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Abstract

We propose the variational quantum cavity method to construct a minimal energy subspace of

wave vectors that are used to obtain some upper bounds for the energy cost of the low-temperature

excitations. Given a trial wave function we use the cavity method of statistical physics to estimate

the Hamiltonian expectation and to find the optimal variational parameters in the subspace of

wave vectors orthogonal to the lower-energy wave functions. To this end, we write the overlap

between two wave functions within the Bethe approximation which allows us to replace the global

orthogonality constraint with some local constraints on the variational parameters. The method

is applied to the transverse Ising model and different levels of approximations are compared with

the exact numerical solutions for small systems.
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I. INTRODUCTION

The variational problem of finding an excited quantum state can be formulated as a

classical optimization problem constrained by the orthogonality conditions imposed by the

lower-energy eigenstates of the Hamiltonian. This is a computationally hard task even

for the ground-state problem in one-dimensional quantum systems. Exact diagonalization

algorithms are very helpful but they are limited to small systems due to the exponential

growth of the Hilbert space with the size of system [1]. For larger systems one has to resort

to approximation methods, e.g., the variational quantum Monte Carlo algorithms, to study

the low-energy states of the Hamiltonian [2–4]. On the other hand, one can always obtain

useful insights by studying some exactly solvable mean-field models [5].

The cavity method of statistical physics provides the framework and machinery we need

to deal with random optimization and constraint satisfaction problems [6–9]. In particu-

lar, the method provides a local message-passing algorithm to study single instances of a

problem on random and finite-connectivity graphs within the hierarchy of replica symmetry

breaking (RSB) approximations [8, 10, 11]. For instance, the cavity method can be used

to minimize the Bethe estimation of computationally difficult cost functions like the Hamil-

tonian expectation in a variational quantum problem; first the expectation is computed in

the replica symmetry (RS) approximation to obtain an energy function of the variational

parameters. Then, the parameters are considered as statistical variables to study their sta-

tistical properties within a higher level RS approximation, with equations that resemble

the one-step RSB ones. These equations are exploited in a message-passing algorithm to

optimize over the variational parameters. There are other applications of the cavity method

to quantum systems that work with the density matrices or the path integral representation

of the quantum partition function [12–16].

In this paper we use the variational quantum cavity method [17] to find approximate so-

lutions for the exited-states of the transverse Ising model. The main point of this study is to

write the overlap between two wave functions in the Bethe approximation, which is asymp-

totically exact as long as the trial wave functions can be represented by classical systems of

locally tree-like interaction graphs. This allows us to replace the global orthogonality con-

dition with some local constraints on the variational parameters and the cavity messages in

the Bethe expression for the overlap. In summary, given an appropriate trial wave function,
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we evaluate the Hamiltonian expectation in the subspace of wave functions orthogonal to

the lower-energy states of the Hamiltonian and find an estimation of the optimal variational

parameters, all within the Bethe approximation and implemented by a local message-passing

algorithm.

Note that, usually, for large and disordered systems we do not have the exact ground-

state of the system. The best that we can do is to find a good variational wave function that

represent the low-energy state of the system. Obviously, an excited state that is orthogonal

to an approximate ground state does not necessarily provide an upper bound for the excited-

state energy. There are, of course, other ways to find the excited states that do not rely on

the orthogonality to a priori known ground state, but we found the above procedure more

amenable to the cavity method that we are going to use in this paper. Nevertheless, any

orthogonal set of quantum states defines a subspace of wave vectors that according to the

Courant min-max theorem [18] can be used to find some upper bounds for the Hamiltonian

eigenvalues.

In the next section we give the definitions and write the general equations. Section III

is devoted to the mean-field approximation, where we take product states to represent the

low-energy eigenstates of the Hamiltonian. Then, in Sec. IV we consider more complicated

trial wave functions including the two-body Jastrow interactions. The numerical results are

presented in Sec. V and the concluding remarks are given in Sec. VI.

II. DEFINITIONS

Consider the transverse field Ising model with Hamiltonian H = −
∑

(ij)∈Eq
Jijσ

z
i σ

z
j −

∑

i hiσ
x
i with index i = 1, . . . , N that labels the sites in the quantum interaction graph

Eq. The σx,y,zi are the standard Pauli matrices. In the following we will work in the σz

representation with orthonormal basis |σ〉 ≡ |σ1σ2 · · ·σN 〉. Given a trial wave function

|Ψ(P )〉 =
∑

σ ψ(σ;P )|σ〉 depending on a set of variational parameters P , we write the

Hamiltonian expectation as

〈Ψ(P )|H|Ψ(P )〉 =
∑

σ

|ψ(σ;P )|2E(σ), E(σ) ≡
∑

(ij)∈Eq

eij(σi, σj) +
∑

i

ei(σ), (1)
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where eij(σi, σj) ≡ −Jijσiσj and

ei(σ) ≡ −hiRe







∑

σ′

ψ∗(σ′;P )

ψ∗(σ;P )
〈σ′|σxi |σ〉







. (2)

Depending on the trial wave function we obtain different expressions for the non-diagonal

terms ei(σ).

We consider µ(σ;P ) ≡ |ψ(σ;P )|2 as a probability measure in a classical system and

compute the above average quantities within the Bethe approximation. For ψ(σ;P ) ∝
∏

a∈Ec
φa(σ

∂a;Pa), the classical measure is given by µ(σ;P ) ∝
∏

a |φa(σ
∂a;Pa)|

2 with the set

of classical interactions Ec ≡ {φa(σ
∂a)|a = 1, . . . , A}. Here ∂a is the subset of variables that

appear in φa. Similarly we define ∂i as the subset of interactions that depend on σi. The

cavity marginal µi→a(σi) gives the probability of having σi in absence of interaction term

φa. Similarly we define µa→i(σi) as the probability of having σi in absence of the other

interactions involving σi. The equations governing these cavity marginals are:

µi→a(σi) ∝
∏

b∈∂i\a

µb→i(σi), (3)

µa→i(σi) ∝
∑

σ∂a\i

|φa(σ
∂a;Pa)|

2
∏

j∈∂a\i

µj→a(σj). (4)

These are the belief propagation (BP) equations [19] that can be solved by iteration starting

from random initial cavity marginals. In the replica-symmetric approximation we assume

there is a fixed point to the BP equations describing the single Gibbs state of the system

[7]. The above cavity marginals are enough to obtain the Bethe estimation of the average

energy.

Let us denote by |Ψn(P
n)〉 the nth trial wave function that minimizes the average energy

〈Ψn(P
n)|H|Ψn(P

n)〉 conditioned on the orthogonality constraints 〈Ψn(P
n)|Ψm(P

m)〉 = 0

for m = 0, . . . , n − 1. The corresponding classical systems are represented by measures

µn(σ;P
n). In the following we are going to satisfy the orthogonality constraints within the

Bethe approximation,

〈Ψn(P
n)|Ψm(P

m)〉 =
∑

σ

ψ∗
n(σ;P

n)ψm(σ;P
m) ≃ e−(

∑
i ∆Fi+

∑
a ∆Fa−

∑
(ia) ∆Fia) = 0, (5)

where ∆Fi, ∆Fa, and ∆Fia are the free energy changes by adding variable node i, interaction

node a, and link (ia) to the complex measure νn,m(σ;P
n, Pm) ∝ ψ∗

n(σ;P
n)ψm(σ;P

m) ∝

4



∏

a φ
∗
a(σ

∂a;P n
a )φa(σ

∂a;Pm
a ). These quantities are given by [7],

e−∆Fi =
∑

σi

∏

a∈∂i

νa→i(σi), (6)

e−∆Fa =
∑

σ∂a

φ∗
a(σ

∂a;P n
a )φa(σ

∂a;Pm
a )
∏

i∈∂a

νi→a(σi) (7)

e−∆Fia =
∑

σi

νi→a(σi)νa→i(σi), (8)

where the cavity marginals νi→a(σi) and νa→i(σi) satisfy the BP equations for the complex

measure νn,m(σ;P
n, Pm). Thus, to have orthogonality it is enough to have e−∆Fa = 0 for

some a. This defines a constraint on the parameter P n
a given Pm.

In summary, to estimate the average energy and to satisfy the orthogonality constraints

we need to know the BP marginals of the classical measure µn and {νn,m|m = 0, . . . , n −

1}. In addition, we have to choose the set of constrained parameters An ≡ {am|m =

0 . . . , n−1} for the orthogonality constraints e−∆Fam = 0. In this paper we will use a greedy

strategy to construct An, by choosing the parameters that at least locally minimize the

energy expectation. Finally, the problem of minimizing over the variational parameters is

considered as a classical statistical physics problem

Zn =
∑

Pn

∑

µn,{νn,m}

IBP

∏

m=0,...,n−1

In,me
−βopt〈E(σ)〉µn , (9)

where for βopt → ∞ the Gibbs measure is concentrated on the optimal parameters. The

indicator functions IBP and In,m ensure that the messages µn, {νn,m} satisfy the BP equations

and the states n and m are orthogonal. Starting from n = 0, one can find the other states

one by one after solving the above optimization problem.

One may find an approximate solution to the above problem by a two-stage algorithm:

Given {Pm|m = 0, . . . , n − 1} and an arbitrary set of the constrained parameters An, we

run BP to find the set of marginals {νn,m|m = 0, . . . , n − 1}. These are used to fix the

constrained parameters in An to satisfy the orthogonality constraints. Then we minimize

the average energy 〈E(σ)〉µn over the remaining parameters. The above two stages are

repeated to converge the algorithm.

5



III. THE MEAN-FIELD APPROXIMATION

Let us start with the mean-field (MF) approximation, where the trial wave functions are

represented by the product states:

ψ(σ;B) ∝
∏

i

eBiσi , (10)

with complex parameters Bi. This results to ei(σi) = −hie
−2BR

i σi cos(2BI
i σi) and the follow-

ing classical measure µ(σ;B) ∝
∏

i e
2BR

i σi . By superscripts R and I we mean the real and

imaginary part of the parameters. Given the above measure we find

〈ei(σi)〉µ = −hi
cos(2BI

i )

cosh(2BR
i )
, (11)

〈eij(σi, σj)〉µ = −Jij tanh(2B
R
i ) tanh(2B

R
j ). (12)

We see that for non-negative hi the average energy is minimized by setting BI
i = 0.

Therefore, as long as we are interested in the ground state, we can set the imaginary parts

to zero. In this case, the variational problem reads

Z0 =
∑

B

e
−βopt

∑
(ij)∈Eq

〈eij〉µ−βopt
∑

i〈ei〉µ , (13)

The cavity marginals of the parameters in the Bethe approximation are

Mi→j(Bi) ∝ e−βopt〈ei〉µ
∏

k∈∂i\j

(

∑

Bk

e−βopt〈eik〉µMk→i(Bk)

)

. (14)

For βopt → ∞ and scaling Mi→j(Bi) = e−βoptMi→j(Bi) we find the minsum equations [19]:

Mi→j(Bi) = 〈ei〉µ +
∑

k∈∂i\j

min
Bk

{〈eik〉µ +Mk→i(Bk)} . (15)

The equations are solved by iteration starting from random initial messages. After each

iteration we subtract a constant from the messages to have minBi
Mi→j(Bi) = 0. Then we

find the optimal parameters by minimizing the local minsum weights,

B0
i = argmin

Bi

{

〈ei〉µ +
∑

j∈∂i

min
Bj

{〈eij〉µ +Mj→i(Bj)}

}

. (16)

Note that in the MF approximation the orthogonality condition reads

〈Ψn(B
n)|Ψm(B

m)〉 ∝
∏

i

cosh(Bn∗
i +Bm

i ) = 0, (17)
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thus, it is enough to have cosh(Bn∗
i + Bm

i ) = 0 for some i. This means BnR
i = −BmR

i and

BnI
i − BmI

i = π/2. Therefore, the nth excited state can be obtained by the following set of

constraints:

In,m =







BnR
im +BmR

im = 0,

BnI
im −BmI

im = π
2
,

(18)

for m = 0, . . . , n−1. The index im is chosen to minimize the local energy 〈eim(σi)〉µn. Then,

one can use the same minsum equations as above to minimize over the remaining parameters.

In this way we can find at most N orthogonal product states of minimum energies En.

Given the states |Ψm(B
m)〉 for m = 0, . . . , n, we can easily compute the Hamiltonian

matrix elements Hmm′ ≡ 〈Ψm(B
m)|H|Ψm′(Bm′

)〉, which for arbitrary parameters read

Hmm′ =
∏

i

(

cosh(Bm∗
i +Bm′

i )

(cosh(2BmR
i ) cosh(2Bm′R

i ))1/2

)

×







−
∑

(ij)∈Eq

Jij tanh(B
m∗
i +Bm′

i ) tanh(Bm∗
j +Bm′

j )−
∑

i

hi
cosh(Bm∗

i − Bm′

i )

cosh(Bm∗
i +Bm′

i )







. (19)

One can diagonalize the Hamiltonian in the subspace spanned by the above states to obtain

the eigenvalues λm. Then, using the min-max principle, we know that λn is an upper bound

for the nth eigenvalue of the Hamiltonian. Indeed, we found that in this case λn ≃ En

for large N as the off-diagonal matrix elements Hmm′ decay exponentially with the size of

system.

Notice that instead of imposing the orthogonality exactly we could ask for an exponen-

tially small overlap 〈Ψn(B
n)|Ψm(B

m)〉 < ǫN by demanding

cosh(Bn∗
i +Bm

i )

(cosh(2BnR
i ) cosh(2BmR

i ))1/2
< ǫ ≤ 1, (20)

for all i, which can easily be imposed in the above minsum equations. Indeed to apply the

min-max theorem we do not need a set of orthogonal states [18]; according to the theorem,

the nth eigenvalue is given by minSn+1 max|ψ〉∈Sn+1:〈ψ|ψ〉=1〈ψ|H|ψ〉 where Sn+1 is any subspace

of dimension n + 1.
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IV. BEYOND THE MEAN-FIELD APPROXIMATION

We can do better than the MF approximation by adding the local two-body or Jastrow

interactions [20] to the trial wave functions:

ψ(σ;P ) ∝
∏

i

φi(σi)
∏

(ij)∈Ec

φij(σi, σj), (21)

with

φi(σi) ≡ eBiσi, φij(σi, σj) ≡ eKijσiσj . (22)

For simplicity we are going to assume Ec = Eq. As a result, we obtain

ei(σi, σ
∂i) = −hie

−2BR
i σi−

∑
j∈∂i 2K

R
ijσiσj cos(2BI

i σi +
∑

j∈∂i

2KI
ijσiσj). (23)

The average energy is computed with respect to the following classical measure

µ(σ) ∝
∏

i |φi(σi)|
2
∏

(ij)∈Ec
|φij(σi, σj)|

2. To estimate the average energies 〈eij(σi, σj)〉µ and

〈ei(σi, σ
∂i)〉µ we need the following local marginals

µij(σi, σj) =
1

Zij
|φij(σi, σj)|

2µi→j(σi)µj→i(σj), (24)

µi,∂i(σi, σ
∂i) =

1

Zi,∂i
|φi(σi)|

2
∏

j∈∂i

|φij(σi, σj)|
2µj→i(σj), (25)

given in terms of the cavity marginals

µi→j(σi) ∝ |φi(σi)|
2
∏

k∈∂i\j

(

∑

σk

|φik(σi, σk)|
2µk→i(σk)

)

. (26)

For Bi = 0 we can simplify the equations by taking the symmetric (or paramagnetic)

solution of the BP equations. This is of course exact for a tree classical interaction graph

Ec. Then, the average local energies are given by

〈ei(σi, σ
∂i)〉µ = −hi

∏

j∈∂i

(

cos(2KI
ij)

cosh(2KR
ij )

)

, (27)

〈eij(σi, σj)〉µ = −Jij tanh(2K
R
ij ). (28)

The resulting minsum equations are

Mi→j(Kij) = min
{Kik|k∈∂i\j}







〈ei〉µ +
∑

k∈∂i\j

(〈eik〉µ +Mk→i(Kik))







, (29)
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and the optimal couplings are estimated by

K0
ij = argmin

Kij

{〈eij〉µ +Mi→j(Kij) +Mj→i(Kij)} . (30)

The orthogonality condition for two symmetric states reads

〈Ψn(K
n)|Ψm(K

m)〉 ∝
∑

σ

e
∑

(ij)∈Ec
(Kn∗

ij +Km
ij )σiσj ∝

∏

(ij)∈Ec

cosh(Kn∗
ij +Km

ij ) = 0, (31)

using the symmetric solution of the BP equations. Thus, to have orthogonality we need

cosh(Kn∗
ij + Km

ij ) = 0 for some link (ij). That is, for the nth excited state we have the

following set of constraints:

In,m =







KnR
imjm +KmR

imjm = 0,

KnI
imjm −KmI

imjm = π
2
,

(32)

for m = 0, . . . , n − 1. The link (imjm) is chosen to minimize the local energy 〈eimjm〉µn .

Then, one can use the same minsum equations as above to minimize over the remaining

parameters. The number of orthogonal states that we can find in this way is limited by

the number of the coupling parameters in the classical system which for a tree structure is

N − 1. The Hamiltonian matrix elements are given by

Hmm′ =
∏

(ij)∈Eq

(

cosh(Km∗
ij +Km′

ij )

(cosh(2KmR
ij ) cosh(2Km′R

ij ))1/2

)

×







−
∑

(ij)∈Eq

Jij tanh(K
m∗
ij +Km′

ij )−
∑

i

hi
∏

j∈∂i

(

cosh(Km∗
ij −Km′

ij )

cosh(Km∗
ij +Km′

ij )

)







. (33)

Similarly, we can make more general orthogonal states |Ψn(B
n, Kn)〉 and |Ψn(B

m, Km)〉

by choosing Bn
i such that for the complex measure νnm ∝ e

∑
i(B

n∗
i +Bm

i )σi+
∑

(ij)∈Ec
(Kn∗

ij +Km
ij )σiσj

we have e∆Fi = 0 for some i. This gives

e2(B
n∗
i +Bm

i ) = −
∏

j∈∂i

(
∑

σj
e−(Kn∗

ij +Km
ij )σjνj→i(σj)

∑

σj
e(K

n∗
ij +Km

ij )σjνj→i(σj)

)

. (34)

The node i can be chosen in a greedy way to minimize 〈ei(σi, σ
∂i)〉µn in the mean-field

approximation. Here it is more difficult to minimize the average energy 〈E(σ)〉µn , which

depends not only on the variational parameters but also on the BP cavity marginals µi→j(σi).

More precisely, the minsum equations read

Mi→j(Kij , µij) = min
Bi,{Kik,µik |k∈∂i\j}:I

(i)
BP







〈ei〉µ +
∑

k∈∂i\j

(〈eik〉µ +Mk→i(Kik, µik))







, (35)
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FIG. 1. The ground-state and excited-state energies (E0 and E1) for the transverse Ising model on

a random tree (RT) of size N = 20 with random Gaussian couplings Jij of mean zero and variance

one in a uniform transverse field hi = h. The exact results are compared with the upper bounds

that are obtained by a minimal energy subspace spanned by product states (MFoMF), symmetric

states (SoS), and tree states (ToT).

where µij ≡ (µi→j, µj→i). Note that the minimum in the right hand side is conditioned on

satisfying the local BP equations. The reader can find more details in Ref. [17].

V. NUMERICAL RESULTS

Let us start with a small system to compare the above approximations with the exact

results for the ground and excited states. We take a random tree with random Gaussian

couplings Jij of mean zero and variance one in uniform transverse fields hi = h. This system

displays a phase transition from the ordered phase for h < hc with a nonzero Edwards-

Anderson order parameter q ≡
∑

i〈σ
z
i 〉

2/N to a disordered phase for h > hc.

As Fig. 1 shows, we obtain better ground-state energies with the product and symmetric

states in the ordered and disordered phases, respectively. While the product states allow for

a nonzero magnetization, the symmetric states have by definition zero magnetization and

therefore more appropriate to represent the disordered ground state. Indeed, an estimate

of the transition point can be obtained by comparing the ground-state energies that are

computed by the product and symmetric states. Figure 2 displays these energies for the one-

dimensional transverse Ising model with ferromagnetic couplings. Nevertheless, for small

system sizes we always obtain better energies for the excited state by a minimal energy
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FIG. 2. Left panel: The ground-state energy density (E0/N) for the one-dimensional (1D)

transverse Ising model with uniform and ferromagnetic couplings (Jij = 1) obtained by the product

states (MF) and the symmetric states (S) in the thermodynamic limit. Right panel: The energy

gap E1 −E0 obtained by the product states (MFoMF) and tree states (TOT) for the same model

with N = 100 spins. In both the cases the gap is non-analytic at the corresponding phase transition

point, but it is non-vanishing close to the transition due to the local nature of the orthogonality

constraints.

subspace of the product states. In Fig. 1 we also display the results obtained by more

general trial wave functions having a tree structure defined by Ec = Eq. As expected, we

obtain much better upper bounds by introducing both the variational parameters Bi and

Kij . Figure 3 shows the results for a larger number of spins. Here, in the disordered phase we

find better upper bounds for the excited-state energy by the symmetric trial wave function.

This is due to the presence of very small couplings that reduce the cost of the orthogonality

constraint.

Finally, we present the MF results for the transverse Ising model in a two-dimensional

square lattice. In Fig. 4 we compare the upper bounds for the ground and excited states

with the exact ones in a small lattice.

VI. CONCLUSION

We generalized the variational quantum cavity method to study low-temperature excita-

tions of quantum systems within the Bethe approximation. We constructed orthogonal sets

of minimal energy quantum states, where the Hamiltonian matrix elements can be computed
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FIG. 3. The ground-state and excited-state energy densities (E0/N and E1/N) for the transverse

Ising model on a random tree (RT) of size N = 1000 with random Gaussian couplings Jij of mean

zero and variance one in a uniform transverse field hi = h. We compare the upper bounds that are

obtained by a minimal energy subspace spanned by product states (MFoMF), symmetric states

(SoS), and tree states (ToT).
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FIG. 4. The ground-state and excited-state energy densities (E0/N and E1/N) for the transverse

Ising model on a two-dimensional (2D) square lattice of size N = 4 × 5 with random Gaussian

couplings Jij of mean zero and variance one in a uniform transverse field hi = h. The exact results

are compared with the upper bounds that are obtained by a minimal energy subspace spanned by

product states (MFoMF).

exactly to obtain some upper bounds for the Hamiltonian eigenvalues. For more general trial

wave functions we have only an approximate estimation of the Hamiltonian matrix elements

but the estimation is expected to be asymptotically exact as long as the trial wave functions

are represented by locally tree-like classical interaction graphs. And finally, the method can

also be extended to include some appropriate global interactions in the trial wave functions
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that are essential to deal with the fermion sign problem [21].
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[16] O. Dimitrova and M. Mézard, J. Stat. Mech. P01020 (2011).

[17] A. Ramezanpour, Phys. Rev. B 85, 125131 (2012).

[18] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience Publ., New

York, 1989.

13



[19] F. R. Kschischang, B. J. Frey, and H. -A. Loeliger, IEEE Trans. Infor. Theory 47, 498 (2001)

[20] R. Jastrow, Phys. Rev. 98 1479 (1955).

[21] A. Ramezanpour and R. Zecchina, Phys. Rev. B 86, 155147 (2012).

14


