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Abstract 
Precise prediction of the streamflow has a significantly importance in water resources management. In this study, 
two time series models, Autoregressive Moving Average model (ARMA) Autoregressive Integrated Moving 
Average model (ARIMA) are used for predicting streamflow. In this research, monthly streamflow from 1974 to 
2010 were used. The statistics related to first 28 years were used to train the models and last 7 years were used to 
forecast. The prediction accuracy of both time series models is examined by comparing root mean square error 
(RMSE), the mean absolute percentage error (MAPE) and the Nash efficiency (NE). According to the results, 
ARIMA model performs better than the ARMA time series models. 
Keywords: Streamflow forecasting, Time series models, ARIMA, ARMA 
1. Introduction 
Stochastic models are mostly used for analyzing river runoff variations. Many classes of stochastic models have 
been applied in operational hydrology (Koutsoyiannis, 2000; Lawrance and Kottegoda, 1977). Stochastic models 
widely used for times series modeling and forecasting are the deseasonalized autoregressive integrated moving 
average (ARIMA) and autoregressive moving average (ARMA) models. These stochastic models are also known 
as Box-Jenkins linear stochastic models (Box et al., 2011; Reinsel et al., 1994). Some of the key advantages of 
Box-Jenkins linear stochastic models are i) they have capability for modeling and forecasting a high variety of 
stationary and non-stationary time series (Brown and Mac Berthouex, 2002). ii) They have the ability to estimate 
trends and serial correlations in a time series data (Gocheva-Ilieva et al., 2014). iii) These models have been 
incorporated into many software packages such as SPSS, MINITAB, STATA, R, Python, Matlab, Mathematica, 
and With regard to cost-effectiveness, labour planning always opts for the minimum amount of workers many 
others (Comparison of Statistical Packages, 2015). These models are also preferable due to systematic searching 
at every step (identification, estimation, diagnostic) for a suitable model (Zhang, 2003). These models require 
long time series data for analysis, at least 50-100 observations are required for a robust result. To analyze a 
yearly data, this condition will present a problem (Gocheva-Ilieva et al., 2014; Milionis and Davies, 1994). 
Mostly hydrologic time series do not have data more than 40-50 years.   
ARIMA and ARMA models have been extensively used in the field on hydrology and especially in River flow 
forecasting. Adhikary et al. (2012) used seasonal ARIMA model to modeling the groundwater table. They took 
weekly time series and concluded that SARIMA stochastic models can be applied for ground water level 
variations. Valipour et al. (2013) modeled the inflow of Dez dam reservoir with SARIMA and ARMA stochastic 
models. His research results show that SARIMA model yield better results than ARMA model. Ahlert and Mehta 
(1981) analyzed the stochastic process of flow data for Delaware River by ARIMA model. Yurekli et al. (2005) 
applied SARIMA stochastic models for modeling the monthly streamflow data of the Kelkit river. Modarres and 
Ouarda (2013) demonstrated heteroscedasticty of streamflow time series by ARIMA model in comparison of 
GARCH models. His study results show that ARIMA models perform better than GARCH models. Ahmad et al. 
(2001) used ARIMA model to analyse the water quality data. Kurunç et al. (2005) used the ARIMA and Thomas 
Fiering stochastic approach to forecast streamflow data of Yesilurmah River. Tayyab et al. (2016) used auto 
regressive model in comparsion of neural networks to predict streamflow. The aim of this study to compare two 
different time series models, ARMA and ARIMA, for monthly streamflow forecasting. Data from Doyian station 
are used in the applications. 
 
2. Methodology  
Box and Jenkins developed ARIMA stochastic models that describe a wide class of models forecasting a 
univariate time series that can be made stationary by applying transformations – mainly differences for Trend 
and Seasonality, and power function to regulate the variance (Box and Jenkins, 1970; Box and Jenkins, 1976; 
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Box et al., 1967) The model, word “ARIMA” consists of three terms i.e. i) AR ii) I and iii) MA terms. Lags of 
differenced time series in the forecasting equations are called “autoregressive(AR)” term, whereas lags of the 
forecasted errors are called “moving average (MA)” term and the time series which requires differenceation to 
become stationary should be “Integrated (I)” (Ghafoor and Hanif, 2005).  
AR(p), MA(q) and Auto regressive moving average (ARMA(p,q)) models are some special cases of Box and 
Jenkins ARIMA model. In this study, ARMA and ARIMA models are used to evaluate the performances of time 
series of streamflow. Time series can be made deseasonalize by many methods. In this study, streamflow time 
series is desesonalized by seasonal-trend decomposition procedure based on loess (STL) (Cleveland et al., 1990). 
Many features of STL make it a preferable choice for times series deseasonalization, like the capability to handle 
seasonal time series with any seasonal period greater than one (Theodosiou, 2011). In addition, STL can be 
easily incorporated in statistical software packages. After deseasonalizing the time series, the non-seasonal 
ARIMA and ARMA models can be fitted. 
 
2.1 ARIMA Model 
A non seasonal ARIMA model is denoted by ARIMA(p,d,q) whereas “p” is the number of non seasonal 
autoregressive term, ”q” is the number of non seasonal moving average term and “d” represents the number of 
non seasonal differences applied to the time series. The general form of non seasonal ARIMA (p,d,q) model can 
be written as follows; 

St= c+ Φ1St-1+  Φ2St-2+….+ ΦpSt-p+ et - θ1 et-1 - θ2 et-2 -……- θq et-q  
    (1) 

Or in backshift notation, 
(1- Φ1B-  Φ2B2-….- Φp BP) St = c+ (1- θ1 B - θ2B2 -……- θq Bq)et                                (2) 

Where c=constant term (called intercept), Φ1 = ith autoregressive parameter, θj= jth moving average parameter et= 
the error term at time t  
 
2.2 ARMA Model 
The auto-regressive moving average (ARMA) model ARMA (p, q) can be expressed as; 

St= c+ ∑Pi=1ΦiSt-1+  ∑qj=1 θj et-j + et 
        (3) 

Where c is the constant term of the ARMA model, Φi indicates the ith auto-regressive coefficient, θj is the jth 
moving average coefficient, et shows the error term at time period t, and St refers the value of forecasted 
streamflow at time period t. 
 
2.3 Time Series Models Building Procedure 
In the estimation stage, several models are tentatively chosen and then computes the values of Akaike 
Information Criterion corrected (AICc) (Hurvich and Tsai, 1989) or/and the Bayesian Information Criteria (BIC) 
suggested by Schwarz (1978). The model structure which has the minimum AICc and BIC values, among others 
model structures, will be chosen as best model. The eq. (4) describes the formula to compute AICc whereas eq. (5) 
describes the formula for BIC. 
 
     

 (4) 
   BIC  = -2ln (Max.Likelihood) + Tp ln(n),                   

(5) 
with Tp the number of AR, I and MA parameters. 
After selecting the best model, third stage of diagnostic check is performed. In diagnostic check, the modeler can 
analyze the goodness of fit of selected model. Mostly, researchers perform two tests to check goodness of fit of 
selected model. First test is to check the residuals by using ACF and PACF graph. If the selected model is 
appropriate, the residuals graphs of both correlation functions should be white noise, indicating no remaining 
correlation. The second test is Ljung-Box test (1978). If the values of p-value in this test exceed the 5%, it 
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indicates that residuals do not have significant departure from white noise. If the selected model residuals are 
very large or model fails to pass Ljung-Box test, the modeler return to select alternative model and follow the 
same procedure until satisfactory model results are obtained. 
 
3. Data Distribution and Data Preprocessing In this study, two time series models, ARMA and ARIMA models used for forecasting monthly flow of Doyian 
station. The implantation period covered the data values from 1974 to 2003 and used for building of ARIMA and 
ARMA models. The testing period covers the streamflow data values from 2004 to 2010 and has been used to 
evaluate the performance of both selected models. In order to select the best model between the ARMA and 
ARIMA models, root mean square error (RMSE), mean absolute percentage error (MAPE) and Nash efficiency 
(NE) indexes are used in this study. RMSE is one of the most used statistical index for measuring error in the 
prediction with respect to original data (Lin et al., 2006). It is defined as: 

21 ( )O fRMSE S SN   (6) 
MAPE is statistical indexes used for measuring the error in the predicting time series value. It is defined as:  

( )1 o f
O

S SMAPE N S
   (7) 

The Nash efficiency (NE) is a model evaluation criteria suggested by Nash and Sutcliffe (McCuen et al., 2006). 
A model efficiency of 90 % represents satisfactory performance whereas a value in range of 80 to 90 % 
represents fairly good performance. This statistical index helps in determining how much the predicted data 
match the original data. It has been used for streamflow time series forecasting evaluation (McCuen et al., 2006). 
It can be calculated as: 

2

2
( )1 ( )

o f

o o

S SNE S S
  

  (8) 
Where N is the total number of observations, oS  is observed flow, fS  is forecasted streamflow, oS  is average 
of streamflow and fS is average forecasted flow. 
 
4. Results and Discussion To determine the prediction accuracy of these time series models, first determine the suitable structures of 
ARMA and ARIMA models on the basis of AICc and BIC criteria by using the Box and Jenkins model selection 
procedure. The procedure of selecting suitable ARMA and ARIMA structures is explained below. 
 
4.1 Selecting Suitable ARIMA and ARMA Models Monthly streamflow data (Fig. 1) indicates seasonal variation having order of 12. To fit the non seasonal ARIMA 
model, deseasonalization was applied to the streamflow data. The deseasonalization was performed by using 
STL decomposition method. Deseasonalized monthly streamflow time series (Fig. 2) shows no specific seasonal 
or trend, but still exhibits non stationary behavior. A non seasonal difference is applied to time series to make it 
stationary. The plots of ACF, PACF and deseasonalized time series after applying non seasonal difference are 
shown in Fig. 3. Both plots are examined in order to identify the structure of model. According to the 
correlations plots, the suggested ARMA model is (1, 3), because PACF plot is suggesting AR(3) term whereas 
ACF is suggesting MA(1) term. For ARIMA model selection, different ARIMA model structures were estimated 
to find the best model structure.  
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 Figure 1. Original streamflow time series 
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 Figure 2. Deseasonalized time series plot 
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 Figure 3. ACF, PACF graphs after non seasonal difference 
Table 1. AICc and BIC values for different ARIMA model structures 

Model Structure AICc BIC 
ARIMA(3,1,1) 3777.5 3796.75 
ARIMA(0,1,3) 3775.18 3790.6 
ARIMA(3,1,3) 3781.3 3808.17 
ARIMA(3,1,2) 3779.37 3802.43 
ARIMA(3,1,0) 3824.78 3840.2 
ARIMA(1,1,1) 3779.37 3790.95 
ARIMA(1,1,2) 3776.06 3791.48 
ARIMA(1,1,3) 3777.17 3796.41 
ARIMA(2,1,1) 3775.47 3790.89 
ARIMA(2,1,2) 3777.51 3796.75 
ARIMA(2,1,3) 3779.23 3802.29 
ARIMA(0,1,2) 3785.13 3796.71 

 
The values of AICc and BIC of the different ARIMA models are shown in Table 5. In this case, the initial 
suggested model structure has the minimum AICc and BIC values and has been chosen as best model structure 
for deseasonalized streamflow time series. The selected model also passed both tests included in the diagnostic 
check. The plots of the ACF and PACF for the residuals are shown in Fig. 4, whereas the summary of the Ljung 
Box test for the deseasonalized ARIMA model is given in Table 2. The results of both tests suggest that the 
residuals are white noise. From Eq. (1), in back shift notation, the ARIMA(0, 1, 3) model can be written as: 

(1-B)dSt=(1- Φ1NMA(B)- Φ2NMA(B2)- Φ3NMA(B3))et (9) 
By substituting the coefficients, one obtains the model 

St- St-1=et+0.3987et-1+0.356et-2+0.183et-3 (10) 
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 Figure 4. Residual graphs of ACF,PACF of ARIMA model 
 

Table 2. Summary of Ljung Box test for deseasonalized ARIMA Model 
lag Lag 12 Lag 24 Lag 36 Lag 48 

Chi square 1.7626 15.255 41.614 50.408 
Df 9 21 33 45 

p-value 0.9947 0.8099 0.1445 0.2682 
 
4.2 Evaluation of Best Predicting Model In order to evaluate the performance of the models, one month ahead forecasts were generated for the testing 
period from January 2004 to December 2010. In Table 3, the both time series models are compared with each 
other by using statistical indexes. The hydrograph between original forecasted streamflow using ARMA and 
ARIMA models in Figure 4. On the basis of results of Table 3 and Fig. 5, ARIMA model performs better than 
ARMA models because ARIMA model gives low value of error and high value of Nash efficiency and also in 
good fit with the observed data. 

 Table 3 Evaluation of model performance for testing period on basis of statistical indexes 
Statistical Index ARIMA ((0,1,3) ARMA (1,3) 

MAPE 17.268 19.642 
RMSE 51.525 57.273 

NE 0.858 0.836 
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 Figure 5. Observed and forecasted streamflow hydrograph using ARIMA and ARMA models for testing period 
5. Conclusions In this research, the stochastic nature of streamflow is analyzed with deseasonalized ARIMA and ARMA 
stochastic models. The ARIMA model has a better performance than ARMA model because it makes time series 
stationary, in both training and forecasting. The values of mean absolute percentage error and root mean square 
error of ARIMA model was less than ARMA model. This indicated the superiority of ARIMA models to the 
ARMA models. it can be concluded that the ARIMA model could be used for forecasting one month ahead 
streamflow at this site. 
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