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Very low thermal drift precision virtual
voltage reference

P. S. Crovetti

A digital-based, process-supply-and-temperature (PVT) independent
voltage reference suitable to nanoscale CMOS technologies, which
exploits the recently proposedvirtual reference concept to achieve a
very low thermal drift, is presented in this Letter. Its performance is
assessed on the basis of simulations and experiments carried out on
a microcontroller-based, proof-of-concept prototype andis compared
with state-of-the-art integrated analog and digital voltage references. A
simulated (measured) thermal drift as low as 1ppm/◦C (5ppm/◦C) in
the temperature range−40/ + 140◦C (−10/ + 100◦C) is reported.

Introduction: Accurate reference voltages, which are needed in present-
day integrated systems, are normally generated by analog cells designed
so that their output is constant and as independent as possible of process
parameters, power supply voltage and temperature (PVT-independent).

Traditional bandgap references [1], however, are not suitable to
present-day low voltage, nano-scale CMOS technologies andeven
though several low voltage alternatives have been proposed[2, 3],
the design of accurate, low thermal drift references in advanced
CMOS technologies is still challenging because of the poor analog
characteristics of nano-scale devices. Addressing the limitations of
analog voltage references, the digitalvirtual reference concept has been
recently proposed in [4] and its advantages in terms of accuracy, power
consumption and silicon area occupancy have been discussed.

In this Letter, a digital virtual voltage reference based ona novel
algorithm, specifically devised to achieve a very low thermal drift, is
presented and its effectiveness is verified by computer simulations and
measurements carried out on a microcontroller-based prototype.

Virtual Voltage Reference Concept: The virtual reference approach is
intended to provide an accurate, PVT-independent voltage reference in
a System-on-Chip (SoC), which is based on a digital core and includes
anN-bit A/D converter (ADC) and anN-bit D/A converter (DAC), both
referenced to a possibly non-PVT independentpseudo-reference V0, as
shown in Fig.1a. The pseudo-referenceV0 is only assumed to be constant
within one least significant bit (LSB) for a conveniently long time and can
be obtained sampling an inaccurate power supply voltage by asample-
and-hold circuit. In this framework, a binary integerr, so that the voltage
vREF resulting from its D/A conversion by theV0-referenced DAC in the
SoC, i.e.

vREF = r
V0

2N
, (1)

is constant and PVT-independent within 1 LSB regardless of variations
in V0, is defined as avirtual voltage reference. On the basis ofr in (1), in

fact, sinceV0 = vREF
2N

r
, signal samples acquired by theV0-referenced

ADC of the SoC can be digitally translated intovREF-referenced

samples by multiplication by2
N

r
. Moreover, a PVT-independent physical

reference voltage can be obtained by D/A-conversion of (an integer
proportional to) the virtual referencer by the V0-referenced DAC in
the SoC. The virtual referencer can be therefore regarded as a full
replacement of a physical reference voltage.

An estimate of the virtual referencer appearing in (1) can be obtained
in the SoC of Fig.1a by the procedure outlined in Fig.1b. To this
purpose, apn diodeD is introduced in the SoC of Fig.1a as aphysical
standard and it is operated under different bias conditionsi=1 . . .M ,
via the resistorR, by the DAC output. The diode forward voltagesv(i)D
corresponding to the different bias conditions (voltage primitives) are
then acquired by the ADC and the virtual referencer is evaluated by
processing the acquired digital samplesn(i) of the voltage primitives
v
(i)
D , so that to implement the functional equivalent of analog references

in the digital domain, as illustrated in [4].
In order to avoid the dependance of the voltage primitives onthe

pseudo-referenceV0, the procedure described so far is iterated biasing
the physical standard D/A-converting digital values proportional to the
virtual referencer at the previous iteration, until the estimates ofr in two
next iterations are equal within a toleranceε. In practice, the procedure
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Fig. 1 A virtual voltage reference in a mostly digital SoC: a) hardware
platform, b) PVT-compensation software procedure.

in Fig.1b, needs to be repeated only once in a second or more and can be
implemented in a SoC with a minimum performance overhead.

In the following, the virtual reference approach introduced so far is
extended and a novel virtual reference evaluation procedure, which has
not an analog counterpart, is proposed to achieve a very low thermal drift.

Novel Virtual Voltage Reference Evaluation Procedure: With reference
to the SoC architecture in Fig.1a, the novel virtual voltagereference
evaluation procedure is based on two voltage primitivesv1 and
v2, to be acquired by the ADC in Fig.1a, which show different
functional dependenciesf(·) and g(·) on the absolute temperatureT ,
i.e. v1 = f(T ) · Vu and v2 = g(T ) · Vu, where Vu =1V is a unitary
voltage. Assuming thatg(·) is invertible and beingg−1(·) its inverse,
the temperatureT can be expressed in terms ofv2 as

T = g−1

(

v2

Vu

)

(2)

Hence, replacing (2) in the expression ofv1, a functional relation between
the voltage primitivesv1 andv2 at the same temperatureT in the form

v1

Vu
= f

[

g−1

(

v2

Vu

)]

= f̃

(

v2

Vu

)

(3)

can be established so that the condition

v1

Vu
− f̃

(

v2

Vu

)

=0 (4)

is identically verified at any temperature for any(v1, v2) pair. Neglecting
quantization and other ADC errors, the voltagesv1 andv2 appearing in
(4) can be expressed in terms of their samplesn1,n2, acquired by theV0-
referenced ADC in Fig.1a asv1 = n1

2N
V0 andv2 = n2

2N
V0. By replacing

such expressions in (4), one gets

αn1 − f̃ (αn2) = 0 (5)

which can be regarded as an equation in the unknownα= V0

2NVu

involving the pseudo-referenceV0. Assuming that (5) has a unique
solutionα=α⋆, it follows that

Vu =
1

α⋆

V0

2N
. (6)

By comparing (6) and (1), beingVu constant by definition, the reciprocal
of the solutionα⋆ of (5) can be considered as a virtual voltage reference.

Provided that the relatioñf(·) between voltagesv1 and v2 at the
same temperatureT is accurately known, equation (5) can be numerically
solved by the digital core in Fig.1 to evaluate the virtual referencer in (1)
from the samplesn1 andn2 of the primitives acquired by the ADC.

Virtual Voltage Reference Design and Simulation: A virtual reference
implementing the technique proposed so far has been designed in a
180nm, 1.8V-supply CMOS technology. Such a reference is based on
the hardware platform of Fig.1a, including an ADC and a DAC with a
resolutionN = 16bit and an+-p well 20µm × 20µm junction diodeD
biased by a poly resistorR= 23 kΩ as a physical standard. The voltages
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Fig. 2 Proposed virtual reference simulated performace: a) D/A-converted
virtual reference against temperature for 1.8V ± 20% power supply; b)
distribution of the D/A-converted virtual reference over process variations
(Montecarlo simulations); c) distribution of the D/A-converted virtual
reference thermal drift over process variations (Montecarlo simulations).
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Fig. 3. Photograph of the microcontroller-based proof-of-concept prototype.

v1(T ) = v
(1)
D and v2(T ) = v

(1)
D − v

(2)
D , being v

(1)
D and v

(2)
D the diode

D forward voltages under two different bias conditions (corresponding
to a nominal bias current of40µA and 20µA, respectively) defined
independently of the power supply as in Fig.1b, are considered as voltage
primitives. The relationf̃(·) betweenv1 and v2 appearing in (5) has
been modeled by a6th-order polynomial, whose coefficients have been
extracted fitting experimental data by the least-mean-squares method.

The operation of the virtual voltage reference has been simulated on
the basis of accurate experimentally validated models of the diodeD
and of the resistorR from the silicon foundry, as in [4]. In Fig.2 the
simulated thermal drift of the D/A converted virtual reference is reported
for a supply voltage of1.8V ± 20%. A mean drift (box method) of less
than1 ppm◦C in the temperature range−40/ + 140◦C can be observed.
The line regulation at ambient temperature is about0.04%/V.

Moreover, the performance of the proposed virtual reference over
process variations has been tested by Montecarlo simulations (1,000 runs)
and the statistical distributions of the D/A-converted virtual reference and
of its thermal drift are reported in Fig.2b and in Fig.2c, respectively.
Based on such simulations, the standard deviation of the untrimmed
reference voltage at ambient temperature is less than 3.8mV, the mean
value of the thermal drift over process spreads is9.3 ppm◦/C and its
standard deviation is6.7 ppm◦/C.

Microcontroller-Based Prototype and Experiments: The virtual voltage
reference prototype in Fig.3, which is based on the MiniKit evaluation
board of the ADuC7061 microcontroller by Analog Devices andincludes
an external 1N4148 junction diode biased by a10kΩ resistor as a physical
standard, has been developed to validate the novel low thermal drift
compensation technique presented in this Letter. In such a prototype, the
microcontroller has been programmed to evaluate the virtual reference as
discussed above, using a polynomial approximation of the function f̃(·)
in (5) based on an experimental characterization of the diodeD.

The D/A-converted virtual reference obtained from the prototype has
been measured over temperature as described in [4] and measured results
are plotted in Fig.4. Such results show that the D/A converted virtual
reference, whose nominal value is 1.623V, has a residual thermal drift of
less than 5ppm/◦C in the temperature range from−10/+ 100◦C. Such
a drift is low, but larger than in simulations because the estimate off̃(·)
in (5) is now affected by measurement errors, to be addressedin future
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Fig. 4 Measured thermal drift of the D/A-converted virtual reference of the
microcontroller-based proof-of-concept prototype.

Table 1: Voltage Reference Circuits Performance Comparison
Reference [2] [3] [4] This Work
Technology,µm 0.18 0.13 0.18 PCB 0.l8 PCB
Min. Supply, V 1.2 1.2 0.9 2.4 0.9 2.4
Analog/Digital An. An. Dig. Dig. Dig. Dig.
Characterization Meas. Meas. Sim. Meas. Sim. Meas.
Ref. Volt., V 0.767 0.735 1.000 1.157 1.000 1.623
ADC/DAC # bit N/A N/A 16 16 16 16
Untrimm. Accuracy

N/A
∼ 10 1.4

N/A
3.8

N/A
Std. Dev., mV, % ∼ 1.5% 0.14% 0.38%

Temp. Range,◦C
-40 -40 -40 -10 -40 -10

+120 +120 +140 100 +140 100
Nominal Temp.

4.5 4.2 7 16 1 5
Coeff.,ppm/◦C

Untrimm. TC,
5 9.3 8.7 N/A 9.3 N/A

Avg.,ppm/◦C

Untrimm. TC, Std.
1.5 4.8 1.7 N/A 6.7 N/A

Dev.,ppm/◦C

Line Reg.,%/V 1 0.5 0.02 0.15 0.04 0.15
Silicon Area,µm2 36,000 63,000 700 N/A 2,000 N/A
Power,µW 43 144 0.12 N/A 0.48 N/A

work. Finally, the measured line regulation of the prototype is 0.2%/V
and the measured root-mean-square (rms) noise is about130µV.

Comparison and Benchmarking: The performance of the virtual voltage
references proposed in this Letter is compared in Tab.1 withrecently
proposed analog voltage references [2, 3] and with the digital virtual
references proposed in [4]. The virtual references presented in this Letter
show a very low thermal drift which is in line with best analogreferences
and better than previously proposed digital references, even though their
untrimmed performance is slightly worse. Moreover, the silicon area
overhead and the power consumption of the proposed references are both
much lower than in analog references.

Conclusion: A digital virtual voltage reference, based on a novel
evaluation algorithm devised to achieve a very low thermal drift, has
been presented in this Letter. A simulated (measured) thermal drift
of 1ppm/◦C (5ppm/◦C) in the temperature range−40/ + 140◦C
(−10/ + 100◦C), better than previously proposed digital references, has
been reported by computer simulations and experiments carried out on a
microcontroller-based, proof-of-concept prototype.

P. S. Crovetti,Dept. of Electronics and Telecommunications (DET),
Politecnico di Torino, Torino, Italy

E-mail: paolo.crovetti@polito.it
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