
05 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RPA: a Simple, Efficient and Flexible Policy for Input Buffered Switches / AJMONE MARSAN M.; BIANCO A.;
LEONARDI E.. - In: IEEE COMMUNICATIONS LETTERS. - ISSN 1089-7798. - 1(1997), pp. 83-86.

Original

RPA: a Simple, Efficient and Flexible Policy for Input Buffered Switches

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1401850 since:

IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234835934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE COMMUNCATIONS LETTERS, VOL. 1, NO. 3, MAY 1997 83

RPA: A Simple, Efficient, and Flexible Policy
for Input Buffered ATM Switches
M. G. Ajmone Marsan,Senior Member, IEEE, A. Bianco, and E. Leonardi

Abstract—Reservation with Preemption and Acknowledgment
(RPA) is a simple, efficient, and flexible queuing discipline and
scheduling algorithm for input buffered asynchronous transfer-
mode (ATM) switches. This letter describes the RPA algorithms,
and presents simulation results to demonstrate the effectiveness
of the proposed approach.

I. INTRODUCTION

T HE DESIGN of asynchronous transfer-mode (ATM)
switches rests on three main elements: 1) theswitching

fabric, i.e., the interconnection architecture used to transfer
cells from input ports to output ports; 2) thescheduling
algorithm used to arbitrate requests of cells that arrive at
different input ports, but must reach the same output port; and
3) thequeuing disciplineat input and/or output ports, i.e., the
rule for the selection of the next cell to be handled.

ATM switch designs with output buffers have been very
popular in recent years, mainly because they are not prone to
the well-known Head of the Line (HoL) blocking that may
adversely affect the performance of input buffered switches.

However, a negative characteristic inherent in output
buffered switches is the necessity for an internal cell transfer
rate times higher than the external link speed, being that

is the number of input (and output) ports.
Since data rates on point-to-point fiber links keep growing

very rapidly and the number of ports of ATM switches follows
a similar trend, providing the cell transfer rates required for
output buffered designs within switching fabrics is becoming
a problem. Researchers have thus started reconsidering input
buffered ATM switch designs.

In order to either reduce or completely overcome the penalty
introduced by the HoL blocking, that can limit the maximum
achievable throughput to 60% of the output channel speed un-
der uniform traffic conditions [1], separate queues are required
at each input port for the storage of cells directed to different
output ports.

Once cells have been sorted into separate queues, the
performance of an input-buffered ATM switch essentially
depends on its queuing discipline and scheduling algorithm.
Thus it is very important to search for simple but efficient

Manuscript received January 13, 1997. This work was supported in part by
a research contract between Politecnico di Torino and CSELT, in part by the
EC through the Copernicus Project 1463 ATMIN, and in part by the Italian
Ministry for University and Research. The associate editors coordinating the
review of this letter and approving it for publication were Dr. C. Siller and
Prof. Y. Bar-Ness.

The authors are with the Dipartimento di Elettronica, Politecnico di Torino,
10129 Torino, Italy (e-mail: ajmone@polito.it).

Publisher Item Identifier S 1089-7798(97)04608-5.

policies1 that must also be able to: 1) deal with the re-
quirements of different traffic classes; 2) provide the means
to give priority to cells belonging to classes of traffic with
more stringent Quality of Service (QoS) requirements; and 3)
support multicast addressing.

Several policies were presented in the technical literature
to address some of these issues (mostly trying to overcome
HoL blocking) in input-buffered switches under uniform traffic
conditions [2]–[5]. Most of them focus on architectures where

separate queues are available at each input port, each
one storing cells directed toward a different output port.
However, those policies do not succeed in providing the
maximum achievable throughput under nonuniform traffic
patterns. Some of them can even lead to starvation in some
traffic scenarios.

The first proposals of policies that lead to the optimal and
fair exploitation of the switch bandwidth under every traffic
pattern appeared very recently (see the maximum weighted
matching policies of [6] and [7]). Unfortunately, these policies
are not simple to implement, requiring a computational com-
plexity , and they do not allow the management
of different traffic classes. As a consequence, they may not be
adequate for the solution of all problems in the implementation
of large high-speed ATM switches.

In this letter, we propose a novel policy whose com-
putational complexity is only and that leads to an
efficient and fair exploitation of the switch bandwidth under
all investigated load patterns that include several critical traffic
conditions; at the same time, it can be extended to deal with
different traffic classes and multicast traffic (however, these
aspects are not addressed in this letter).

II. THE RPA POLICY

RPA stands for Reservation with Preemption and Acknowl-
edgment. The name indicates that the queuing discipline and
scheduling algorithm that we describe next are based on a
reservation round where sources can indicate their most urgent
cell transfer needs, possibly overwriting less urgent requests
by other sources, and an acknowledgment round to allow
sources to determine what cell they can actually transmit.
The scheduling algorithm must be executed during every cell
time to determine which cells must be transferred during
the following cell time. It is thus very important to keep
complexity to a minimum.

1The termpolicy in this letter refers to the specific combination of queuing
discipline and scheduling algorithm.

1089–7798/97$10.00 1997 IEEE

84 IEEE COMMUNCATIONS LETTERS, VOL. 1, NO. 3, MAY 1997

Denote by the number of input and output ports of
the switch, and label input and output ports with a subscript

. We shall denote theth input and output
ports by and , respectively,

RPA requires, at each input port, the availability of
separate first in–first out (FIFO) queues for the storage of
packets directed to different output ports. More precisely, the
th queue, denoted by , contains cells directed from the

considered input port toward .
In the description of RPA we concentrate on the case of a

single traffic class.
RPA operates on an array where reservations are written by

input ports at each cell time. This reservation array will be
denoted by RES; it contains elements, denoted by RES()
with , that orderly refer to output ports [RES()
refers to].

Each RES() element contains three fields:

RES the address of the input port trying to
reserve a cell transmission to;

RES the urgency (by convention a value)
of the cell transfer from RES
to ; the urgency defines the importance
of the cell transfer; several approaches
may be adopted for the computation of the
urgency values; multiple classes of traffic
can be managed with clever definitions of
the urgency;

RES is set to one during the acknowledgment
round by the input port being granted the
right to transfer a cell to .

The three fields are initialized to null values at the beginning
of every reservation round.

Input ports access array RES following a pre-established
order. For the description of the RPA operations, suppose
that within some arbitrary cell time, is selected as the first
input port in the access order; the other input ports follow, for
example, in ascending subscript order.

In the reservation round, selects its most urgent cell (i.e.,
the cell with the highest urgency among the cells at the head
of its input queues) and issues a reservation for a cell
transfer toward the output port of this most urgent cell. If the
output port to which the most urgent cell must be transferred
is , port records its index in the RES
field, and the urgency of the selected cell in the RES
field.

The reservation array is accessed next by, the input port
following in the access order (if the order is by increasing
index,). Input port first evaluates a weight
function for each output port

where is the urgency of the cell at the head of queue.
Then computes and records the
value at which the function reaches its maximum. If

, is allowed to issue a reservation for a cell
transfer toward , writing its index in RES
and in RES ; this implies that may over-

write a previous reservation for a cell transfer toward,
thus preempting it. If , no reservation can be
issued.

The reservation round then continues: array RES is next
processed by input port , where , that executes
the same algorithm. After all input ports have processed array
RES, the reservation round terminates.

At this point, the acknowledgment round immediately starts,
and array RES is processed for the second time by all input
ports in the same order followed during the reservation round.

First, checks whether its reservation toward has
been overwritten by any other input port with more urgent
cell transfers toward . If the reservation has not been
overwritten, is granted access to , and the RES
field is set to one. Otherwise, cannot transfer a cell to ;
however, if at least one “idle” output port is found, i.e., an
output port toward which no reservation has been made (the

field is zero), is allowed to transfer a cell toward
any one of the idle output ports. In practice, selects the
idle output port for which it has the most urgent cell, and sets
to one the correspondingbusyfield. Note that in an
switch, if a reservation has been overwritten, at least one idle
output port exists. The same may not be true when the number
of output ports is smaller than the number of input ports.

Next, port processes array RES to check whether its
reservation toward has been overwritten; if not, it can access
the desired output port, and it sets the RES field to
one. Otherwise, it checks whether any idle output port exists;
if some idle output ports are found, is granted access toward
the output port for which it has the most urgent cell, and the
appropriatebusyfield is set to one.

This acknowledgment algorithm is executed in order by all
input ports; when all input ports have processed array RES,
the scheduling algorithm terminates. One cell can now be
transferred from each input port to the output port toward
which it has been granted access.

The ordering of input ports in their access to the reservation
vector can either be the same in any cell time (in our example
this means that always is the first input port, the second,
and so on), or change; we call static the former version of the
scheduling policy, and adaptive the latter. In this letter, for the
sake of brevity, we do not consider adaptive policies, but a
number of those can be devised: we could envision a round-
robin selection of the starting point of the cyclic rounds, a
random selection of the starting point of the cyclic rounds,
or a completely random order. Each one of these alternatives
probably has pros and cons, but a careful investigation of those
is left for future work. Of course, the static policy leads to
some unfairness (only for delays, not for throughputs), due to
the fact that input ports always have the same position within
the round.

Several metrics can be adopted to quantify the cell ur-
gency. When just one class of traffic flows is present in the
switch, the number of cells stored in each input queue can
be chosen as the urgency for the cell at the head of each
queue; this is the urgency metric we used in our simulation
experiments. When several classes of traffic flows are present,
no significant modification to our scheduling policy is required,

AJMONEMARSAN et al.: RPA—A POLICY FOR ATM SWITCHES 85

and a straightforward generalization is sufficient; however, the
definition of a suitable urgency metric is crucial for the support
of different types of QoS requirements. Moreover, in this case
each input port may need a number of queues equal to
to efficiently deal with traffic classes.

III. COMPLEXITY

The complexity of the RPA scheduling algorithm is not
difficult to compute.

During the reservation round, operations are required
at each input port to compute for each ; in addi-
tion, operations are required to determine the output
port for which is maximized; one operation is
sufficient to verify whether .

The computational complexity of the reservation round is
thus , since it is composed of sequential steps, each
one of complexity .

During the acknowledgment round, operations are
required at each input port to verify whether the reservation
has been overwritten; in addition, operations may be
necessary to obtain the set of idle outputs and to determine
the one for which the input port has the most urgent cell.

As a consequence, the computational complexity of the
acknowledgment round is also .

Hence, the total complexity of the scheduling algorithm is
.

IV. SIMULATION RESULTS

We briefly present in this section a small sample of the
simulation results that were obtained in the performance
investigation of RPA; we focus on the static version of the
scheduling policy, but the general trends of the algorithm
behavior remain the same also when considering adaptive
versions.

To begin with, in Fig. 1 we present average cell access
delays versus the normalized load of the ATM switch, for the
least favored input port. The cell access delay is defined as
the time between the cell arrival at the input port and the
successful reservation of the cell transfer toward the desired
output port. The normalized load of the ATM switch is the
fraction of slots that contain cells on all input ports. Results
are obtained for an 88 switch configuration under uniform
traffic conditions, with queuing capacity at each input port
equal to either 100 or 10 000 cells per input queue (a total of
either 800 or 80 000 cells per input port). We report average
delays for three types of input traffic.

• Bernoulli input traffic (white square markers): cells arrive
at input ports according to a Bernoulli process; the
cell output ports are selected with random, independent
choices; the queue capacity is set to 100 cells for each
input queue.

• batch input traffic—case 1 (white round markers): cells
continuously arrive at input ports during geometrically
distributed ON periods, whose average duration is ten
cells; no cells arrive during geometrically distributedOFF

periods, whose average duration is selected so as to obtain
the desired load (that cannot exceed on the average,

Fig. 1. Average cell access delays for the static scheduling policy.

TABLE I
FIRST TRAFFIC SCENARIO

since theOFF period cannot be shorter than one cell); the
cell output port is the same for all cells arriving during
one ON period, and is selected by random choice at the
beginning of the batch; the queue capacity is set to 10 000
cells for each input queue.

• batch input traffic—case 2 (white triangular markers):
same as case 1 except that the average duration ofON

periods is 100 cells, so that the maximum achievable
load grows to .

Black markers with the same shape show the “optimal”
performance that could be obtained with the same input
traffic pattern in an output buffered switch with infinite queue
lengths.

Three main observations can be drawn from the simulation
results: 1) no throughput limitation can be observed in any
of the presented scenarios; 2) no losses were experienced;
3) the presented delays are quite close to the “optimal”
values. Note that even more complex scheduling policies (see
[6], [7]) guarantee a full utilization of the switch bandwidth
only under asymptotic conditions, i.e., with infinite queue
capacities.

The performance of RPA was studied also under traffic
scenarios similar to those described in [6], [7]. Such conditions
can be easily proved to induce throughput limitations in all of
the simple scheduling techniques proposed up to now (to the
best of our knowledge) and also in the maximum size matching
algorithm described in [6], whose complexity is . In
order to describe these input traffic patterns, we use a matrix
notation in Tables I–IV; rows are associated with input ports,
columns with output ports; we report in the table the amount
of traffic transmitted on average from the input port toward
the output port.

We run simulations with different values of, scaling the
input load so as to avoid overload (in practice, the values

86 IEEE COMMUNCATIONS LETTERS, VOL. 1, NO. 3, MAY 1997

TABLE II
SECOND TRAFFIC SCENARIO

TABLE III
THIRD TRAFFIC SCENARIO

shown in the table were multiplied by 0.999), observing no
throughput limitation. This confirms our conjecture that the
static version of RPA is close to being optimally efficient, in
the sense that, provided that: 1) the normalized offered load
of each input port is smaller than one and 2) the sum of the
normalized offered loads toward each output port is smaller
than 1, all of the input traffic can be successfully transferred
to output ports.

TABLE IV
FOURTH TRAFFIC SCENARIO

REFERENCES

[1] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queuing
on a space division switch,”IEEE Trans. Commun.,vol. COM-35, pp.
1347–1356, Dec. 1987.

[2] M. Karol, K. Eng, and H. Obara, “Improving the performance of input-
queued ATM packets switches,” presented at the IEEE INFOCOM’92,
Firenze, Italy, May 1992.

[3] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High speed switch
scheduling for local area networks,” presented at the 5th Int. Conf. Arch.
Support for Programming Languages and Operating Systems, Oct. 1992.

[4] N. McKeown and P. Varaiya, “Scheduling cells in an input-queued
switch,” Electron. Lett.,vol. 29, no. 25, pp. 2174–2175, Dec. 1993.

[5] M. Chen, N. D. Georganas, and O. W. W. Yang, “A fast algorithm for
multi-channel/port traffic assignment,” presented at the IEEE ICC’94,
New Orleans, LA, May 1994.

[6] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” presented at the IEEE INFO-
COM’96, San Francisco, CA, Mar. 1996.

[7] A. Mekkittikul and N. McKeown, “A starvation-free algorithm for
achieving 100% throughput in an input-queued switch,” presented at
the ICCCN’96, Rockville, MD, Oct. 1996.

