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Abstract – Swiftlets are small insectivorous birds which breed throughout Southeast Asia and 

the South Pacific. Among many swiftlet species, only a few are notable to produce edible bird’s 

nests (EBN) from the secreted saliva during breeding seasons. The taxonomy of swiftlets 

remains one of the most controversial in the avian species due to the high similarity in 

morphological characteristics among the species. Over the last few decades, researchers have 

studied the taxonomy of swiftlets based on the morphological trade, behavior, and genetic traits. 

However, despite all the efforts, the swiftlet taxonomy remains unsolved. The EBN is one of 

the most expensive animal products and frequently being referred to as the “Caviar of the East”. 

The EBN market value varies from US$1000.00 to US$10,000.00 per kilogram depending on 

its grade, shape, type and origin. Hence, bird’s nest harvesting is considered a lucrative industry 

in many countries in Southeast Asia. However, the industry faced several challenges over the 

decades such as the authenticity of the EBN, the quality assurance and the depletion of swiftlet 

population. Furthermore, there is limited scientific evidence regarding EBN’s medical benefits 

as claimed by manufacturers. This paper reviews the taxonomy of swiftlets, its morphological 

characteristics, the challenges currently encountered by the industry, and finally the 

composition and medical benefits of EBN.  
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Introduction  
Palaeotropical swiftlets including the genera of Aerodramus, Collocalia and Hydrochous are 

small insectivorous birds which can be found throughout Southeast Asia and the South Pacific. 

Swiftlets generally form large colonies in dark caves or cave-like environments due to its ability 

to navigate in darkness using echolocation (Chantler & Driessens, 2000; Medway, 1962). 

Selected species are notable for their ability to produce edible nests which primarily comprise 

mucin-like glycoproteins that comefrom the cemented salivary secretion. White-nest swiftlets 

(Aerodramus fuciphagus) and black-nest swiftlets (Aerodramus maximus) are highly prized as 

the premium grade nests as both are formed entirely or mainly from the saliva secretion with 

non-incorporation of other materials such as grass, mud and feather (Lim, Cranbrook & 

Zoologist, 2002). Hence, bird’s nest harvesting is considered as a lucrative industry in many 

countries in Southeast Asia (Gausset, 2004).  

 

Malaysia is currently the third largest EBN production country, which contributes 

approximately 9% of the global supply in 2006, after Indonesia (60%) and Thailand (20%). 

However, the swiftlet farming in Malaysia has a long and illustrious history where it started as 

a cottage style operation at a natural cave area (Gausset, 2004). As the swiftlet farming industry 

continued to expand, the suppliers started to build artificial man-made habitats which resemble 

the natural cave environment for swiftlets in order to maintain the supply chains (Tan et al., 

2014). The swiftlet farming industry in Malaysia has been growing drastically over the last 

decade. Before 1998, 900 swiftlet houses or farms were estimated in Malaysia. However, by 
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the end of 2013, the numbers of active swiftlet farms in Malaysia were estimated to be 60,000 

units (Malaysia Economic Transformation Programme Annual Report, 2013). However, the 

overall value of Malaysia’s EBN is generally unstable and is mainly determined by the quality 

of raw bird’s nests which is based on various factors such as size, shape (half-cup , stripe,  or 

biscuit), type (white, black, or grass), origin (man-made house or natural cave) and colour 

(white, yellow, or red).  

 

Despite many efforts done by various agencies, swiftlet ranching and EBN industry still face 

several major drawbacks which hinder the development of the swiftlet industry. These 

drawbacks lead to the unstable market price of raw and processed EBN in both local and 

international tradings. Such challenges include the adulteration of EBN, the depletion of the 

swiftlet population, and poorly traceable and undefined quality standards of raw and processed 

EBN from different sources. 

 

Over the years, the method of EBN grading and authentication changed drastically due to the 

technology development and availability. Previously, EBN manufacturers used to grade EBN 

and detect adulteration by observation based on colour and texture. Such a method was 

somewhat subjective and based on the experience of individuals. Since then, researchers have 

developed various methods based on the analysis of EBN’s composition, microscopic 

observation and genetic analysis for EBN grading, and to identify fake or adulterated EBN (Ma 

& Liu 2012; Marcone, 2005; Wu et al., 2010). However, each method has its own advantages 

and disadvantages, and no single method is able to define the quality of EBN. 

 

In order to establish a sustainable swiftlet ranching and EBN industry, various agencies from 

both the government and industrial sectors have to cooperate in establishing the best practices 

in swiftlet husbandry and  management as well as the complete value chain processes in 

producing EBN as value-added products in meeting the requirements of local and overseas 

markets. 

 

Swiftlet taxonomy 

The classification of swifts (Apodidae) and swiftlets (Apodidae: Collocaliini) have been 

controversial in terms of phylogeny and taxonomy. The genera of swifts and swiftlets have 

been shuffled several times based on various parameters such as the archaeological evidence, 

the nest morphological characteristics, the ability to echolocate, the nesting area and the 

molecular evidence (Brooke, 1970; Goh et al., 2001; Lee, Clayton, Griffiths & Page, 1996; 

Mayr, 1940; Medway 1962; Thomassen et al., 2003). Originally, swift (Apodi) was classified 

under the same order with hummingbirds (Trochili). However, the ability to use saliva as the 

sticking material for swiftlet’s nest and its enlarged salivary glands in both sexes during 

breeding seasons distinguished swiftlets from swifts (Clark, 1906; Lowe, 1939). Despite the 

high morphological similarities between the swift and swiftlet families, some of the 

morphological characteristics such as the toes, feathering and nesting habit, do act as a 

distinguishing characteristics (Sick, 1948).  

 

A swiftlet is a small insectivorous bird which forms the Collocaliini tribe within the 

swift family (Apodidae). The swiftlet family is among the complicated groups in bird taxonomy 

due to the lack of differences in morphological characteristics (Chantler & Driessens, 2000). 

Originally, Gray (1841) proposed that all swiftlet species be placed into a single genus, 

Collocalia, and such a taxonomy classification system was used for over a century. In 1957, 

the ability of echolocation was discovered in certain swiftlet species by Medway (1957). 

Subsequently, Brooke (1970 & 1972) suggested that the ability of several swiftlet species to 

echolocate as a distinctive characteristic should be considered in the swiftlet taxonomy. Brooke 

(1970 & 1972) split the genus Collocalia into three different genera which are non-echolocating 

swiftlets (Collocalia), non-echolocating giant swiftlets (Hydrochous) and echolocating 

swiftlets (Aerodramus). However, subsequent studies proposed that these three genera should 

either be combined into a single genus, Collocalia, (Chantler & Driessens, 2000; Salomonsen, 

http://en.wikipedia.org/wiki/Tribe_(biology)
http://en.wikipedia.org/wiki/Swift
http://en.wikipedia.org/wiki/Apodidae
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1983) or split into several genera by incorporating new sister groups such as Chaeturini and 

Apodini to the pre-existing genus based on various morphological and behavioral 

characteristics (Sibley, 1990).  

 

Due to the limitation of morphological identification, Lee et al. (1996) sequenced the 

cytochrome-b mitochondria DNA of swiftlets in order to rearrange the swiftlet taxonomy based 

on molecular evidence. However, the authors only sequenced a limited portion (406 bp) of the 

complete cytochrome-b DNA, leaving many unanswered questions. Thomassen et al. (2003) 

further sequenced the complete cytochrome-b gene and the data generated support swiftlet 

monophyly. However, the placement of Hydrochous within the swiftlet phylogenetic tree was 

poorly explained in the study due to the high amount of variation in cytochrome-b gene of the 

Hydrochous species. In another study, Jordan, Johnson and Clayton (2004) incorporated more 

swifts and swiftlet species and used an additional of NADH dehydrogenase subunit-2 gene 

(ND2) in the analysis to generate better and more comprehensive taxonomy arrangement 

compared to previous results. The study supported the findings of swiftlet monophyly and 

subdivided the swiftlets into two tribes, Aerodramus and Collocalia, which were thought to be 

impossible in echolocating until recently. In contrast to previous publications, Jordan et al. 

(2004) proposed that the echolocation ability is no longer attributed to a single genus since the 

pygmy swiftlet (Collocalia troglodytes) is also able to echolocate that was previously grouped 

under non-echolocating Collocalia. Hence, echolocation is not an accurate parameter for the 

swiftlet taxonomy classification. In another study, Thomassen, Den Tex, De Bakker and Povel 

(2005) incorporated two additional sequences 2S rRNA (12S) and nuclear non-coding b-

fibrinogen intron 7 (Fib7) into the pre-established cytochrome-b sequence data set in order to 

investigate the phylogenetic relationships of Hydrochous gigas with other members of the 

swiftlets. The findings from the study indicated that Hydrochous gigas is the sister group of 

Aerodramus and classified the swiftlets into a single genus Collocalia as proposed earlier by 

Gray (1841). Based on current information, the taxonomy and the naming of swiftlet species 

still remain unclear where the monophyly grouping of these birds requires further study. 

 

Swiftlet morphology 

Most swiftlet species in Malaysia are greatly alike and difficult to be identified based on their 

morphological characteristics. Sims (1961) reported that seven swiftlet species were found 

within Malaysia, namely Aerodramus francica, Aerodramus vestita, Aerodrames brevirustis, 

Aerodramus fuciphaga, Aerodramus maximus, Collocalia esculenta and Hydrochous gigas. 

Only the last two species can be readily identified; C. esculenta is based on the unique colour 

pattern and Hydrochous gigas is generally greater in body size compared to other species. The 

remaining five species are superficially alike and occasionally colonized at similar habitats.  

 

In Malaysia, nests of white-nest swiftlets (Aerodramus fuciphagus) and black-nest swiftlets 

(Aerodramus maximus) which are solely or mainly constructed out of saliva, are harvested for 

commercial purposes (Viruhpintu, Thirakhupt, Pradatsundarasar & Poonswad, 2002). Other 

swiftlet species produce nests constructed largely out of vegetation such as grass, feather and 

mud which lack economic value. Aerodramus fuciphagus and Aerodramus maximus are almost 

identical in morphological characteristics, apart from the glossiness of the feather and tarsal 

feathering which require close observation that is rather subjective (Oberholser, 1906). A 

swiftlet’s eyes are large, dark and short, and the hooked bills of all swiftlets are black like the 

legs and feet. These birds lost the ability to perch and mostly hang from the nests or stand on 

the hock joints which do not involve the use of metatarsal (Lim et al., 2002).  

 

The white-nest swiftlet (Aerodramus fuciphagus) is small with blackish brown upper part, and 

the rump colour ranging from whitish to brownish. Generally, a white-nest swiftlet has shorter 

wings, a deeper tail-notch, and a darker underpart compared to its close homolog, black-nest 

swiftlet. Aerodramus fuciphagus and Aerodramus maximus have body length of 10.619 cm and 

10.937 cm, outer tail length of 4.214 cm and 4.405 cm, wing cord of 11.889 cm and 12.963 cm, 
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tarsus length of 0.997 cm and 1.147 cm, and lastly an expanded wing length of 27.217 cm and 

29.695 cm, respectively (Looi, Aini, Zuki & Omar, 2015).  

 

Swiftlet behavior characteristics 

Swiftlet life cycles 

The life cycles and behaviors of swiftlets in various habitats have been observed and studied 

in detail over the century. Swiftlets are known as monogamous and breeders with high nest 

site fidelity (Viruhpintu et al., 2002). Swiftlets start to breed at the age of one-year-old 

(Nguyen, Quang & Voisin, 2002). However, breeding seasons and the period of breeding 

activities such as the nest-building, egg laying, egg incubation and young rearing vary across 

different species and geological regions. These variations may be influenced by climatic 

effects such as the amount of rainfall, air humidity, and food availability (Langham, 1980). In 

general, the breeding cycle of a swiftlet species is approximately 92–120 days with a clutch 

size of two eggs (Langham, 1980; Lim et al., 2002; Viruhpintu et al., 2002). A. maximus 

produces a single egg clutch with an approximate egg size of 16-25 mm; while A. fuciphagus 

normally lays two eggs per clutch with approximate egg size of 10-15mm. The incubation and 

fledging periods for both Aerodramus fuciphagus and Aerodramus maximus were 23±3 days 

and 43±6 days, respectively (Langham, 1980; Lim et al., 2002; Medway, 1962). Swiftlets 

breed throughout the year but mostly from October to February (Langham, 1980). Swiftlets 

take approximately 30-45 days to complete a single nest during the breeding season and about 

60-80 days in non-breeding season (Aowphol, Voris, Feldheim, Harnyuttanakorn & 

Thirakhupt, 2008). According to Marcone (2005), nests are built almost exclusively by male 

swiftlets in approximately 35 days; however Lim et al (2002) reported that both male and 

female participate in the nest building.  

 

Growth 

Based on Reichel, Collins, Stinson and Camacho (2007), the observation on Mariana swiftlets 

at Saipan area showed that newly hatched nestlings were pink skinned and naked, devoid of 

any natal down. Starting from day 4-6, pin feathers appeared as dots beneath the skin on the 

dorsum and wings. By day 9, pin feathers were visible on all tracts and by day 13, the pin 

feathers start to erupt through the skin. By day 17-19, feathers began to emerge. Swiftlet 

nestlings started to open their eyes by Day 20 and flight feathers were approximately 50% 

grown by Day 37. Nestlings are fully feathered and capable of flying short distances by Day 

45-47. On average, swiftlet species fledged by Day 39.8-53.3 but this varies among different 

species and geological areas. The wing of a newly hatched nestling was measured to be 

approximately 6 mm long and it grew slowly until the primary pin feathers erupted on Day 12-

13. A swiftlet’s wing length developed in a linear fashion from Day 13 to 45. Similar to wing 

development, the tail length increases linearly from Day 15 to 45. Nestlings on Day 1 weigh 

1.11±0.06g. Thereafter, the nestlings grew slowly to reach approximately 8.21 g at Day 29. 

However, the incubation period, the age of fledging, the clutch size and the growth rate may 

vary among species and geographical areas (Table 1). 

 
Table 1: Growth rate of various swiftlet species 

 

Reproductive parameters of different swiftlet species 

 

Species Incubation period 

(days) 

Age at 

fledging 

(days) 

Clutch 

size 

Source 

and 

location 

Reference 

Mariana Swiftlet  

(Aerodramus bartschi) 

22.95 47 1 Saipan Reichel  et 

al. (2007) 

White-nest Swiftlet  

(Aerodramus fuciphagus) 

25.1 ± 0.3 39.8 ± 2.6 2 Singapore Lee and 

Kang 

(1994) 
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Habitat 

Natural habitat 

Swiftlets breed naturally inside limestone caves and they cling to the surface of the walls and 

ceilings (Ford & Cullingford, 1976; Langham, 1980; Lim et al., 2002). Several researchers have 

studied the influence of various nest-site characters and the relationships between nesting 

success and environmental factors (Jehle, Yackel Adams, Savidge & Skagen, 2004; Phach & 

Voisin 1998; Sankaran 2001; Viruhpintu et al., 2002). For example, Jehle et al. (2004) 

investigated the nesting success based on daily observations from the date of egg laying at 

various environments. Viruhpintu et al. (2002) reported that both Aerodramus fuciphagus and 

Aerodramus maximus constructed their nests at different areas of the cave wall to avoid 

interspecific competition for nestling space, and both species selected nestling areas by unique 

characteristics and not randomly. However, Aerodramus fuciphagus is commonly distributed 

at low altitude natural cave up to 1280 m highland or building while Aerodramus maximus 

normally roosts from sea level to a height of 1830 m (Lim et al., 2002). Researchers speculated 

that A. maximus is able to fly and live at higher altitude due to its larger body and larger wings.  

 

Among the selection criteria of a nestling site that may influence the breeding success are: a) 

the texture of the rock surface at the nest-site: rough, slightly rough and smooth rock surface; 

b) the presence and absence of the nest support at the nest site; c) the inclination of the cave 

wall at the nest-site location: flat, inwardly inclined and outwardly inclined wall; e) 

micrometeorological conditions such as the mean temperature (°C) and the relative humidity 

(%) (Sankaran, 2001). In general, a nesting area on a higher, inward-inclining, smooth and 

concave surface is preferred over a low and rough cave wall. A smooth and concave surface 

provides better support to nest building and higher nestling success, while higher and inward-

inclining areas prevent eggs and nestlings from predators (Viruhpintu et al., 2002). Nguyen et 

al. (2002) stated that the optimum temperature for nestling success is between 26°C and 35°C. 

High temperature will cause damages to the egg, while low temperature affects the health of 

young featherless swiftlets. A humidity of 80%-90% provides the best nesting environment 

(Jehle et al., 2004). If the cave is too humid, fungus will build up and prevent the birds from 

nesting. However, if the humidity is too low, the nest will not adhere to the surface of the wall, 

and will probably crack and fall to the ground (Medway, 1962). 

 

Man-made habitat 

In swiftlet farming industry, man created an artificial house that resembles the natural habitat 

for swiftlets to roost. Studies on swiftlet nesting behaviors in natural habitat provide important 

information to improve the breeding environment of swiftlet houses. Man-made swiftlet houses 

are cave-like environments that allow the swiftlets to construct nests. Swiftlet houses can be 

White-nest Swiftlet 

(Aerodramus fuciphagus) 

23.0 ± 3.0 43.0 ± 6.0 2 Malaysia Langham 

(1980) 

Black-nest Swiftlet  

(Aerodramus maximus) 

25.5 ± 2.2 45.9 ± 2.6 1 Singapore Lee and 

Kang 

(1994) 

Black-nest Swiftlet  

(Aerodramus maximus) 

28.0 58.5 1 Sarawak Medway 

(1962) 

Mossy-nest Swiftlet  

(Aerodramus vanikorensis) 

23.0 48.5 1-2 Sarawak Medway 

(1962) 

White-rumped Swiftlet  

(Aerodramus spodiopygius) 

23.0 46.0 2 Fiji Turburton 

(1986) 

Mountain Swiftlet  

(Aerodramus 

hirundinaceus) 

NA 53.3 ± 1.2 1 New 

Guinea 

Turburton 

(2003) 

Clossy Swiftlet  

(Collocalia esculenta) 

21.5 42 2 Sarawak Medway 

(1962) 
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found all over Malaysia, Indonesia and Thailand due to the active swiftlet farming industry of 

both white-nest and black-nest swiftlets (Lim et al., 2002). Generally, swiftlet houses are 

normally built close to the coast or far inland to create suitable conditions for swiftlet farming. 

Several elements such as light intensity, temperature, air velocity and humidity were controlled 

and optimized in order to replicate a suitable living environment for the swiftlets. The main 

entrance hole of a swiftlet house is usually designed near the top of the structure in order to 

avoid direct sunlight and to limit the light intensity of the structure (Sankaran, 2001). Normally, 

the building is constructed as a closed structure with only a limited number of ventilation holes. 

Air movement will cause evaporation to reduce the humidity level and air temperature inside 

the building. The temperature is controlled by the air ventilation while humidity is controlled 

by the installed humidifiers and the pools of water provided inside the structure. Temperature 

and humidity are important to ensure nestling success and produce good quality nests. 

Deformed nests do not only cause economic loss (Lau & Melville, 1994) but will also affect 

young swiftlets and eggs as shrieked nests cannot support the young and will fall to the ground 

easily (Jehle et al., 2004).  

 

Economic value of EBN 

Lim et al. (2002) defined EBN as one of the most valuable animal by-products due to its high 

market value. The 2011 Malaysia Economic Transformation Programme (ETP) Annual Report 

identified the EBN swiftlet farming industry as one of the major contributors to Malaysia Gross 

National Income (GNI) with a total value of RM (Malaysia Ringgit) 4.5 billion. Malaysia is 

currently the world's third largest supplier of EBN after Thailand and Indonesia. In 2004, 

Indonesia supplied approximately 84% of the global EBN production, while Malaysia 

contributed 9% and the rest are from other South East Asian countries mainly from Thailand 

(Lau & Melville, 1994). In 2006, Hong Kong was the world’s largest export market for EBN 

where Hong Kong consumed 50% of the global EBN production, followed by China (8%), 

Taiwan (4%) and Macau (3%) (Tan et al., 2014). The export quantity of Malaysia’s EBN 

increased over 92 % from 9503 MT (Metric ton) in 2009 to 121677 MT by 2011. In the early 

90s, a kilogram of white-nest could cost up to US$8,000 (Lau & Melville 1994), but the price 

of Malaysia’s EBN dropped drastically to approximately US$1,900 in 2012 due to the detection 

of high-level nitrate and nitrite in raw EBN (Table 2).  

 

Table 2: Value of EBN from Niah, in US$/kg from year 1845 to 2012 

(Converted at exchange rate of RM3.8 = US$ 1) (Hobbs, 2004)  

Year  Black nest White nest 

US$/kg US$/kg 

1845 1.05 11.32 

1947-1949 1.18 NA 

1950-1954 1.45 21.05 

1955-1959 1.61 NA 

1960-1964 2.24 NA 

1965-1969 2.71 NA 

1970-1974 4.61 NA 

1975-1979 9.61 157-196 

1980-1984 19.08 NA 

1990 105-210 210-447 

1994 273 NA 

1996-2002 158-316 1316-1789 

2006-2008 NA 3400 

2008-2011 NA 2900 

2011-2012 NA 1900 

 

The price of EBN began to surge around 1985, mainly due to the decline of nest supplies and 

rising affluence of emerging consumer society in China and Hong Kong who consume EBN 
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for medical benefits (Lau & Melville, 1994). Since 2008, the prices of EBN declined drastically 

as EBN from Indonesia were banned from entering China due to high nitrite content, and later 

EBN from Malaysia too get banned for the similar reason in 2012. Malaysia bird’s nest 

industry had been affected greatly due to China’s ban. The demand for Malaysia EBN 

has dropped approximately 20% to 30%, while prices have fallen by 20% (Ramli & 

Azmi, 2012). To deal with such problems, the Chinese authorities have taken stringent 

measures such as educating the public frequently via media to not purchase EBN from unknown 

sources. In addition, they requested the Malaysian government to implement radio frequency 

identification (RFIP) technology to trace the entire supply chains from harvesting to storage 

before the EBN are exported to China for quality assurance including source, origin and weight 

of each individual piece of EBN (Thorburn, 2015). 

 

According to Food and Agriculture Organization of the United Nations (FAO) and World 

Health Organization (WHO), the acceptable daily intake (ADI) of nitrite and nitrate in EBN are 

30µg/g and 5µg/g, respectively. Recently, Quek, Chin, Yusof, Tan and Law (2015) investigated 

the nitrite and nitrate contents of eight types of Malaysia’s EBN using an ion chromatography 

system, and the results showed that the nitrite content obtained is about 5.7 µg/g for the house 

nests and 843.8 µg/g for the cave nests. The nitrate content for the house and cave nests was 

98.2 µg/g and 36,999.4 µg/g, respectively. Although the level of nitrate and nitrite in Malaysia’s 

EBN exceeded the recommended ADI by FAO and WHO, studies have showed that up to 98% 

of nitrite and nitrate were able to be removed through soaking the raw EBN in water (Chan, 

2013). Furthermore, Paydar et al. (2013) suggested that the sources of nitrite and nitrate could 

have been derived from ammonia through anaerobic fermentation by the bacteria itself and may 

not be related to any food processing methods. 

 

The ban on Malaysia’s EBN was lifted by December 2013. However, the processing facilities 

must be inspected by the Certification and Accreditation Administration of the People’s 

Republic of China (CNCA) and the processing facilities are also required to procure the bird’s 

nests from birdhouses registered with the Department of Veterinary Services (DVS), Malaysia. 

Following the lifting of the ban, eight Malaysian companies were given permission to export 

processed EBN to mainland China and up to January 2015, another batch of 15 companies went 

through the inspection. Under the directive of DVS Malaysia through the implementation of 

Economic Transformation Programme, the DVS strives to increase the upstream production of 

EBN by building additional 2,000 new farms and 6 collection centres annually while guiding 

the industry towards developing downstream, and value-added EBN related products by 

collaborating with universities and research centres (Economic Transformation Programme 

(ETP) Annual Report 2013).  

 

Challenges in swiftlet industry 

Authentic EBN 

Due to the high economic value of EBN, irresponsible manufacturers often incorporated 

adulterants such as tremella fungus (Tremella fuciformisis), karaya gum (Sterculia urens), red 

seaweed, pig skin, egg white and vermicelli rice to increase the overall nett weight and size of 

the EBN. These compounds are used as adulterants due to the similarities in colour, taste and 

texture with the genuine bird’s nest salivary cement which is difficult to be detected by naked 

eyes (Marcone, 2005). Therefore, a variety of instruments and analysis methods for EBN 

authentication have been established based on empirical measures, composition analysis, 

microscopic examination and molecular biology-based technology (Table 3). However, there 

is no single method officially established as all methods that are currently available are too 

time-consuming, less dynamic, not specific or require high technical skills to operate. 
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Table 3: Authentic EBN detection methods 

Method Content Problem of detection methods References 

Empirical measures Visual examination Subjective and non-measureable  Liu and Zhang (1995). Leh (2000),; Wu, 

Chen, Wu, Zhao and Ge (2007) 

Composition analysis Composition of lipids, 

proteins, hormones, 

carbohydrate etc.  

These constitutes are commonly found in most 

mammalian cells. The composition can be 

adulterated by materials that contain the same 

chemical compound, making this method 

nonspecific. 

Marcone (2005); Ma and Liu (2012) 

Optical microscopy  Characterization of 

feathers, nest powder and 

nest texture 

Relies on operator experience and require specific 

operation technique 

Liu and Zhang (1995); Wu  et al. (2007) 

Scanning electron 

microscopy 

Fibre array Sam, Tan and Lim (1991); Marcone (2005) 

Fluorescence method EBN give out blue-green 

fluorescence at ultraviolet 

light at 365 nm 

Although there was a significant difference of 

chemical fingerprint determined between the EBN 

and other materials, there is still very limited 

information on the EBN collected from different 

geographical areas which makes these methods 

operate under a small dynamic range. 

Deng, Sun, Zhou and Li (2006) 

Modified xanthoproteic 

nitric acid test  

Protein analysis Marcone (2005) 

Gas chromatography 

(GC) 

Oligosaccharides 

composition 

Yu-Qin  et al. (2000); Marcone (2005); Yang 

et al. (2014) 

Capillary Gas 

chromatography (GC) 

Amino acids composition Wang and Wang (2006) 

Infrared spectrometry 

(IR) and Fourier 

transform infrared 

spectroscopy (FTIR) 

Characteristics of protein, 

amino acid and 

carbohydrates. 

Carbohydrates and amino acids exist in most 

adulterants and are not specific characteristic 

ingredients in EBN, making these methods prone to 

inaccurate results. 

Sun, Leung and Yeung (2001); Deng  et al. 

(2006) 

High performance thin 

layer chromatography 

(HPTLC) 

Amino acids composition Teo, Ma, and Liu (2013) 
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SDS-PAGE Number and characteristics 

of protein bands 

Adulterants in EBN samples cannot be determined 

unless the protein band or point is specific and 

identifiable. 

Hu and Lai (1999); Lin  et al. (2009); Wu  et 

al. (2007) 

Atomic absorption Analysis of minerals The minerals of EBN may be varied due to the 

geological factors which cause complication in 

developing the detection standard.  

Marcone (2005); Lee  et al. (1996)  

Molecular biological 

technology 

Detection of fibrinogen 

gene and cytochrome b 

gene 

The detection of specific genes may be an efficient 

method to identify far homolog adulterant. 

However, it is not able to detect close homolog 

adulterant due to gene conservation. 

Generally, molecular detection method such as real-

time PCR may require specific operation skill.  

Thomassen  et al. (2003); Lin  et al. (2009); 

Wu  et al. (2010) 
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Depletion of swiftlet population 

In Malaysia, government authorities have ensured EBN farming to operate in a balanced model for 

sustainable use of natural resources through the implementation of various laws and regulations. The 

Malaysian government only allows licensed harvesters to collect two or in certain circumstances 

maximum of three nests per pair of birds annually. Licensed harvesters may take the first nest as soon 

as it is complete and allow the swiftlet to build its second nest, incubate the eggs and see the chicks to 

fledge (requiring approximately 120 days) before the collection of the second nest. This approach allows 

the nest harvesters to collect two or three nests with tolerable inconvenience to the birds, meaning that 

the birds are able to raise some of its young and maintain a stable swiftlet population. However, such a 

system may collapse as the demand for EBN has grown drastically over the years and illegal harvesters 

no longer practice such an approach (Gausset, 2004; Hobbs, 2004; Tompkins, 1999).  

 

Apart from the over-exploitation of the nests as the main contributor to the reduction of swiftlet 

population, various other factors have been identified as factors to the reduction of swiftlet population. 

Leh and Hall (1996) proposed that the disruption of cave ecology due to the collection of guano in caves 

may reduce the population and diversity of insects which swiftlets feed on, resulting in the reduction of 

the swiftlet population. Later, Sim (1997) proposed that the usage of pesticides implied a negative effect 

on the swiftlet population. The continuity of deforestation activity including forest fire and smoke also 

contributes to the reduction of swiftlet population. Lastly, researchers have also speculated that green 

algae that contaminates the swiftlet reproduction grounds can also reduce the swiftlet’s reproduction 

rate (Leh, 2000).  

 

Quality surveillance and assessment standards 

Quality surveillance and assessment of EBN products are always a challenge in swiftlet ranching 

industry as no method has been established for such purposes. The EBN quality standards are poorly 

defined and vary across different countries. Standards developed by EBN production countries such as 

Malaysia, Indonesia and Thailand mainly focused on sensory indexes, water content, microbial and 

nitrite limit, while the EBN quality assurance standards in China focused on sensory index, size, 

moisture, protein, and sialic acid contents (ChangXing, Song, & LiQiu, 2015). Without proper 

surveillance and assessment standards, poor management and contaminations of bacteria or chemical 

compounds may affect swiftlets and EBN with possible threats, thus influencing the market value of 

EBN. As of today, the Department of Standard Malaysia has developed several Malaysia Standards 

(MS) for the EBN sector, while the Department of Veterinary Services (DVS) has embarked on the 

GAHP (Good Animal Husbandry Practices) and Veterinary Health Mark (VHM) quality assurance 

schemes for swiftlet farms and EBN processing plants to define the basic principles of animal 

management. Such standards serve as a guide for the EBN farming to provide a balance between the 

swiftlet sustainability, the EBN production and the disease control. Besides DVS, a monitoring 

programme for raw clean EBN is being implemented in line with the requirements set by the Ministry 

of Health Malaysia (MOH) and Certification and Accreditation Administration of the People’s Republic 

of China (CNCA). The monitoring programme ensures the safety of Malaysian raw and processed EBN 

as consumable food products before being exported to China. Although the standards for swiftlet 

industry management, animal welfare, identification and traceability have been established, the 

standards regarding the quality of EBN still remains unclear.  

 

As of today, the EBN grading is based on shape, size and weight as it is hard to grade the EBN products 

based on its content and components. Exporters have been grading EBN based on human judgment 

which is often inconsistent and tedious. Bird’s nests are naturally found in oval shape or V-shape (corner 

nest). There are 4 grades of oval-shaped nests and 3 grades for V-shaped nests based on shapes and 

sizes (Syahir et al., 2012). The shape of an EBN is not a suitable grading measurement as the quality 

inspection and surveillance require assessment criteria based on measurable parameters. The quality 

assessment of EBN should be based on the content and composition of the EBN products. Previous 

studies revealed that EBN of different swiftlet species, various habitats, geological areas, and EBN 

harvested at distinct seasons showed variation in the composition of EBN including carbohydrates, 

protein, fat, and bioactivity profiles. Such findings suggested that the composition of EBN could be 
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further studied, analyzed, optimized and developed into a measurable standard for EBN gradings among 

genuine EBN (Ma & Liu, 2012).  

 

Composition and medical values of EBN  

Since the 16th century, EBN soup is known as a delicacy in Chinese cuisine as well as an important 

health supplement (Medway, 1969). Traditional Chinese medical (TCM) practitioners have consistently 

indicated that consuming EBN is beneficial for a variety of health problems (Lim et al., 2002). 

Traditionally, EBN is used to strengthen the immune system, boost metabolism, improve skin 

complexion and for anti-aging effect (Hobbs, 2004; Kong et al., 1987; Leh, 2001; Lim et al., 2002). 

Despite many health benefits claimed to the EBN consumption, there are limited scientific evidence to 

support such claims. To study the medical benefits of EBN, researchers have studied the composition 

of EBN thoroughly over the decades in order to identify the bioactive compounds to understand the 

fundamental mechanism involved. EBN is revealed to be rich in protein and essential amino acids as 

well as a wider variety of monosaccharides than most food items (Chua et al., 2014). The composition 

of EBN from the genus Aerodramus normally consists of lipid (0.14-1.28%), ash (2.1%), carbohydrate 

(25.62-27.26%), and protein (62.0-63.0%) (Table 4). The most abundant amino acids found in EBN are 

serine, threonine, aspartic acid, glutamic acid, proline and valine (Kathan & Weeks, 1969), while 

essential elements traced include calcium (1298 ppm), sodium (650 ppm), magnesium (330 ppm), 

potassium (110 ppm), phosphorous (40 ppm), zinc and iron (30 ppm) (Marcone, 2005). Aswir and Wan 

(2011) showed that EBN contains 7 out of 8 essential sugars for human biological functions. N-

acetylneuraminic acid (sialic acid) is one of the major essential sugars in EBN accounting for 9% of 

total essential sugars (Colombo, Garcia‐Rodenas, Guesry & Rey, 2003). The majority of the sialic acid 

exists as gangliosides (65%) and glycoproteins (32%), while the remaining 3% can be found as free 

sialic acid (Brunngraber, Witting, Haberl & Brown, 1972). Sialic acid is often associated with 

neurological enhancement, brain development and intellectual advantages in infants as a functional 

component of brain gangliosides (Chau et al., 2003; Colombo et al., 2003; Wang & Brand-Miller, 2003). 

Oligosaccharide sequences such as sialic acid on soluble glycoconjugates are able to shed cells from 

microorganisms and parasites (Newburg, 1999; Rosenberg, 1995). Therefore, sialic acid is also often 

being referred to as an immune system moderator by affecting the flow resistance of mucus (Lehmann, 

Tiralongo & Tiralongo, 2006).  

 

An early study by Howe, Lee and Rose (1960) suggested that the EBN extract has enhanced the 

haemagglutination-inhibiting action against the influenza virus. Ng, Chan and Kong (1986) reported on 

the ability of EBN to potentiate the mitogenic response of human peripheral blood monocytes to 

stimulate the immune responses by proliferative agents such as concanavalin A and phytohemagglutinin 

A. Other benefits of sialic acid include decreasing the low-density lipoprotein (LDL), increasing fertility 

and controlling blood coagulation (Rosen, 2004). Other glyconutrients found in EBN include 7.2% N-

acetylgalactosamine (galNAc), 5.3% N-acetylglucosamine (glcNAc), 16.9% galactose and 0.7% fucose 

(Dhawan & Kuhad, 2002). GalNAc involves in the function of synapses between the nerve cells and its 

deficiency may lead to severe memory problems (Argüeso et al., 2003). GlcNAc is an amino acid and 

its function is as a prominent precursor for glycosaminoglycans, a major component of joint cartilage. 

The deficiency of glucosamine is frequently related to arthritis and cartilage degeneration (Pasztoi et 

al., 2009). In this respect, Matsukawa found that oral administration of EBN extract improved bone 

strength and calcium concentration (Matsukawa et al., 2011). The discovery by Nakagawa et al. (2007) 

also showed that Collocalia glycoproteins isolated from EBN are rich in proteoglycan (PG) which gives 

the cartilage elasticity. Kong et al. (1987) also discovered that partially purified EBN extract has been 

shown to stimulate epidermal growth factor (EGF) such as the activity in cellular process and mitogenic 

effect.  
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Table 4: Summary of EBN composition 

 

Component Content Reference 

Proximate analysis (%)  Yu-Qin et al., 2000; 

Marcone, 2005 Moisture 7.5-12.9 

Ash 2.1-7.3 

Fat 0.14-1.28 

Protein 42-63 

Carbohydrate 10.63-27.26 

Total nitrogen 25.62-27.26 

  

Amino acid (molar percent basis)  Yu-Qin et al., 2000; 

Marcone, 2005 Aspartic + asparagines 2.8-10.0 

Threonine 2.7-5.3 

Serine 2.8-15.9 

Glutamic + glutamine 2.9-7.0 

Glycine 1.2-5.9  

Alanine 0.6-4.7  

Valine 1.9-11.1  

Methionine 0-0.8  

Isoleucine 1.2-10.1  

Leucine 2.6-3.8  

Tyrosine 2.0-10.1  

Phenylalanine 1.8-6.8  

Lysine 1.4-3.5  

Histidine 1.0-3.3  

Arginine 1.4-6.1  

Tryptophan 0.02-0.08  

Cysteine 2.44  

Proline 2.0-3.5  

   

Fatty acid analysis (%)  Marcone, 2005 

(P) Palmitric C16:0 23-26  

(O) Steric C18:0 26-29  

(L) Linoleic C18:1 22  

(Ln) Linolenic C18:2 26  

   

Triacylglycerol (%)  Marcone, 2005 

PPO 14-16  

OOL 13-15  

PLnLn 18-19  

Monoglycerides 27-31  

Diglycerides 21-26  

   

Vitamin   Yu-Qin et al., 2000 

Vitamin A (IU/mg) 2.57-30.40  

Vitamin D (IU/mg) 60.00-1280.00  

Vitamin C (mg/100g) 0.12-29.30  

   

Elemental analysis (ppm)  Yu-Qin et al., 2000; 

Marcone, 2005 Sodium (Na) 330-20554 

Potassium (K) 110-2645 

Calcium (Ca) 798-14850  

Magnesium (Mg) 330-2980  
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Conclusion 

Swiftlet farming has high potentials to expand further into a multi-billion industry in all over Asia or 

even globally. However, over the last few decades, the industry has been unstable due to several 

unsolved challenges. Swiftlet farming and EBN industry which involve birds’ nest harvesting, raw nest 

processing and product manufacturing are complex affairs, involving the interplay of various factors. 

Ideally, a proper and comprehensive management system should involve the entire process flow from 

nest harvesting until the marketing of the EBN which involves both private sectors and government 

agencies. This is the best approach to overcome the challenges in the industry. Unfortunately, the set of 

recommendations for management cannot be made by any party since each farming area is unique in 

terms of geographical, swiftlet’s population, food source and microenvironment which require special 

scrutiny and suitable actions, whether the farming areas are man-made or natural habitats. Therefore, 

further research on swiftlet biology and ecological behaviors including the genetic characteristics, life 

cycle, growth rate, nesting and habitat behaviors, EBN’s composition, bioactive compounds and new 

downstream applications of EBN may provide valuable information for the industry to grow in a 

sustainable manner. 
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