An Efficient Method of Solving Lexicographic Linear Goal Programming Problem

U.C. ORUMIE D. W EBONG
Department of Mathematics/Statistics, University of Port Harcourt, Nigeria
amakaorumie@yahoo.com & daniel.ebong@uniport.edu.ng

Abstract
Lexicographic Linear Goal programming within a pre-emptive priority structure has been one of the most widely used techniques considered in solving multiple objective problems. In the past several years, the modified simplex algorithm has been shown to be widely used and very accurate in computational formulation. Orumie and Ebong recently developed a generalized linear goal programming algorithm that is efficient. A new approach for solving lexicographic linear Goal programming problem is developed, together with an illustrative example. The method is efficient in reaching solution.

Keywords: Lexicographic Goal programming, multi objective, simplex method.

1. INTRODUCTION
Multiple Objective optimizations technique is a type of optimization that handles problems with a set of objectives to be maximized or minimized. This problem has at least two conflicting criteria/objectives. They cannot reach their optimal values simultaneously or satisfaction of one will result in damaging or degrading the full satisfaction of the other(s). There is no single optimal solution in this type of optimization; rather an interaction among different objectives gives rise to a set of compromised solutions, largely known as the trade-off or non dominated or non inferior or Pareto-optimal solutions. Multiple Objective optimization consists of different problem situations, such as multiple objective linear programming (MOLP), Multiple Objective Integer Linear Programming (MOILP), and Nonlinear Multiple Objective Optimization (NMOM).

Wang et.al (1980) and Evans (1984) categorised multiple objective optimization into three as shown in Aouni and Kettani (2001). The categories are as follows;
• A priori techniques in which all decision maker preferences are specified before the solution process.
• Interactive techniques in which the decision maker preferences are elicited during the solution technique, mainly in response to their opinion of solutions generated to that point.
• A posteriori techniques where the solution process takes place first and the decision maker preferences are then elicited from the generated set of solution.

Goal programming is one of the posteriori techniques, and most commonly method for solving multiple objective decision problems. (See Sunar and Kahraman (2001)). Goal programming popularity from amongst the distance-based MCDM techniques as described by Tamize and Jones (2010) demonstrates its continuous growth in recent years as represented below;

Goal Programming as a Multi-criteria Decision Analysis Tool

Goal programming is used in optimization of multiple objective goals by minimizing the deviation for each of the objectives from the desired target. In fact the basic concept of goal programming is whether goals are attainable or not, an objective may be stated in which optimization gives a result which come as close as possible to the desired goals. Schniederjans and Kwaks (1982) referred to the most commonly applied type of goal programming as "pre-emptive weighted priority goal programming" and a generalized model for this type of programming is as follows:

minimize:

\[Z = \sum_{i} w_{i} p_{i} (d_{i}^{-} + d_{i}^{+}) \]

s.t

\[\sum_{j} a_{ij} x_{ij} + d_{i}^{-} - d_{i}^{+} = b_{i}, \quad (i = 1,2,\ldots,m), \]

\[x_{ij}, d_{i}^{-}, d_{i}^{+} \geq 0, \quad w_{i} > 0, \quad (i = 1,2,\ldots,m : \quad j = 1,2,3,\ldots,n) \]

In many situations, however, a decision maker may rank his or her goals from the most important (goal 1) to least important (goal m). This is called Preemptive goal programming and its procedure starts by concentrating on meeting the most important goal as closely as possible, before proceeding to the next higher goal, and so on to the least goal i.e. the objective functions are prioritized such that attainment of first goal is far more important than attainment of second goal which is far more important than attainment of third goal, etc, such that lower order goals are only achieved as long as they do not degrade the solution attained by higher priority goal. When this is the case, preemptive goal programming may prove to be a useful tool. The objective function coefficient for the variable representing goal i will be \(p_{i} \). In problem with more than one goal, the decision maker must rank the goals in order of importance.

However, a major limitation in applying GP as recorded in Schniederjans, M. J. & N. K. Kwak (1982) has been the lack of an algorithm capable of reaching optimum solution in a reasonable time. Hwang and Yoo (1981) cited a number of limitations found in existing algorithms. The purpose of this research is to present an efficient method for solving lexicographic linear goal programming problems.

The paper is organized as follows: Introduction to Preemptive Linear Goal Programming is provided in section two. The new algorithm for lexicographic goal programming and the solution description are the focus of Sections three and four respectively, whereas the summary and conclusion will be presented in section five and six respectively.

2.LEXICOGRAPHIC (PREEMPTIVE) LINEAR GOAL PROGRAMMING (LLGP)

The basic purpose of LLGP is to simultaneously satisfy several goals relevant to the decision-making situation. To this end, a set of attributes to be considered in the problem situation is established. Then, for each attribute, a target value (i.e., appraisal level) is determined. Next, the deviation variables are introduced. These deviation variables may be negative or positive (represented by \(d_{i}^{-} \) and \(d_{i}^{+} \) respectively). The negative deviation variable, \(d_{i}^{-} \), represents the quantification of the under-achievement of the \(i \)th goal. Similarly, \(d_{i}^{+} \) represents the quantification of the over-achievement of the \(i \)th goal. Finally for each attribute, the desire to overachieve (minimize \(d_{i}^{-} \)) or underachieve (minimize \(d_{i}^{+} \)), or satisfy the target value exactly (minimize \(d_{i}^{-} + d_{i}^{+} \)) is articulated. And finally, the deviational variables prioritized in order of importance.

The general algebraic representation of lexicographic linear goal programming is given as

\[\text{lexi min } z = (p_{1}(d_{1}^{-}, d_{1}^{+}), p_{2}(d_{2}^{-}, d_{2}^{+}), \ldots, p_{k}(d_{k}^{-}, d_{k}^{+})) \]

s.t

\[\sum_{j} a_{ij} x_{ij} + d_{i}^{-} - d_{i}^{+} = b_{i}, \quad (i = 1,2,\ldots,m), \]

\[x_{ij}, d_{i}^{-}, d_{i}^{+} \geq 0, \quad w_{i} > 0, \quad (i = 1,2,\ldots,m : \quad j = 1,2,3,\ldots,n) \]

The model has k priorities, m objectives and n decision variables. \(p_{i} \) is the ordered \(i \)th priority level of the deviational variables in the achievement function. The priority structure for the model is established by assigning each goal or a set of goals to a priority level, thereby ranking the goals lexicographically in order of importance to the decision maker. This is known as lexicographic GP (LGP), as introduced by Ijiri (1965), and developed by Lee (1972), and Ignizio (1976). This was modified by [11], [12], [13], [14], and [15]. Priorities do not take numerical value, but simply a suitable way of indicating that one goal is more important than another.
3. THE NEW ALGORITHM FOR LEXICOGRAPHIC GOAL PROGRAMMING (LGP)

The procedure utilizes Orumie and Ebong (2011) initial table with modifications as shown below, together with the inclusion of hard constraints. The procedure considers goal constraints as both the objective function and constraints. The objective function becomes the prioritized deviational variables and solves sequentially starting from the highest priority level to the lowest. It starts by not including the deviational variable columns that did not appear in the basis on the table, but developed when necessary since \[d_i^- = -d_i^+ \].

TABLE 1.1 INITIAL TABLE OF THE NEW ALGORITHM

<table>
<thead>
<tr>
<th>Variable in basis with (p_i)</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(\ldots)</th>
<th>(X_n)</th>
<th>(S)</th>
<th>(d_i^{(-)})</th>
<th>(d_i^{(+)})</th>
<th>Solution value (b_i)</th>
<th>R.H.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{11})</td>
<td>(a_{12})</td>
<td>(\ldots)</td>
<td>(a_{1n})</td>
<td>(s_1)</td>
<td>(c_{11}^{(v)})</td>
<td>(c_{12}^{(v)})</td>
<td>(\ldots)</td>
<td>(c_{1t}^{(v)})</td>
<td>(b_1)</td>
</tr>
<tr>
<td>(a_{21})</td>
<td>(a_{22})</td>
<td>(\ldots)</td>
<td>(a_{2n})</td>
<td>(s_2)</td>
<td>(c_{21}^{(v)})</td>
<td>(c_{22}^{(v)})</td>
<td>(\ldots)</td>
<td>(c_{2t}^{(v)})</td>
<td>(b_2)</td>
</tr>
<tr>
<td>(\ldots)</td>
</tr>
<tr>
<td>(a_{m1})</td>
<td>(a_{m2})</td>
<td>(\ldots)</td>
<td>(a_{mn})</td>
<td>(s_m)</td>
<td>(c_{m1}^{(v)})</td>
<td>(c_{m2}^{(v)})</td>
<td>(\ldots)</td>
<td>(c_{mt}^{(v)})</td>
<td>(b_m)</td>
</tr>
</tbody>
</table>

Consider the Preemptive Linear Goal programming model. The formulation for \(n \) variables, \(m \) goal constraints, \(t \) deviational variables in \(z \) and \(L \) preemptive priority factors is defined below.

\[
\text{lex} \quad \min \ z = \sum_k p_k (d_i^{(-)}, d_i^{+}) \quad \text{for} \quad k \leq i \leq \{1,2,\ldots,m\} \quad (3.1)
\]

such that

\[
\sum_j a_{ij} x_j + d_i^- - d_i^+ = b_i \quad (3.2)
\]

\[
\sum_j a_{ij} x_j \leq b_i \quad (3.3)
\]

\[
x_j, d_i^+, d_i^- \geq 0 \quad (3.4)
\]

for \(i = 1,2,\ldots,m : \quad j = 1,2,\ldots,n \)

where \(p_k = k^{th} \) priority factor \(k=1,2,\ldots,L \),

\(\mathcal{P}_k(d_i^{(-)}, d_i^{+}) \) are set of deviational variables in \(z \) with the priorities attached to them.

\[
x_j, d_i^+, d_i^- \geq 0 \quad i = 1,\ldots,m, \quad j = 1,\ldots,n
\]

Let \(p_i \) be the \(k^{th} \) priority level, then; the algorithm;

Step 1. Initialization:

Set \(k \leftarrow 1 \) i.e set the first priority \(k=1 \)

Step 2. Feasibility:

If \(b_i = 0 \) for \(i=1,2,\ldots,m \) go to Step 8. i.e if all the rhs=0 {solution optimal}

Set \(b_i \leftarrow |b_i| \) for \(i=1,2,\ldots,m \). i.e take absolute value of the rhs {ensure feasibility}

Step 3. Optimality test:

If \(g_{b_i} \leq 0 \) for all \(j \neq \text{pivot column} \), \(h \in i_k \) go to Step 7.

{all coefficients of priority row \(h \) non positive so \(\mathcal{P}_k \) is satisfied}.

Step 4. Entering variable:

Entering variable is the variable with highest positive coefficient in the row \(g_{b_i}, h \in \{1,2,L\} \) for the \(p_k (d_i^{(-)}, d_i^{+}) \) rows of the objective function which does not violate priority condition. i.e if \(g_{b_i}, h \in \{1,2,L\} \) is the highest coefficient, but has been previously satisfied or more important than the leaving variable under consideration, then consider the next higher value on the same row, otherwise go to step 7. (The priority attached to the entering variable should be placed alongside with it into the basis).

In case of ties \(\{ g_{b_{j1}}, \ldots, g_{b_{jv}} \} \), then the entering variable is the variable for which
\[
\min_h \left\{ \frac{b_i}{g_{h,i}} : g_{h,i} > 0 \right\} \quad \text{is maximum } \quad j_q = 1, \ldots, s
\]

\{ties in the priority rows\}

Step 5. Leaving variable:

If \(y_0 \) is the column corresponding to the entering variable in Step 4, then the leaving variable is the basic variable with minimum \(\left\{ \frac{b_i}{g_{h,i}} : g_{h,i} > 0, i = 1, 2, \ldots, m \right\} \) \(g_{h,i} \) is the pivot column}. In case of ties, the variable with the smallest right hand side leaves the basis.

Step 6. Interchange basic variable and non basic variable:

Perform Gauss Jordan row operations to update the table. If \(x_h \) is still in the basis \((C_B)\), go to Step 3.

Step 7. Increment process:

Set \(k \leftarrow k + 1 \). If \(k \leq L \), go to Step 3. Satisfied priority will not reenter for the lesser one to leave, instead variable with the next higher coefficient enters the basis.

Step 8. Solution is optimal when:

i.) The coefficient of the priority rows are all negative or zero
ii.) The right hand sides of the priority rows are all zero
iii.) The priority rows are satisfied.

The optimal solution is the vector \(p_z(d^+_i, d^-_i) \) in the objective function as appeared in the last iteration tableau. i.e. The value of the achievement function becomes a vector of priority levels in the optimal values in the final tableau.

Note: Just as in the method of artificial variables, a variable of higher or equal priority that has been satisfied should not be allowed to re-enter the table. In this case the next higher coefficient of \(g_{h,i} \) will be considered.

4. SOLUTION OF ILLUSTRATIVE EXAMPLE

Given an example i below, the solution procedure is thus;

\[
\begin{align*}
\min z &= p_1 d_1^- + P_2 d_2^- + P_3 d_3^- + p_4 d_4^+ \\
\text{s.t} &
\begin{align*}
x_1 + 6x_2 + d_1^- - d_1^+ &= 30 \\
2x_1 + 3x_2 + d_2^- - d_2^+ &= 12 \\
6x_1 + 5x_2 + d_3^- + d_3^+ &= 30 \\
x_2 + d_4^- - d_4^+ &= 7 \\
x_i &\geq 0, d_i^+, d_i^- \geq 0, d_i^+ \cdot d_i^- = 0
\end{align*}
\end{align*}
\]

TABLE 1: INITIAL TABLE FOR PROBLEM (I)

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(x_2)</th>
<th>(d_1^-)</th>
<th>(d_2^-)</th>
<th>(d_i^-)</th>
<th>(d_i^+)</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1 d_1^-)</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>(p_2 d_2^-)</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>(p_3 d_3^-)</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(p_4 d_4^-)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(x_i \) enter \\
\(d_i^- \) leaves

The above table (1) is the initial table of problem (i). Column one represents the variables in z with priorities assigned to each of them which forms the bases. Columns two and three represent the coefficients of the decision
variables \((a_{ij})\) in the goal constraints equation. Columns four to seven represent coefficient of deviational variables \((c_{it})\) in the goal constraint equations that appeared in the achievement function. Column eight is the right hand side values of the constraints equations. Applying the algorithm,

Step 1. set \(k=1\).

Step 2. \(\exists b_i=0\) for \(i=1,2, \ldots, 4\). \{So solution feasible.\}

Step 3. \(\exists g_{1j}>0\) for some \(j\). \{So solution not optimal.\} Since there is positive coefficient in the priority row, then the solution is not optimal.

Step 4. Max \(\{g_i\} = \max\{7, 6, 1, 0,0,0\} = 7\) at \(g_{11}\). i.e. \(x_1=7\) enters the bases since it is the highest in the row.

Step 5. Min \(\{\frac{b_i}{g_{ij}}\} = \min\{\frac{30}{7}, 6, 5,\} = \frac{30}{7}\) at \(g_{11}\). So \(d_1^-\) leaves the bases. i.e the minimum ratio of the right hand side to the entering column.

Step 6. Perform the normal gauss Jordan’s simplex operation to update the new Tableau (see Tableau 2) and check if \(p_1\) is still in the basis \((C_B)\) to test for optimality.

Table 2: 1St Iteration for Problem (i)

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1d_2)</td>
<td>0</td>
<td>(9/7)</td>
<td>-2/7</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(p_1d_3)</td>
<td>0</td>
<td>-1/7</td>
<td>-6/7</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(p_1d_4)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(x_2\) enter
\(d_2^-\) leaves

Table (2), shows that \(p_1\) is satisfied since it is no longer in the bases.

Step 7. Set \(k=2\). Since \(2 < L=4\), go to step 3.

Step 3. \(\exists g_{2j}>0\) for some \(j\). i.e \(2^\text{nd}\) priority row. \{So solution not optimal\}

Step 4. Max \(\{g_{2j}\} = \max\{0,9/7,-2/7,1,0\} = 9/7\) at \(g_{22}\). So, \(x_2\) enters the basis.

Step 5. Min \(\frac{b_i}{g_{ij}}\): \(g_{22} > 0\) = \(\min\{5, 8/3,7\} = 8/3\) at \(\frac{b_2}{g_{22}}\). \(d_2^-\) leave since it has the smallest minimum ratio.

Step 6. Perform the same operation to update the new tableau Table 3 and check if \(p_2\) is still in the basis \((C_B)\) to test for optimality.

Table 3: 2Nd Iteration for Problem (i)

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>1</td>
<td>0</td>
<td>(1/3)</td>
<td>(-2/3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td>1</td>
<td>(-2/9)</td>
<td>7/9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(p_1d_2)</td>
<td>0</td>
<td>0</td>
<td>(-8/9)</td>
<td>1/9</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(p_1d_3)</td>
<td>0</td>
<td>0</td>
<td>2/9</td>
<td>(-7/9)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(d_2^-\) enter
\(x_1\) Leaves

Table (3), shows that \(p_2\) is satisfied since it is no longer in the bases.

Step 7. Set \(k=3\). Since \(3 < L=4\), go to step 3.

Step 3. \(\exists g_{3j}>0\) for some \(j\). i.e \(3^\text{rd}\) priority row. \{So solution not optimal\}

Step 4. \(\{\max g_{3j}\} = \max\{0,0, 2/9,-7/9,1,0\} = \frac{2}{9}\) at \(g_{34}\). So, \(d_3^-\) enters the basis.

Step 5. Min \(\frac{b_i}{g_{ij}}\): \(g_{34} > 0\) = \(\min\{3, 39/7\} = 3\) at \(\frac{b_4}{g_{34}}\). So \(x_4\) leave since it has the smallest minimum ratio.
Step 6. Perform the same operation to update the new tableau Table 4 and check if p_3 is still in the basis (C_B) to test for optimality.

Table 4: 3rd Iteration for Problem (i)

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>d_1^-</th>
<th>d_2^-</th>
<th>d_3^-</th>
<th>d_4^-</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1^+</td>
<td>3/2</td>
<td>0</td>
<td>1/2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>7/6</td>
<td>1</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$p_4d_1^+$</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$p_4d_2^+$</td>
<td>-7/6</td>
<td>0</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$\begin{array}{l}
\text{Step 3. } \exists \ g_{4j} > 0 \text{ for some j. i.e 3rd priority row. \{So solution not optimal\}} \\
\text{Step 4. } \{\text{max } g_{4j}\} = \text{max } \{-7/6, 0, 1/6, 0, 1, 0, 0\} = 1/6 \text{ at } g_{43}. \text{ But, } d_1^- \text{ cannot re-enter for lower priority to leave the basis. Therefore } p_3 \text{ cannot be satisfied further, so go to step 7.} \\
\end{array}$

$\begin{array}{l}
\text{Step 7. } \text{Set } k=4 \text{ and go to step 3.} \\
\text{Step 3. } \exists \ g_{j4} > 0 \text{ for some j. i.e 4th priority row. \{So solution not optimal\}} \\
\text{Step 4. } \{\text{max } g_{j4}\} = \text{max } \{1/6, 0, -5/6, 0, 0, 0, 1, 0\} = 5/6 \text{ at } g_{33}. \text{ So, } d_1^- \text{ enters the basis.} \\
\text{Step 5. } \text{Min } \frac{b_i}{g_{ij}} : |g_{ij}| > 0 \text{ = min } \{6\} = 6 \text{ at } \frac{b_i}{g_{3j}}. \text{ So } d_3^- \text{ leave.} \\
\text{Step 6. } \text{Perform the same operation to update the new tableau Table 5 and check if } p_4 \text{ is still in the basis (C_B) to test for optimality.} \\
\end{array}$

Table 5: 4th Iteration for Problem (i)

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>d_1^-</th>
<th>d_2^-</th>
<th>d_3^-</th>
<th>d_4^-</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1^+</td>
<td>5/8</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>6/5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_3^+</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_4^+</td>
<td>-6/5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$\begin{array}{l}
\text{Step 3. } \exists \ g_{4j} > 0 \text{ for some j. i.e 3rd priority row. \{So solution not optimal\}} \\
\text{Step 4. } \{\text{max } g_{4j}\} = \text{max } \{-6/5, 0, 0, 1, 0, 0, 0, 1/5\} = 1/5 \text{ at } g_{48}. \text{ So, } d_3^- \text{ re-enter for higher priority to leave the basis.} \\
\text{Step 5. } \text{Min } \frac{b_i}{g_{ij}} : |g_{ij}| > 0 \text{ = min } \{6\} = 6 \text{ at } \frac{b_i}{g_{3j}}. \text{ So } d_4^- \text{ leave.} \\
\text{Step 6. } \text{Perform the same operation to update the new tableau Table 6 and check if } p_4 \text{ is still in the basis (C_B) to test for optimality.} \\
\end{array}$

Table 6: Final Iteration

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>d_1^-</th>
<th>d_2^-</th>
<th>d_3^-</th>
<th>d_4^-</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1^+</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>15/2</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>d_3^+</td>
<td>7</td>
<td>0</td>
<td>-1</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>d_4^+</td>
<td>-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

$Z=5$
The above is optimum since they cannot be achieved further.

5. RESULT

Problems from standard published papers of various sizes and complexities were solved to test the efficiency of the new lexicographic algorithm. The models varied widely in the number of constraints, decision variables, deviational variables and pre-emptive priority levels as shown in the table below.

<table>
<thead>
<tr>
<th>TABLE 7. RESULT SUMMARY OF THE SOLVED PROBLEMS USING THE PROPOSED METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>source No of constraints</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Igizio(1982)</td>
</tr>
<tr>
<td>Crowder & Sposito (1987)</td>
</tr>
<tr>
<td>Cohon (1978)</td>
</tr>
<tr>
<td>Hana (2006)</td>
</tr>
<tr>
<td>Gupta(2009)</td>
</tr>
<tr>
<td>Gupta(2009)</td>
</tr>
<tr>
<td>Rifia (1996)</td>
</tr>
<tr>
<td>Baykasoglu(1999)</td>
</tr>
<tr>
<td>Baykasoglu(2001)</td>
</tr>
<tr>
<td>Olson(1984)</td>
</tr>
</tbody>
</table>

6 CONCLUSION

The proposed method is an efficient method of solving lexicographic Goal programming. The new method is used in solving various lexicographic linear Goal programming problems of different variables sizes, goals, constraints and deviational variables. The proposed method is an efficient method and its formulation represents a better model than the existing ones.

REFERENCES

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar