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Abstract 

This study investigated the effectiveness of LZ appropriateness index in detecting aberrant response patterns 

under nine combinations of item difficulty and examinee’s ability distributions, type of aberrance, and level of 

aberrance. Data was generated in nine combinations of item difficulty and examinee ability to simulate the 

responses of 2000 non-aberrant examinees’ response patterns to a 60-item test according to three-parameter 

model. Three uniform distributions of item difficulty were used. Two samples each consisting of 500 normal 

response vectors (one for spuriously low and one for spuriously high modifications) were also generated in each 

of the nine combinations and subjected to spurious treatment. An examinee with a spuriously high test score was 

simulated by selecting 20% or 10% of the examinee's original responses without replacement and changing 

incorrect answers to correct, but they were left unchanged if correct. An examinee with a spuriously low test 

score was simulated by first randomly selecting 20% or 10% of the examinee's original responses without 

replacement and changing correct responses to incorrect, but they were left unchanged if incorrect. LZ 

appropriateness index was then computed for the aberrant response vectors. The effectiveness of LZ index was 

evaluated by examining the extent to which it separated normal and aberrant response vectors solely on the basis 

of appropriateness index scores. The percentile estimates obtained for each index at each false positive rate were 

used as cutoff scores. The LZ index identified higher proportions of aberrant response patterns in the 20% 

spuriously low treatment samples than in the 20% spuriously high treatment samples. Ten percent spuriously low 

aberrant response samples were also found to be more detectable than the 10% spuriously high aberrant response 

patterns. The detection rates of the 20% and the 10% spuriously high aberrant response patterns by LZ index 

were found to be higher under high item difficulty parameters, and were found to be low under the low item 

difficulty parameters. This is not surprising as it is expected that more responses are changed from incorrect to 

correct and fewer responses are changed from correct to incorrect under high item difficulty parameters. The 

20% and the 10% spuriously low aberrant response patterns were also more detectable under the low item 

difficulty parameters because more responses are changed from correct to incorrect and fewer are changed from 

incorrect to correct under the low item difficulty parameters.  

Keywords: Appropriateness index, effectiveness, maximum likelihood index, validity.  

 

1 Introduction 

One of the basic characteristics of a test is its validity. While numerous techniques are used to assess validity, 

these techniques generally involve the validity of the test of the group of individuals. However, while a test may 

be valid for a group, it may not be valid for a particular individual who may have cheated, experienced illness, or 

lacked motivation during the test. 

Various types of unique background experiences or individual differences in motivational dispositions 

such as test anxiety may make an item difficult for some examinees though it may be quite easy for most other 

examinees. Differential exposure to and emphasis of subject matter covered by an achievement test may result 

not only in the mean differences on total score from class to class but also in differences in typical response 

patterns. For example, there are 3,003 possible response patterns that yield a score of 10 on a 15-item test.    

One can imagine numerous real situations where serious mistakes might be avoided if individuals with 

invalid test results were identified. For example, if the test was being used for selection to a training program, an 

invalid test score could result in a great deal of frustration on the part of any trainee who is selected or rejected 

inappropriately. This inappropriate decision would also result in administration problems and unnecessary cost 

on the part of the training institution. 

Multiple-choice and other objectively scored tests offer a distinctive way of assessing whether a test is 

valid for an individual because the responses of persons with a given score are expected to follow a certain 

pattern. One would expect, for example, that an examinee of high ability would respond correctly to most of the 

easy items of a test and that an examinee of low ability would miss most of the difficult items of the test. When 

an individual does not follow an expected pattern of responses for a test, it makes one to question the 

interpretation of the test result for that individual. As an example, consider the test performance of a hypothetical 

examinee with high ability but limited experience with machine scored tests. The individual’s high ability is 

apparent in the first half of the test; correct responses are given to all easy and moderately difficult items as well 

as many of the most difficult items. After responding to all items on the first half of the test, the examinee 
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decides to omit a particularly complex item. Upon solving the item that followed, the examinee forgets that the 

previous item was omitted. Thus, for the second half of the test, the examinee’s response to the i
th

 item is 

recorded as the (i — l)
 th

 answer on the answer sheet, the (i + l)
th

 answer is recorded in the i
th 

place, and so on. 

Due to time limits, the examinee does not reach the final items, and the mistake remains unnoticed. 

It is apparent that the total score for this particular answer sheet substantially underestimates the 

examinee’s ability. However, routine scoring of the answer sheet assigns a spuriously low score to the individual. 

Further, the inappropriate test score may be used in a college admissions or job selection decision. Note that the 

pattern of responses made by the hypothetical examinee is atypical. There are many correct answers to difficult 

items on the first half of the test and many incorrect answers to easy items on the second half. Consequently, 

these item responses would not be very well fitted by an item response theory (IRT) model that assumes the 

probabilities of correct responses are functions of a single ability of the examinee. In this example there is no 

bias inherent in the test, nor is this testing anomaly likely to occur systematically for a given individual or 

subpopulation. Because the anomaly is probably not stable and may not be related to group membership, it 

would go unnoticed by standard test scoring and item analysis procedures.  

Again, there may be evidence of cheating in the examinee’s pattern of responses. It is not likely that all 

cheaters, either those who occasionally glance at a neighbor’s examination or those with a test preview, will 

achieve perfect scores on the test. The length of most aptitude and achievement tests probably prevents complete 

memorization of all items by an examinee. Careful vigilance by test administrator should preclude precise repro-

duction of a neighbor’s answer sheet. It is more likely that an examinee may copy or memorize answers to 

blocks of items. The resulting answer sheet for a low-ability examinee may appear to have been generated by a 

bizarre process i.e. blocks of correct responses are intermixed with blocks of responses that are nearly all 

incorrect. This type of response pattern is quite different from that of the general exam-taking population and 

may be detectable by appropriateness measurement. Incidents of tampering with answer sheets have also been 

reported. In his study of bias in mental testing, Jensen (1980) states that some school teachers admitted that they 

completed students’ tests. The teacher would simply record the correct response on the answer sheet whenever 

the student had skipped or failed to reach the item. Such efforts add an unknown degree of error to measurement 

and also are likely to produce atypical patterns of responses. 

There are many other factors that can make a person’s response pattern inappropriate. Among them is 

how clearly the instructions are understood by the examinee, familiarity with test materials and with the concepts 

used, previous experience with test tasks or with similar tasks and with working under pressure, and motivational 

factors (Van der Flier, 1982). Birenbaum (1985) notes different causes of aberrant (unexpected) response 

patterns; misconceptions concerning the subject matter, cultural bias, test anxiety, exceptional creativity, lack of 

concentration resulting in carelessly reading the questions, guessing, and occasional copying a more able 

neighbour’s work. Wright (1977) mentions tendencies such as sleeping, fumbling, and plodding as causes of 

unusual response patterns. He defines sleeping as those examinees that get bored with a test and do poorly in the 

beginning because of confusion with test format. Examinees who never get to the latter items on the test are 

plodders. Unusual response patterns can also result from technical problems such as answer sheet alignment.     

However, these factors jeopardize the validity of the response patterns and they are not directly 

reflected by a total test score. Checking the validity of the response pattern, therefore, becomes a necessity for 

ensuring an accurate assessment of performance. This validity check of response patterns is done with the help 

of appropriateness indices or person-fit indices which provide automated means for identifying response patterns 

where total test score may provide misleading information. Information from these indices is very useful when 

used with a measure of student ability. The test user would then be able to use both the total score and the index 

information to evaluate an examinee’s performance.   

Indices of appropriateness of a test for an individual could be used in a variety of ways.  They could 

lead to the identification of subgroups of people for whom the test is inappropriate. In addition, the items that 

contribute most to an index indicating that the test is inappropriate for particular subgroups might also be 

identified. Furthermore, the content of such items could be analyzed toward the eventual end of reducing 

inappropriateness through test revision.  

 

2 Review of the Literature 

Several indices for detecting aberrant (unusual) response patterns have been developed. These indices describe 

the degree to which an individual's pattern of item responses is unusual. These indices can be classified into two 

groups. One group consists of indices based solely on the actual observed response patterns of the group of 

examinees. Examples of these indices include Sato's caution index (1975), Van der flier's U''' index (1982), 

Donlon and Fischer’s personal biserial (1968), Tatsuoka and Tatsuoka's norm conformity index (1982), and 

Harnish and Linn's modified caution index (1981).  

The other group consists of indices based solely on Item Response Theory (IRT models). Examples of 

these indices include the fit indices developed by Wright and his associates (1977), the appropriateness indices 



Journal of Education and Practice                                                                                                                                                      www.iiste.org 

ISSN 2222-1735 (Paper)   ISSN 2222-288X (Online) 

Vol.5, No.25, 2014 

 

13 

developed by Levine and Rubin (1979), and the group of extended caution indices developed by Tatsuoka and 

Linn (1983). The first group of these indices is group dependent; the second group is IRT based. IRT based 

appropriateness indices can be sub divided into: 

(1) Unstandardized and Standardized Extended Caution Indices,  

(2) Maximum Likelihood Indices. 

Most of the previous researchers in appropriateness measurement have compared the effectiveness of 

appropriateness indices (Levine & Rubin, 1979; Rudner, 1983; Parsons, 1983; Birenbaum, 1985; Drasgow, 

Levine, & Williams, 1985, 1986, 1987; Tomsic, 1986; Noonan, 1990; Candell, 1990); others have investigated 

the distribution of appropriateness indices under different conditions of item and ability parameters (Molenaar & 

Hoijtink, 1990, Hoijtink, 1986; & Drasgow, 1985). Recent studies in apprpriateness measurement have 

investigated the distributions and effectiveness of IRT based indices in varying conditions of testing.  

In this study, the effects of item difficulty and examinee ability on the effectiveness of the standardized 

maximum likelihood index (LZ) were investigated. Levine and Rubin (1979) proposed an index denoted by Lo, 

which is closely related to the likelihood function, L. The likelihood function of N examinees on an n-item test is 

given by; 

       N     n 

L= Π     Π Pij(Ө)u
ij  

(1- Pij(Ө)) 
(1-uij)

 

       i=1   j=i 

If a particular examinee (denoted by Ө) does not contribute much to the maximizing likelihood function, L, then 

it is likely that examinee i is not an appropriate representative of the group whose abilities are measured by the 

test. Thus Levine and Rubin (1979) defined appropriateness index, Lo, as; 

Lo= Σ [uij Ln Pij(Ө)+(1-uij ) LnQij (Ө)] 

Where Pij(Ө) is the probability of examinee i answering item j correctly, uij  is the observed item responses (0 for 

wrong, 1 for right) and LnQij (Ө)]=1- Pij(Ө).  

With Lo, aberrance of an individual’s pattern of item responses is indicated by a relatively low 

maximum of the function Ө. An atypical examinee pattern is expected to have a relatively low likelihood 

function because it is not likely that high ability examinees miss easy items or low ability examinees pass hard 

items. 

LZ is the standardized version of the likelihood index (Lo) proposed by Levine and Rubin (1979). 

Levine and Drasgow (1985) found the Lo index to be less effective with examinees with high omit rates. 

However, Drasgow, Levine and Williams (1985) showed that the ‘standardization’ process is useful in 

accounting for the item omitting as well as controlling for the confounding effect of ability and appropriateness. 

They transformed Lo into a standard normal distribution and denoted it as LZ. LZ is defined as follows:       

              Lo  -  E(Lo) 

LZ=    ……………… 

                Var(Lo) 

 Where    E(Lo) = Σ{ Pij(Ө) Ln Pij(Ө) +(1- Pij(Ө) ) Ln(1-  Pij(Ө) )}  

And        Var(Lo)= Σ Pij(Ө) (1- Pij(Ө) { Ln [Pij(Ө)/(1- Pij(Ө) ] }
2
 

                   

3 Methods      

Simulated data were used in this study. Data were generated according to the three parameter model to simulate 

the responses of examinees to 60 multiple choice items using Datagen, a fortran computer program developed by 

Hambleton and Rovinelli (1977) and modified by Carlson (1985). In previous research, the three parameter 

logistic model has been found to be adequate for modelling the multiple choice items on the Scholastic Aptitude 

Test Verbal section (Drasgow, 1982; Levine and Rubin, 1979; Levine & Drasgow, 1982; Rudner, 1983; 

Drasgow et al., 1985, 1986, 1987), Graduate Record examination Verbal Section (Drasgow, 1982; Levine & 

Drasgow, 1982) and simulated data (Noonan, 1990; Candell et al., 1990). The LOGIST computer program 

(Wood, Wingersky, & Lord, 1976) was used to estimate item parameters. 

To evaluate the effectiveness of appropriateness indices, most researchers have used the design 

devised by Levine and Rubin (1979). In this design, a study begins with the test norming sample that consists of 

N examinees’ responses (either real or simulated) to n items. Item parameters for a test model are estimated 

using the test norming sample. These item parameter estimates are then used to estimate examinee’s ability and 

to compute appropriateness indices. A similar design was employed in this study and a FORTRAN77 computer 

program written by Drasgow (1985) was used to compute LZ scores.                                                

Three distributions of item difficulty were used. These distributions were those which are usually 

found in real life situations and they were generated to simulate the distributions of items typical of diagnostics 

tests (items used to identify students who need remedial courses), power (placement) tests, and certification and 

licensing tests. Items typical of diagnostic tests were generated to have uniform distributions in the interval -3.0 

to + 1.2. These test items were expected to provide maximum information (differentiate) at the low ability range. 
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Item difficulties typical of those found with power tests were generated to have a uniform distribution in the 

interval -3.0 to +3.0. These items were expected to provide equal information (differentiate) over the ability 

range (Van der Flier, 1982). Item difficulties typical of those found with certification and licensing examinations 

were generated in such a manner that they would provide maximum information at the high ability range. They 

were generated to have a uniform distribution in the interval +1.2 to +3.0. All the three distributions of item 

difficulties were generated to have uniform distributions. Uniform distribution of item difficulties is what to be 

expected for most tests.  

Since the objective of this study was to investigate the effects of item difficulty and ability 

distributions and not item discrimination or the guessing parameters, the same distributions of item 

discrimination and guessing parameters and within the same interval were used for each replication. In all the 

applications, the discrimination parameters were generated in such a manner that 0.60 ≤ a ≤1.50 and to have 

uniform distributions. The guessing parameters were generated in such a manner that 0.05 ≤ c ≤ 0.20 and to have 

uniform distributions. Such distributions of guessing parameters are typical of five option multiple choice tests.                                                            

Three distributions of ability were considered. In each replication, normal distributions of examinees’ 

ability with a standard deviation of 0.6 but with different means were used. Molenaar et al. (1990) in a 

simulation study found that the distributions of appropriateness indices were affected by the position of the mean 

and the standard deviation of the examinees’ ability distribution even when the examinees’ ability distribution 

remained normal. The ability distributions used were those typical of low, medium, and high ability examinees. 

Thetas (ability measure) typical of low ability examinees were generated to have normal distributions with a 

mean of -1.2 with a standard deviation of 0.6. Medium ability thetas typical of medium ability examinees were 

generated to have a normal distribution with a mean of zero and a standard deviation of 0.6. High ability thetas 

typical of high ability examinees were generated to have a normal distribution with a mean of +1.2 and a 

standard deviation of 0.6.                                         

To examine the effects of item difficulty and examinee ability distributions on the percentile estimates 

of LZ appropriateness index, data were generated in nine combinations of item difficulty and examinee ability 

distributions. In each replication, data were generated to simulate the responses of 2000 examinees to 60 test 

items according to the three-parameter model. LOGIST (Wood, Wingersky, & Lord, 1976) was used to estimate 

item parameters. LZ appropriateness index values were computed for each examinee in each of the nine 

combinations of item difficulty and examinee ability distributions. The values of LZ at the 1
st
, 5

th
, 10

th
, and 25

th
 

percentile points were computed. A total of 50 replications were used in each combination.  

To examine the effectiveness of LZ appropriateness index in detecting aberrant response patterns 

under different combinations of item difficulty and examinee ability distributions, type of aberrance, and level of 

aberrance, response vectors were generated using Datagen. Two samples each consisting of 500 response vectors 

(one for spuriously low and one for spuriously high modifications) were also generated in each of the nine 

combinations and subjected to spurious treatment. An examinee with a spuriously high test score was simulated 

by selecting 20% or 10% of the examinee’s original responses without replacement and changing incorrect 

answers to correct, but they were left unchanged if correct. An examinee with a spuriously low test score was 

simulated by first randomly selecting 20% or 10% of the examinee's original responses without replacement and 

changing correct responses to incorrect, but they were left unchanged if incorrect.  LZ appropriateness indices 

were then computed for the aberrant response vectors. The effectiveness of LZ index was evaluated by 

examining the extent to which it separated normal and aberrant response vectors solely on the basis of 

appropriateness index scores. The percentile estimates obtained at each false positive rate were used as cutoff 

scores. 

 

4 Results   

An analysis was also conducted on how the four percentile estimates for each index differed over ability groups 

in each item difficulty level and how they differed over item difficulty categories in each ability distribution. 

These percentile estimates were used as the cut-off scores to separate aberrant from nonaberrant response 

patterns. Table 1 shows the 1
st
, 5

th
, 10

th
, and 25

th
 percentile estimates of LZ at 0.01, 0.05, 0.10, and 0.25 false 

positive rates (FP). The mean values of the 1
st
  and the 5

th
 percentile estimates of LZ were smaller than their 

expected values of -2.33 and -1.65 respectively for most combinations of item difficulty and ability distributions 

and they increased as a function of ability distributions under the low item difficulty parameters. It is also 

evident that the 1
st
 and the 5

th
 percentile estimates of LZ tended to be underestimated while the 10

th
 and the 25

th
 

percentile estimates tended to be overestimated.  However, the percentile estimates of LZ were found to be very 

close to the expected values when the ability estimates matched the item difficulty parameters 

The percentile estimates of LZ index were found to be very sensitive to the variations of item difficulty 

and ability distributions. The four percentile estimates obtained for LZ index were found to be very different 

from the expected values in all the nine conditions. The marginal mean values of LZ of the 1
st
, 5

th
, 10

th
, and 25

th
 

percentile estimates were -2.396, -1.660, -1.350 and -0.614 respectively. The four percentile estimates for LZ 
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index were found to be very different from combination to combination.  

The Scheffe post hoc results further showed that the 1
st
, 5

th
, 10

th
 and 25

th
 percentile estimates of LZ 

significantly differed among all the three ability groups under the low item difficulty and they significantly 

differed between the low and the high and between the medium and the high ability groups under the medium 

item difficulty. They also significantly differed between the low and the medium and between the low and the 

high ability groups under high item difficulty; an indication that the percentile estimates of LZ are more stable 

under the medium and under high item difficulty than they are under the low item difficulty. 

 

Table 1: The 1st
, 
,5

th
, 10

th
, and 25

th
  Percentile Estimates of LZ Over 50.                                                                  

        Item                               Ability            Distributions 

        diff.      FP                   Low               Medium            High 

       Low      0.01                 -2.497             -2.422              -2.137 

                    0.05                 -1.716             -1.632               -1.362 

                    0.10                 -1.300             -1.225               -0.989 

                    0.25                 -0.640              -0.587              -0.428 

      Med.     0.01                 -2.556              -2.542              -2.734 

                    0.05                 -1.726              -1.700              -1.767 

                    0.10                 -1.308              -1.291              -1.139 

                    0.25                 -0.640              -0.629              -0.610 

       High    0.01                -2.442                -2.580              -2.556 

                    0.05                -1.666               -1.741              -1.722 

                    0.10                -1.275               -1.323              -1.300 

                    0.25                -0.624               -0.652              -0.620 

  

3.1Detection rates for LZ in aberrant response patterns 

The strengths and weaknesses of appropriateness indices can be assessed via their detection rates of aberrant 

response patterns. The detection rates of indices are determined by examining the proportion of correct 

classifications of aberrant response patterns at given false alarm rates. An efficient appropriateness index should 

identify a large proportion of aberrant response patterns at very low false alarm rates.  Its distribution should also 

be independent of ability level of non-aberrant response patterns.  

  

Table 2 presents the percentage of the 10% and 20% spuriously high and spuriously low aberrant response 

patterns correctly identified by LZ at selected false positive rates (FP). The four percentile values of LZ at 0.01, 

0.05, 0.10, 0.25 false positive rates were used as the cut-off points. However, the four percentile estimates for 

each index were found to be different from combination to combination. The detection rates of LZ index under 

the combination of low ability distributions and high item difficulty parameter were 26%, 47%, 57%, and 77% at 

the corresponding false alarm rates of 1%, 5%, 10% and 25% respectively for the 20% spuriously high aberrant 

response patterns. Under the same combinations LZ could detect 7%, 21%, 30% and 55% of the 10% spuriously 

high response patterns at the corresponding false alarm rates of 1%, 5%, 10% and 25% respectively.                                                  
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Table 2: The percentage of the 10% and 20% spuriously high and spuriously low aberrant response             

patterns correctly identified by LZ at selected false positive rates                                                    

                                                                 

                                                         Ability distributions        

                                  SPURIOUSLY HIGH                         SPURIOUSLY LOW                                  

                                10%                         20%                     10%                         20%       

Item                                                                         

Diff 

            FP.     Low  Med. High    Low  Med. High     Low  Med. High       Low  Med. High  

Low 

          0.01     4       1        0           2         0       0           3        7        20          3        17      33           

          0.05     11     7        3           6         2       4           8        18      40          11      35      54 

          0.10     18     12      6           11       4       1           11      26      52          19      48      65  

          0.25     37     24      17         27       14      2          27      45      66          38      68      83  

                                                                   

 Med 

          0.01      4        1       1           3        0       0            0        7       20           6        15      30    

          0.05      16      5       7           8        2       0            5        14     31           15      32      55   

          0.10      26     13      13         13      3       1            8        23     40           22      47      74      

          0.25      44     29      22         31      9       3            21      39     50           40      67      87                                                                    

High 

          0.01      7       4        2           26      16      2           0        2       4            4         1        4   

          0.05      21     12      6           47      36       9          4        5       13          3         6        14     

          0.10      30     21      12         57      48     15          7        9       19          6         10      24 

          0.25      55     42      25         77       67     34          17      25     38          14       24      38  

For the case of the 20% spuriously low aberrant response patterns, LZ had high detection rates of 33%, 54%, 

65% and 83% under the combination of low item difficulty parameters and high ability distributions at the 

corresponding false alarm rates of 1%, 5%, 10% and 25% respectively. The corresponding detection rates of the 

10% spuriously low aberrant response patterns were 20%, 40%, 52% and 66% for the same side conditions. 

The results also showed the 20% spuriously low aberrant response patterns to be more detectable by LZ than the 

20% spuriously high aberrant response patterns. Further, the 10% spuriously low aberrant response patterns were 

also found to be more detectable than the 10% spuriously high aberrant response patterns. Given a particular 

type of aberrance, aberrant response patterns in the 20% spurious samples were more detectable than the aberrant 

response patterns in the 10% spurious samples. This implies that the detection rates of aberrant response patterns 

by LZ increases with the level of aberrance. At low false positive rates (0.01 & 0.05), the detection rates of LZ 

were high under the high item difficulty. Spuriously high aberrant response patterns were more detectable under 

high item difficulty parameters and spuriously low aberrant response patterns were more detectable under the 

low item difficulty parameters. Noonan(1990), Drasgow et al. (1985), and Birenbaum (1985) reported similar 

results.   

3.2 Discussion  

With respect to the cutoff points, the results of this study showed that the percentile estimates of LZ were 

affected by item difficulty parameters and ability distributions. However, the percentile estimates did not exhibit 

any particular pattern with respect to their magnitude when item difficulty parameters and ability distributions 

were varied. The four percentile estimates of LZ index were found to be different from the expected values and 

these percentile estimates were used as the cut-off points to separate aberrant from nonaberrant response patterns. 

The detection rates of LZ in this study were found to be consistent with the results reported by researchers such 

as Drasgow et al. (1985, 1987), Rudner (1983), Noonan (1990) and Candell et al. (1990). In particular, the high 

detection rates of LZ confirm the findings of Noonan (1990). The power of the LZ index and the tendency to 

identify larger proportions of aberrant response patterns with spuriously low scores is also consistent with the 

findings of Rudner (1983), Birenbaum (1985), and Drasgow et al. (1985).                                              

The LZ index identified higher proportions of aberrant response patterns in the 20% spuriously low 

treatment samples than in the 20% spuriously high treatment samples. Ten percent spuriously low aberrant 

response samples were also found to be more detectable by LZ index than the 10% spuriously high aberrant 

response patterns. The detection rates of the 20% and the 10% spuriously high aberrant response patterns were 

found to be higher under high item difficulty parameters, and were found to be low under the low item difficulty 

parameters. This is not surprising as it is expected that more responses are changed from incorrect to correct and 

fewer responses are changed from correct to incorrect under high item difficulty parameters and vice versa.       
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4. Recommendations to Practitioners 

 Considering the results of the present study, the following recommendations can be made:                                       

   1. LZ could be used to detect spuriously low or spuriously high aberrant response patterns if a test consists of 

items with high item difficulties.                                                 

  2. Cutoff scores should be established using a large population. However, this study has shown that cutoff 

scores can vary according to the side conditions of testing. Therefore, test users should see to it that cutoff scores 

are reviewed regularly.  

 

5. Limitations of the Study  

The first limitation of this study is that simulated data were used. Future researchers can replicate the study using 

real data. The second limitation is that it was assumed in this study that all the examinees reached and attempted 

all the questions. However, this doesn’t usually happen in real life. Future researchers can use data matrix 

containing omits.                 

Thirdly is that only one distribution of item difficulties (uniform) with varying intervals was 

considered. Future researchers could use skewed or normal distributions of item difficulties. Fourth is that 

examinee ability distributions were restricted to normal distributions with different means but with the same 

standard deviation. However, it is possible to have other types of ability distributions in real life situations.  

The fifth limitation is that data were generated according to the three parameter model. One and two 

parameter models could also be used for future research. Further, spuriously high and spuriously low scores were 

analyzed separately. In real life, a sample may have some examinees with spuriously high scores and others with 

spuriously low scores. This would presumably affect the detection rates. Finally, the combined effects of test 

length, item difficulty and examinee ability on the effectiveness of LZ should be investigated 
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