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Abstract: A growing concern over environmental issues and the common interest to 
find a viable alternative to the use of glass or carbon composite reinforcements has led to an 
increased attention in ecologically sustainable polymer composites. These „green” mate-
rials are made by natural fibers, as reinforcement, filled with natural-organic fillers, i.e. de-
rived from renewable or biodegradable sources. At the same time, this relatively new class 
of materials faces several limits in comparison to traditional composites especially regard-
ing the properties of resistance. This paper investigates the advantages of use of combina-
tion of natural fibers for improving mechanical proprieties of „green” composite materials. 
At the moment, the prevailing opinion is that green composites are not usable in structural 
applications, and, as a consequence, have to be relegated to unworthy applications (as fil-
lers). On the contrary, there are several evidences that mixing different natural fibers (in 
practice usually called „hybridization”) leads to an improvement of these material proper-
ties. Although usually quite limited in terms of percentage, these improvements from time 
to time allow a new enlargement in the fields of applications for green composites. Follow-
ing a large state-of-the-art on green composites, including potential benefits and limits of 
these materials, the paper proposes several examples of hybridization showing its effect on 
mechanical proprieties. 

Keywords: ecosustainability, mechanical proprieties, polymer-matrix composites, 
flax, basalt, vinylester. 

 
 
 

1. INTRODUCTION 
 
Hybrid composite materials are obtained by 

combining two or more different types of fibers in a 
common matrix. They offer a wider range of proper-
ties compared to conventional composite materials, 
where a single kind of reinforcement is present 
[1 2]. Hybridization would ideally allow designers 
to tailor the composite properties to the exact needs 
of the structure under consideration. This can be 
achieved provided the properties of the hybrid com-
posite are predictable within a reasonable range of 
incertitude from those of the originating composites. 
This is often not the case, especially when one of the 
reinforcement vegetable fibres is used, such as e.g ., 
hemp or flax [3 4]. A number of reasons can be ac-

counted for this difficulty, including the presence of 
internal voids, or lumens, and limiting the homo-
geneity of vegetable fibres, and the irregular diame-
ter of these fibres, and leading to possible problems 
in terms e. g., of water absorption [5]. It is also 
worth reminding that vegetable fibres are composed 
of sections of variable geometry with an alternation 
of stronger and weaker parts, as a consequence of 
the increasing number of defects with length, which 
tends to discourage the adoption of very long 
stretches of aligned fibres, whose entanglement can 
even be detrimental in case a serious damage is ap-
plied to the material [6]. This can be partially com-
pensated by the use of woven structures, such as tis-
sues, mats, etc., although it needs to be clarified in 
this case that technical fibres obtained from plants 
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are in reality threads composed via the application of 
a torque by filaments often only loosely kept togeth-
er [7]. All these difficulties have resulted in a limited 
adoption of modelling features for composites and 
hybrids including vegetable fibres, because the prin-
cipal laws for predicting the behaviour of composite 
materials, such as the rule-of-mixtures, need to be 
adapted to the particular conditions, explained 
above, due to the presence of vegetable fibres, as 
was the case of recent studies [8]. 

In practical terms, the production of hybrid 
composites has been adopted as an intermediate step 
in reducing the environmental impact of fiberglass 
through the partial replacement of glass fibres with 
vegetable fibres, such as jute, hemp, flax, sisal, ke-
naf, etc. [9 11]. The limits of this substitution espe-
cially arise whenever the service performance is si-
mulated, through dynamical testing, such as impact 
and fatigue [12 13]. In this case, the residual per-
formance obtained from these materials is also im-
portant, as the presence of vegetable fibres can lead 
to ineffective damage absorption and especially to 
complex degradation modes as far as significant 
energy is applied to the material [14]. 

In recent years, basalt fibres have been consi-
dered as an alternative to glass, with some signifi-
cant advantages: these include, in environmental 
terms, the absence of a requirement for fibre sizing, 
since basalt is extracted directly from the molten 
rock, and the improved resistance of basalt to acid 
environments, which is particularly desirable e.g., in 
the automotive sector [15 16]. As a result, basalt 
has also been applied in hybrid composites with 
vegetable fibres and with glass [17 18]. These are 
far from being optimised though, especially with 
respect to the possible effect of different stacking 
sequences on their properties [19]. This is of crucial 
importance whenever the introduction in other ap-
plication sectors is proposed, such as e.g., the nauti-
cal field, where it is going to be coupled with the use 
of more sustainable thermosetting matrices, not ex-
clusively oil-based. 

All these considerations indicate the interest 
of the present work on hybrid composite materials, 
as a promising approach to extend the use of natural 
fibres (Figure 1, 2) to modern applications.  

 

     
Figure 1. Field of flax  Figure 2. Bamboo plantation 

 
 

2. STATE OF ART ON GREEN COMPO-
SITES 

 
Currently, as already stated, numerous re-

search groups are dedicated to minimising the envi-
ronmental impact of polymer composite production, 
where the polymer matrices are derived from renew-
able resources such as polylactide (PLA), thermop-
lastic starch (TPS) or thermoset matrices. Their high 
renewable content derives from vegetable oils and, 
combined with natural reinforced fibers (NF) to 
form environment-friendly and fully degradable 

composite laminates, they represent a potential subs-
titute for petroleum-based resins. 

 
Natural matrices 
 
„Green” matrices are partially or totally ob-

tained by renewable sources and/or made by biode-
gradable polymers. The availability of bio-based 
polymer matrices is nowadays relatively poor (Fig-
ure 3), but it rapidly grows as more studies are done 
and more information is available.  

Three different bio-based polymer matrices 
commonly used: 
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Thermoset matrices: polyols are com-

pounds with multiple hydroxyl functional groups 
available for organic reactions, and they react with a 
large number of chemical species, called curatives or 
hardeners, to produce cross-linked thermoset matric-
es. The most important oil used in polyols produc-
tion is soy bean oil, but cashew nut oil can give the 
same results too. In order to decrease the impact of 
its activity on global warming, polyols can also be 
combined with petroleum-based chemicals. 

Thermoplastic matrices: the plastic matrix 
most commercially available is the cellulose one, 
properly toughened; therefore, it is considered a 
100% bio- based matrix. Starch-based polymers and 
Poly lactic acid (PLA) are both available: the em-
ployment of the former depends on the ability to 
reduce their moisture absorption, while the latter has 
similar properties to polystyrene. In summary, the 
employment of these bio-based polymers depends 
on the possibility to modify their properties in order 
to have easier processing and improve toughness in 
the final biocomposite. 

 

 
Figure 3. An example of bio-based resin 

 
Green resins offer several advantages, such as: 

 Low VOCs (Volatile Organic Compounds) 
 Low emission of styrene 
 No bisphenol or epichlorohydrin (toxic) 
 Based on vegetable oil (by around 

30 40%) 
 No toxic exhalation 
 No formaldehydes 
 Hypoallergenic 

But even relevant disadvantages, such as: 
 Low processability 
 Higher costs. 

 
 
Natural Fibers 
 
Natural fibers (Figure 4) are compounds de-

rived by combining cellulose, hemicellulose and lig-

nin; they can be derived from leaf (e. g. sisal), bast 
(e. g. flax, hemp), seed (e.g. cotton) and fruit (e. g. 
coir). Cellulose is a linear polymer obtained by poly- 
condensation glucose monomer (C6H12O6). 

 The most important advantages of use of nat-
ural fibers are, of course, related to the environmen-
tal issues: they are biodegradable and carbon-
positive since they absorb more carbon dioxide than 
they produce. In addition, they are non-irritating and 
tend to be non-abrasive, with the latter property re-
sulting in reduced wear on tooling and manufactur-
ing equipment. Other important advantages are 
shown in terms of specific material properties: by 
using natural fibers in substitution of synthetic ones, 
it is possible to reduce the weight of an artifact by up 
to 40% as well as to improve flexural strength, stiff-
ness and ductility. To sum up, natural fibers as rein-
forcement in composites allow: 

 low density, typically 1.2 1.5 g/cm3 
against 2.5 for glass and 1.7 for carbon 

 good thermal and acoustic isolation 
 low level of abrasion for process equip-

ment 
 low cost of materials 
 easy to find and abundance of material 

with yearly renewable resources 
 sustainable cultivation compared to other 

chemical processes 
 biodegradability 
 low toxicity for workers. 

 

 
Figure 4. The most common natural fibers used as rein-

forcement 
 
On the contrary, several disadvantages charac-

terize the use of natural fibers, such as: 
 variability in mechanical proprieties, re-

lated to physiological variability (e.g. age, harvest, 
techniques for harvest and processing, environmental 
and climate factors); 
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 not excellent mechanical proprieties, in 

particular, related to fatigue and creep resistance; 
 low detectability in morphology, with high 

difficulty in controlling aspects as fibre porosity and 
thickness. 

 biodegradability. 
Natural fibers have lower density values and 

perfectly fit for non structural uses. In these terms, 

natural fibers can replace synthetic ones obtaining 
even more efficient results. In terms of overall 
strengths, for instance, even if mechanical proprie-
ties are sometimes comparable, as in the case of fi-
berglass, synthetic fibres usually perform better than 
natural ones (Table 1).  

 
Table 1. Physical and mechanical properties in natural and synthetic fibers 

 
 
Processing and processability 
 
Regarding processes, literature data on green 

composites show a clear prevalence of wood and 
natural fibers in combination with polyolefins: this 
influences the information available on processing 
and processability. Typical processing techniques 
include extrusion followed by injection or compres-
sion molding. During processing, temperature must 
not exceed 200 °C and the retention time of the ma-
terial exposed to high temperatures should not be too 
long to avoid fiber degradation. Very common tech-
nologies for composite materials include resin trans-
fer molding, vacuum injection molding, structural 
reacting injection molding, injection molding and 
compression molding. In specific applications, as 
prototypes, resin infusion and hand-up molding is 
also used. 

 
 
3. MATERIALS AND METHODS 
 
The potential relevance of hybridization in 

improving the mechanical proprieties of natural 
composites and, as a consequence, in extending the 
field of application for this class of material can be 
investigated by specific experimental sessions as 
performed by authors in previous studies 
[17,20 22]. 

In particular, during an investigation focused 
on sustainable materials for sailing applications [23], 
five types of laminates were produced by resin infu-
sion and hand-up molding. Three of them were 

composed of two natural fibers, flax or basalt (Fig-
ure 5) combined with eco-friendly matrices (epoxy 
or vinylester). The other two were hybrids, obtained 
by combining fibers (natural or not), mixed with 
green thermoset resin: the first one is compound 
with both synthetic and natural fibers (carbon and 
flax), and the last one is a compound with two dif-
ferent natural fibers (basalt and flax) ( Figure 6).  

Finally, for the sake of comparison, two „tra-
ditional” glass fiber-reinforced composites were 
manufactured, one obtained combining fibers with 
polyester resin and the other using glass fiber fabrics 
with epoxy as impregnant.  

Flax fibers are commonly used for natural 
reinforced composites. They are considered to be 
complementary to glass ones. In terms of compari-
son, flax fibers tensile modulus is very close to 
glass fibers one, while their lower density makes 
them lighter. They can also be matched to the most 
important thermoset resins. 

Basalt fibers are quite similar to carbon and 
glass fibers. They are cheaper than the first ones and 
have better mechanical properties than the second 
ones. At the same time, basalt fibers are ecological-
ly clean and non-toxic for the end user. 

Epoxy is, probably, the most common choice 
of resin for matrix in the production of composite 
materials. Its chemical formulation can largely be 
changed offering radically different properties to the 
materials. In the case of “green epoxy”, a high per-
centage of carbon biomass is included, in which 
56% of the molecule is bio-renewable because of its 
plant origin. 
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Vinylester matrices have been patented as a 

revolutionary resin technology with extremely low 
content and emission of styrene. This low-VOC and 
low-HAP resin formulation minimizes emissions 

thus reducing workplace exposure and environmen-
tal impact. 

The composition of the laminates used during 
the tests is shown in Table 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Natural and technological fibers used as reinforcement during experiments: flax, basalt, carbon and glass 
 
Table 2. Details of composition for laminates 

SPECIMEN FIBER MATRIX ECO 

I FLAX EPOXY 
(green) Green 

II FLAX VINYLESTER 
(low styrene) Green 

III BASALT VINYLESTER 
(low styrene) Green 

IV FLAX-CARBON EPOXY 
 (green) Hybrid 

V FLAX-BASALT VINYLESTER 
(low styrene) Hybrid 

VI GLASS POLYESTER Synthetic 

VII GLASS EPOXY Synthetic 

 

 
Figure 6. Example of stratification of layers in  

a hybrid material 

In order to determine all mechanical proper-
ties of green materials and hybrid laminates, four 
tests have been carried out according to the relevant 
standards (Figure 7): 

Tensile test is performed according to 
ASTM D 3039 standard: a thin flat strip of material 
having a constant rectangular cross section is 
mounted in the grips of a mechanical testing ma-
chine and monotonically loaded in tension while 
recording load. The ultimate strength of the material 
can be determined from the maximum load carried 
before failure.  

Flexural test is performed according to 
ASTM D 790 standard: a bar of rectangular cross 
section rests on two supports and is loaded by means 
of a loading nose midway between the supports. 

The drop-weight impact test is performed, 
according to ASTM D 7136. 

Standard, using a balanced, symmetric la-
minated plate. Damage is imparted through out-of-
plane, concentrated impact (perpendicular to the 
plane of the laminated plate) using a falling weight 
with a hemispherical striker tip. The damage resis-
tance is quantified in terms of the resulting size and 
type of the damage in the specimen. 

Accelerated aging test uses aggravated 
conditions of heat and saline solution to speed up the 
normal aging processes of materials. It is used to 
determine the long-term effects of expected levels of 



Cristiano Fragassa, et al., Improving performance and applicability of green composite materials… 
Contemporary Materials, VI 1 (2015)                                                                                                             Page 40 of 43 

 
stress within a shorter time, usually in a laboratory 
by controlled standard test methods.  
 

 
Figure 7. Performing experimental (tensile) tests 

 
A full description regarding the experimental 

sessions and measures are available in [23 25]. A 
brief synthesis is here reported.  

 
 

4. EXPERIMENTAL EVIDENCES 
 
Elastic modulus and yield/ultimate stress from 

experimental sessions are reported in Table 3. 
Stress-strain diagrams in the case of synthetic, natu-
ral and hybrid fibers for tensional and flexural tests 
are reported, respectively, in Figures 8 9. 

Since these earliest results, it is already evi-
dent that green composites (e.g. basalt fiber and vi-
nylester matrix) can perform like other most com-
mon materials (e. g. fiberglass), but adding an im-
portant property of eco-sustainability.  

In particular, basalt is a mineral fibre with 
several important properties as total reuse, high me-
chanical characteristics (stress resistance and elastic 
modulus 15 20% higher than glass fibre). It is evi-
dent how basalt represents a valid alternative to fi-
berglass (with an exception of the price) and can 
challenge with carbon in a significant range of ad-
vanced applications.  

The stress-strain diagrams clearly show how 
changes in the composition (as fibers and matrices), 
permitted by hybridization, not only effect the me-
chanical resistances, but also the material behaviour 
as a whole. For instance, mixing flax fibers with 
basalt fibers, reduces the mechanical (flexural and 
tensile) resistance, but, on the other side, transforms 
a brittle composite in a ductile material.   

 
Table 3. Mechanical proprieties of laminates 

N. FIBERS MATRIX 
Tensile Flexural 

 
MPa 

 
% 

E 
MPa 

G 
MPa 

 
 

 
MPa 

 
% 

E 
MPa 

I FLAX EPOXY      115.0 1.66 6930
II FLAX VINYLESTER 47.5 0.93 4854 2001 0.21    
III BASALT VINYLESTER 165 1.47 11042 5368 0.03 266.7 1.84 14481
IV FLAX- CARBON EPOXY         
V FLAX- BASALT VINYLESTER 86.5 1.12 8151 3879 0.13 139.5 1.69 8275
VI GLASS POLYESTER 67.05 0.89 8808 3755 0.17 127.5 2.16 5898
VII GLASS VINYLESTER 92.4     168.8 2.74 6157

 

 
Figure 8. Tensional stress–strain diagram in the case of synthetic, natural and hybrid fibers 
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Figure 9. Flexural stress–strain diagram in the case of synthetic, natural and hybrid fibers 

 
 
5. CONCLUSION 
 
New environmental regulations and changing 

governmental attitudes encourage the research of 
new products and processes in an environmental-
friendly manner. Green composites seem to 
represent an emerging eco-sustainable alternative to 
composites produced by traditional synthetic fibres 
and matrixes. The use of natural fibres within com-
posite materials is predicted to become a growing 
market. Natural fiber-reinforced biodegradable po-
lymer composites appear to have a bright future for 
a wide range of applications. These biocomposites, 
characterised by various interesting technical prop-
erties, may soon be competitive with the existing 
fossil plastic materials. However, the present low 
level of production of natural fibers and resins, and, 
as a consequence, their higher cost in the market, 
reduces their applicability in industrial uses. Using 
hybrid systems for improving materials or structural 
performances of composites is a well-known con-
cept in engineering design. All investigations have 
shown that the properties of hybrid natural/glass 
composites have proved to be an effective way to 
improve composite's mechanical properties and di-
mensional stability (moisture, temperature, etc.). 
The stiffness of biocomposites can thus be over-
come by structural configurations that place materi-
al in specific locations for higher structural perfor-
mances. 
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