as a function of D = ψa−ψn for δ̃ = 0.1, 0.2, 0.4
(from lower to upper curve). (b) Transition layer thickness. The lower family of curves refer to z1 and the upper

family to z2. The four curves refer to δ̃ = 0.1, 0.2, 0.3, 0.4 from above to below in both cases. The thickness of
the transition layer is then given by the distance between the two curves for given values of the parameters.
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(a) (b)

(c)

Figure 10: Tissue invasion with degradation and renewal of ECM through the constant production of MDEs.
The evolution of the cell populations are similar to those in Fig. 7. The values of the parameters are the same
as in Fig. 7 and π̃a = 1, µ̃n = µ̃a = 0.1, τ̃ = 0.005, κ̃ = 100, ν̃ = 0.5. The cleavage of normal ECM inside the
hyperplasia and its substitution with the one produced by abnormal cells follows the front of the hyperplasia.
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6 Discussion and Conclusions

In this paper we have presented and developed a mathematical model focussing on the potential role that an
incorrect mechanotrasduction may play in causing the hyper-proliferation of cells in a tissue. In particular, we
have shown how even a small loss of contact inhibition to growth and of compression responsiveness can represent
by itself a clonal advantage which can give rise to the formation of hyperplasia and tumour growth. In replacing
the normal tissue with the abnormal one, we have identified three phases which qualitatively correspond to the
phenomenological description given by biologists: a first phase in which some abnormal cells simply replace
the normal ones, a second phase in which the hyper-proliferation of the abnormal cells causes a progressive
compression within the tissue itself, and a third phase in which the tissue reaches a compressed state, which
presses on the surrounding environment. The difference in the ability to stand the compressed state leads to a
progressive invasion of the surrounding tissue.

At the same time, because of the constant remodelling of the extracellular matrix, the components produced
by the tumour cells progressively replace those previously present. In the case in which the production rates
or the release of matrix degrading enzymes is different than those corresponding to the physiological state, the
model foresees the formation of a tissue characterized by a pathological percentage of ECM, as observed in
many tumours and illness. For instance, an increased production of extracellular matrix not balanced by an
increased release of matrix degrading enzymes leads to tissues with more extracellular matrix than normal, as
in many fibrosis and in colon and prostate cancers. On the other hand, excessive degradation of extracellular
matrix due to excessive production of matrix degrading enzymes leads to tissues with less extracellular matrix
than normal, as in other malignant tumours and many other cronic inflammatory diseases.

From a travelling wave analysis exploiting the fact that usually there is only a slight incorrect sensing of the
compression level, we obtained an estimate of the velocity of growth of the hyperplasia which is proportional
to
√
ψa − ψn, i.e. to the square root of the difference of the volume ratios at which abnormal and normal cells

stop duplicating by contact inhibition. Therefore, as expected, smaller disfunctions lead to slower invasions of
the sorrounding healthy tissue. Throughout the paper the role of nutrients and growth factors was neglected,
though we are well aware of their importance, and that even the switching on and off of the duplication process
is mediated by growth promoting and inhibitory factors, through the activation of suitable protein cascades.

In this respect, it would be interesting to develop a multiscale model which takes into account in full of
the cascade of events recalled in Fig. 2 possibly joined with those involving growth factors. Of course, in order
to do that one needs to have estimates on the affinity constants. In absence of such measurements, one could
initially start with a Boolean reasoning, which leads for instance to the assumption that a chronic cadherin
underexpression leads to uncontrolled growth at any compression level (i.e., ψa = 1 in (15)).

Another interesting generalization of the model would be to take into account of the fact that the remodelling
process is strongly affected by the stresses and strains the tissue is subject to. Of course, in order to do that
quantitative measurement of the dependence of the production of ECM and MDEs from stress and/or strain
would be needed. Quantitative measurements on the growth rates and on the production rates of ECM and
MDEs under different conditions would also allow a further validation of the model presented here.
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