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ABSTRACT 

 

MELATONIN-MICRONUTRIENTS OSTEOPENIA TREATMENT STUDY (MOTS): A 
TRANSLATIONAL STUDY ASSESSING THE EFFECTS OF MELATONIN, STRONTIUM 

CITRATE, VITAMIN D3 AND VITAMIN K2 ON BONE DENSITY, BONE MARKERS 
TURNOVER AND HEALTH-RELATED QUALITY OF LIFE IN POSTMENOPAUSAL 

OSTEOPENIA FOLLOWING A ONE-YEAR DOUBLE-BLIND RANDOMIZED PLACEBO-
CONTROLLED TRIAL AND ON OSTEOBLAST-OSTEOCLAST CO-CULTURES. 

 

By 

Sifat Maria 

May 2018 

 

Dissertation supervised by Dr. Paula A. Witt-Enderby 

Objective: The purpose of this study was to assess if a novel combination of melatonin and three 

other natural bone-aiding micronutrients: strontium citrate, vitamins D3 and K2 (MSDK) could 

improve bone health by modulating the activity of osteoblasts and osteoclasts in favor of balanced 

bone remodeling and by improving the overall health-related quality of life in postmenopausal 

osteopenic women. 

Methods: The Melatonin-micronutrients Osteopenia Treatment Study (MOTS) is a translational 

research study that used both clinical and in vitro approaches to assess the efficacy of MSDK on 

bone health in women and to identify potential mechanisms for its effects. The clinical component 

of this study was designed as a one-year double-blind, placebo-controlled randomized trial, which 

assessed the effects of nightly MSDK supplementation containing 5 mg melatonin, 450 mg 

strontium citrate, 2000 IU vitamin D3 and 60 mcg vitamin K2 (MK7) on bone mineral density 

(BMD), bone marker turnover and quality of life (QOL) in postmenopausal osteopenic women. A 

total of 22 women (ages 49–75) were randomized to receive either MSDK (n = 11) or placebo (n 
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= 11) p.o. nightly for 12 months. Bone mineral density (BMD) was measured by dual-energy X-

ray absorptiometry (DXA) and Achilles ultrasound. Bone turnover markers total procollagen type 

1 amino-terminal propeptide (P1NP), osteocalcin (OC; both intact and N-terminal mid-fragments) 

and collagen type I c-telopeptide (CTx) were assessed at months 0, 6 and 12 in serum. Participants’ 

serum vitamin D3 and C-reactive protein (CRP) levels were measured at months 0, 6 and 12. 

Nocturnal urinary melatonin levels were measured at month 12. Quality of life questionnaires 

measuring menopausal symptoms (MENQOL), anxiety (STAI), stress (PSS) and depression (CES-

D) were administered at months 0, 6 and 12. Participants were given a daily diary to keep track of 

their pill intake, sleep duration, exercise, supplement usage and other information relevant to their 

general health and mood throughout the study. 

The in vitro component of this translational study focused on identifying potential 

mechanisms underlying MSDK’s effect on bone cell differentiation and activity using two co-

culture systems containing human adult mesenchymal stem cells (hMSCs) and human peripheral 

blood monocytes (hPBMCs). Using a novel in vitro treatment paradigm that closely mimics the in 

vivo condition, hMSCs/hPBMCs were co-cultured for 21 days either separately using transwell 

culture dishes (transwell co-culture) or by seeding hPBMCs directly on top of differentiating 

hMSCs (layered co-culture). The effect of MSDK on the differentiation and activity of bone cells 

was measured via alizarin red staining assay for osteoblast activity and TRAP and resorption pit 

assays for osteoclast activity, respectively. This study further assessed various signaling cascades 

underlying MSDK’s effects on osteoblastogenesis and osteoclastogenesis that included: 

OPG/RANKL, ERK1/2 and 5, RUNX2, INTEGRIN β1, NFκB, PPARγ, GLUT4 and INSULIN 

Rβ. 
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Results: One-year of MSDK treatment significantly increased lumbar spine BMD (4.3%), left 

femoral neck BMD (2.2%), with an upward trend for total left hip BMD (5.03% vs. 2.2% in 

placebo; p=.069) in postmenopausal osteopenic women taking MSDK compared to placebo. 

MSDK also decreased the ten-year probability of vertebral fracture risk by 6.48% compared to the 

10.8% increase observed in placebo. MSDK reduced bone turnover (CTx:P1NP ratio) primarily 

by increasing the serum bone formation marker P1NP (vs. placebo; p = 0.023 and p = 0.004 at 

months 6 and 12, respectively); the bone resorption marker, CTx remained constant throughout 

the study. Serum OC levels also did not change with MSDK throughout the study. Serum CRP 

levels showed a downward trend, suggesting potentially positive effects of MSDK on one’s 

inflammatory status. MSDK produced no effect on height, weight and lean body mass; however, 

MSDK resulted in less variability in weight gain or loss compared to women taking placebo which 

could positively contribute to bone health. MSDK exhibited beneficial effects on the quality of 

life, perhaps by lessening the sexual symptoms of menopause (not significant vs. placebo) and 

showing some improvements with respect to sleep quality. MSDK did not produce adverse effects 

psychologically or physically in our cohort and there was a high compliance rate (92.4%).  

MSDK-exposed human mesenchymal stem cells (hMSCs) and human peripheral blood 

monocytes (hPBMCs) plated in transwells or layered co-cultures demonstrated increases in 

osteoblastogenesis, decreases in osteoclastogenesis, increases in the ratio of OPG:RANKL by both 

increasing OPG and decreasing RANKL expression in osteoblasts. In transwell osteoblasts, 

MSDK increased pERK1/2 and RUNX2 levels; decreased ERK5; and did not affect the expression 

of NFκB and INTEGRIN β1. In layered osteoblasts, MSDK also decreased expression of the 

metabolic proteins PPARγ and GLUT4. These findings demonstrate that MSDK may be a novel, 

safe and efficacious therapy for treating those afflicted with osteopenia. 



 

vii 

DEDICATION 

 

To my parents Md. Shafiqur Rahman and Noorjahan Begum, who sowed the beautiful dream of 

pursuing Ph.D. in me and made me who I am today. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

ACKNOWLEDGEMENTS 

 

Graduate life was an amazing journey for me. There were ups and downs, joys and pains, 

but when I look back, I feel like it’s one of the most worthwhile endeavors I have ever taken. It’s 

not only because of the degree and training I have earned, but also because of the people I have 

met, because of their care, guidance, support and constant encouragement. I would like to take this 

opportunity to express my sincere gratitude to all these wonderful people. 

The first and the most important person who made this journey possible is my supervisor 

Dr. Paula A. Witt-Enderby. She greeted me no less than a family since my very first day at 

Duquesne. Her compassion and care helped me not only to adapt in this completely new 

environment, but also to successfully overcome many difficulties in my professional and personal 

life. Her intriguing teaching and high-skilled training enabled me to discover my potential and 

scientific capability to overcome multiple challenges throughout my Ph.D. tenure. In addition to 

her expertise and insights, I idolize her for her lifelong devotion in establishing safe and well-

tolerated interventions for middle-aged women. I feel very fortunate and proud to be a part of her 

noble research.  

Next, I would like to express my sincere gratitude to my committee members, Dr. David 

Johnson, Dr. Lauren O’Donnell, Dr. Frank D’Amico and Dr. Holly Lassila. Their valuable 

suggestions as well as constructive criticism greatly enhanced the productivity of this dissertation 

work. I would like to give special thanks to Dr. D’Amico for giving me statistical lessons with 

great care and patience despite his busy schedule and helping me design the clinical study. I am 

also thankful to other pharmacology faculties at Duquesne University, specially Dr. Rehana Leak 

and Dr. Jane Cavanaugh, for their academic guidance and valuable contribution in improving my 

knowledge and technical skills. I would like to thank our collaborators- Dr. Mark Swanson for 



 

ix 

enlightening me with valuable information regarding clinical trials and The Pure Encapsulation 

Inc. for providing study medications.  

My heartfelt thanks go to my labmate Fahima for staying beside me like a sister during my 

difficult times. I am more than thankful to my graduate school friends- Priya, Negin, Dipy, Sneha, 

Nayeem, Tanvir and Junayed, who helped me to survive this hard journey with their sharing, 

caring, moral and technical support. I would also like to thank my other co-workers- Mahmud, 

Brianna and Rebekah for contributing greatly in my researches. My sincere appreciations go to 

our administrative staffs, specially Jackie Farrer and Deborah Wilson for their tremendous help. 

I would like to take this opportunity to express my deepest gratitude to my parents, who 

truly believe in me and never let me feel down when the whole world turns around. When I was 

struggling with my newborn, my mother, despite her physical weakness, travelled 8000 miles 

leaving everything behind to help me continue this journey. I am blessed to have such wonderful 

parents who can make incredible sacrifices for me. I am also extremely thankful to my In-laws, 

especially my mother-in law, Afroza Pervin, for her tremendous encouragement and support 

during my journey. My love and gratitude go to my one-year old daughter, Fiorella, who brought 

colors in my life and gives it a beautiful meaning. I would also like to acknowledge my elder 

brother Ahmed Galib for his inspiring words and other family members, especially, my uncle Md. 

Mojibur Rahman, who introduced me to the beauty of science in my childhood.  

Finally, no words are enough to express my love and gratitude for my husband, Md. Anik 

Alam. He is the only person who directed me in pursuing my dream of getting Ph.D. from the very 

beginning, starting from applying for the Ph.D. to giving defense. I would not be able to come this 

far without his incredible support, love, inspiration and endless sacrifices throughout all the years.  



x 

Last but not the least, I would like to gracefully thank God for bestowing His innumerable 

blessings and mercy upon me. 



xi 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................................. iv 

DEDICATION............................................................................................................................. vii 

ACKNOWLEDGEMENTS ...................................................................................................... viii 

LIST OF FIGURES ................................................................................................................... xiv 

LIST OF TABLES ...................................................................................................................... xv 

Chapter 1: Introduction ............................................................................................................... 1 

1.1. Bone physiology .................................................................................................................. 1 

1.1.1. Modeling and remodeling ............................................................................................. 1 

1.1.2. Role of osteoblast-osteoclast communication in bone remodeling ............................... 2 

1.2 Bone loss- Osteopenia and osteoporosis ............................................................................... 6 

1.2.1. Introduction to osteopenia and osteoporosis ................................................................. 6 

1.2.2. Risk factors for osteopenia and osteoporosis ................................................................ 7 

1.2.3. Prevalence of osteopenia and osteoporosis ................................................................... 9 

1.3. Menopause and bone loss .................................................................................................. 11 

1.4. Bone loss therapy—current and future perspectives ......................................................... 13 

1.5. Research objective ............................................................................................................. 16 

1.6. Effects of melatonin, strontium citrate, vitamin D3 and vitamin K2 on bone .................... 17 

1.6.1. Melatonin .................................................................................................................... 17 

1.6.2. Strontium..................................................................................................................... 20 

1.6.3. Vitamin D3 .................................................................................................................. 23 

1.6.4. Vitamin K2 .................................................................................................................. 23 

1.7. Rationale for choosing melatonin, strontium citrate, vitamin D3 and K2 (MSDK) ........... 24 

1.8. Hypothesis.......................................................................................................................... 29 

1.9. Specific aims ...................................................................................................................... 29 

Chapter 2: MOTS clinical trial— Assessing the effects of melatonin, strontium citrate, 
vitamin D3 (cholecalciferol) and vitamin K2 (MK7) on bone health (bone density, bone 
markers turnover and fracture risk) and health-related quality of life in postmenopausal 
osteopenia..................................................................................................................................... 30 

2.1. Materials and Methods ....................................................................................................... 30 

2.1.1. Recruitment and enrollment ........................................................................................ 30 

2.1.2. Randomization and treatment allocation .................................................................... 36 

2.1.3. Treatment regimen ...................................................................................................... 37 

2.1.4. Treatment follow-up ................................................................................................... 39 



 

xii 

2.1.5. Participants’ right and confidentiality of the study ..................................................... 39 

2.1.6. Bone density measurement ......................................................................................... 41 

2.1.7. Fracture risk assessment ............................................................................................. 42 

2.1.8. Collection and storage of serum and urine samples .................................................... 44 

2.1.9. Biochemical assessments ............................................................................................ 45 

2.1.10. Blood pressure and body composition ...................................................................... 47 

2.1.11. Psychometric analyses .............................................................................................. 48 

2.1.12. General well-being and treatment compliance as measured by diary logs ............... 54 

2.1.13. Statistical interpretations ........................................................................................... 57 

2.2. Results ................................................................................................................................ 58 

2.2.1. Participant’s recruitment and enrollment .................................................................... 58 

2.2.2. Similar baseline characteristics between groups ensured efficient randomization ..... 61 

2.2.3. MSDK improved bone health in postmenopausal women ......................................... 66 

2.2.4. One-year MSDK supplementation increased nocturnal melatonin levels, but did not 
change serum vitamin D3 levels in postmenopausal women ................................................ 71 

2.2.5. MSDK had possible declination effect on serum C-reactive protein (CRP) .............. 73 

2.2.6. MSDK did not affect morphometric parameters and blood pressure, favoring bone 
health in postmenopausal women ......................................................................................... 74 

2.2.7. MSDK had no worsening effect on psychometric parameters in postmenopausal 
women ................................................................................................................................... 78 

2.2.8. MSDK improved general well-being and compliance in postmenopausal women .... 83 

2.3. Discussion .......................................................................................................................... 86 

Chapter 3: Assessment of mechanisms underlying the effect of melatonin, strontium citrate, 
vitamin D3 and vitamin K2 (MSDK) on human adult mesenchymal stem cells and human 
peripheral blood monocytes grown as co-cultures ................................................................. 102 

3.1. Materials and Methods ..................................................................................................... 102 

3.1.1. In-vitro treatment preparation ................................................................................... 102 

3.1.2. Osteoblast/Osteoclast co-cultures and hMSC mono-cultures ................................... 102 

3.1.3. Osteoblast differentiation and mineralization ........................................................... 107 

3.1.4. Osteoclast differentiation and resorption pit formation ............................................ 107 

3.1.5. Western blot .............................................................................................................. 109 

3.1.6. Measurement of secreted OPG and RANKL ............................................................ 110 

3.1.7. Statistical interpretation ............................................................................................ 111 

3.2. Results .............................................................................................................................. 111 

3.2.1. MSDK increased osteoblastogenesis and decreased osteoclastogenesis in co-cultures 
of hMSCs and hPBMCs ...................................................................................................... 111 



 

xiii 

3.2.2. MSDK modulates OPG and RANKL levels in co-cultures of hMSCs and hPBMCs 
dependent upon the type of culturing condition—layered or transwell .............................. 119 

3.2.3. MSDK modulates pERK1/2 and pERK5 levels in co-cultures of hMSCs and hPBMCs 
dependent upon the type of culturing condition—layered or transwell .............................. 123 

3.2.4. MSDK modulates RUNX2 level in co-cultures of hMSCs and hPBMCs dependent 
upon the type of culturing condition—layered or transwell ............................................... 127 

3.2.5. MSDK did not modulate INTEGRIN β1 level in co-cultures of hMSCs and hPBMCs
............................................................................................................................................. 128 

3.2.6. MSDK modulates NFκB level in co-cultures of hMSCs and hPBMCs dependent upon 
the type of culturing condition—layered or transwell ........................................................ 129 

3.2.7. MSDK modulates PPAR and GLUT4 levels in co-cultures of hMSCs and hPBMCs 
dependent upon the type of culturing condition—layered or transwell .............................. 131 

3.3. Discussion ........................................................................................................................ 132 

Chapter 4: Strength and limitations ....................................................................................... 150 

Chapter 5: Conclusions ............................................................................................................ 152 

Chapter 6: References .............................................................................................................. 157 

Chapter 7: Appendix ................................................................................................................ 173 

I. The study information in ClinicalTrials.gov ....................................................................... 173 

II. Materials used for study advertisements ............................................................................ 176 

III. Initial visit form ................................................................................................................ 182 

IV. Study medication label ..................................................................................................... 183 

V. Treatment effects on bone density T-scores changes in one year ...................................... 184 

VI. Treatment effects on bone marker changes in every six months ...................................... 185 

VII. Bone markers (P1NP, OC and CTx) of participants enrolled in fall and spring ............. 187 

COPYRIGHT STATEMENT .................................................................................................. 188 

 
 

 

 

 

 

  



 

xiv 

LIST OF FIGURES 

Figure 1. Different phases of bone remodeling cycle ..................................................................... 4 
Figure 2: Different stages of bone loss ........................................................................................... 7 
Figure 3. Regulation of signaling pathways in osteoblast and osteoclast and bone remodeling by 
melatonin (Mel), strontium (Sr), vitamins D3 and K2. 2014 ......................................................... 27 
Figure 4. Baseline intake form ...................................................................................................... 34 
Figure 5. Study medications (MSDK and Placebo) in identical bottles  ................................... 38 
Figure 6. Fracture risk (FRAX®) assessment questionnaire ........................................................ 43 
Figure 7. Fracture risk (FRAX®) assessment tool ....................................................................... 44 
Figure 8. Menopause Specific Quality of Life (MENQOL) questionnaire .................................. 51 
Figure 9. Perceived Stress Scale (PSS) questionnaire .................................................................. 53 
Figure 10. Daily diary ................................................................................................................... 56 
Figure 11. Responses to recruitment strategies employed in the study (n=184) .......................... 58 
Figure 12. Flow diagram of study subjects’ recruitment and enrollment. .................................... 60 
Figure 13. Baseline characteristics of the study cohort stratified by treatment ............................ 63 
Figure 14. Treatment effects on bone mineral density (BMD) ..................................................... 67 
Figure 15. Treatment effects on fracture risk probability (FRAX) ............................................... 68 
Figure 16. Treatment effects on serum bone markers turnover .................................................... 70 
Figure 17. Treatment effects on urinary nocturnal melatonin and serum vitamin D3 .................. 72 
Figure 18. Treatment effects on serum C-reactive protein (CRP) ................................................ 74 
Figure 19. Treatment effects on body composition ...................................................................... 76 
Figure 20. Treatment effects on blood pressure ............................................................................ 77 
Figure 21. Treatment effects on the menopause quality of life, anxiety, stress and depression ... 81 
Figure 22. Treatment effects on participants’ (A) sleep quality, mood, GI upset and general 
aches/pains; (B) sleep duration and (C) exercise intensity ........................................................... 85 
Figure 23. Isolation of monocytes (hPBMCs) from blood sample ............................................. 105 
Figure 24. Development of hMSCs/hPBMCs transwell (indirect) and layered (direct) co-cultures.
..................................................................................................................................................... 106 
Figure 25. Effect of MSDK on osteoblast-mediated calcium mineralization ............................. 114 
Figure 26. Effect of MSDK on osteoclast differentiation and resorption pit formation ............. 117 
Figure 27. Effect of MSDK on OPG and RANKL expression ................................................... 122 
Figure 28. Effect of MSDK on MAPK (ERK1/2 and ERK5) .................................................... 126 
Figure 29. Effect of MSDK on RUNX2. .................................................................................... 128 
Figure 30. Effect of MSDK on INTEGRIN β1 .......................................................................... 129 
Figure 31. Effect of MSDK on NFκB ......................................................................................... 130 
Figure 32. Effect of MSDK on metabolic proteins. .................................................................... 132 
Figure 33. Potential mechanism underlying MSDK effects on bone formation. ........................ 155 
 
 

  



 

xv 

LIST OF TABLES 

Table 1: Experimental timeline of MOTS clinical trial ................................................................ 40 
Table 2: Baseline characteristics of the study cohort un-stratified and stratified by treatment 
(MSDK and placebo) .................................................................................................................... 62 
Table 3:Treatment effects on bone density (T-scores), fracture risk probability (FRAX), bone 
marker, body composition and psychometric parameters ............................................................. 82 
Table 4: Sleep duration, exercise intensity and pill intake in placebo and MSDK groups ........... 86 



 

1 

Chapter 1: Introduction 

1.1. Bone physiology 

1.1.1. Modeling and remodeling 

Vertebrates embrace a unique skeletal morphology made up of bone and cartilage. Nearly 

80% of the adult human bones are comprised of compact, smooth outer layer called “cortex”; the 

remaining 20% are the spongy, honeycomb-like inner layer known as “trabecular” or “cancellous” 

bone. Cortical and trabecular bones are organized in a lamellar pattern to maintain structural 

rigidity (Clarke 2008). The tissue structure of bone consists of mineralized and non-mineralized 

matrix (osteoid) and three major bone cells—bone-forming osteoblasts, bone-lining osteocytes and 

bone-resorbing osteoclasts. The evolution and activity of these cells as well as communication 

between them are the chief controllers of skeletal development, bone adaptation (modeling) and 

bone preservation (remodeling) (Gasser and Kneissel 2017).  

Bone modeling is the process where osteoblastic bone formation and osteoclastic bone 

resorption occur as two independent events. Bone modeling is predominant during the first twenty 

years of life at the endocortical and trabecular surface to attain peak bone mass and then continues 

at a low level throughout the life. Bone modeling alters bone shape or optimizes bone mass to 

encounter and adapt mechanical forces without bending or cracking while at the same time helps 

bone to resist deformation from impact loading. Thus, it primarily regulates skeletal growth and 

provides mechanical support during hematopoiesis and endocrine function (Burr and Allen 2013, 

Currey 2013, Iolascon, Frizzi et al. 2014, Gasser and Kneissel 2017).  

Once skeletal growth is accomplished, each of the adult 206 bones undergoes bone 

remodeling for the rest of one’s life via a tightly coupled bone formation and bone resorption 

process. This essential reparation process substitutes primary juvenile bones as well as age- and 
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stress-related microfractured bones with the new healthy, strong and more mechanically-

competent bones. Bone microdamage accumulates when the magnitude of an applied load exceeds 

the structural strength of bone eventually leading to bone deterioration and fracture. The unique 

ability of bone to immaculately carry mechanical load and resist fracture is determined by bone 

mass and their spatial distribution (microarchitecture), which relies on the steady bone remodeling 

(Clarke 2008, Seeman 2008, Iolascon, Frizzi et al. 2014, Gasser and Kneissel 2017).  

1.1.2. Role of osteoblast-osteoclast communication in bone remodeling 

Balanced bone remodeling is a hallmark of skeletal integrity, which is defined by the 

balanced function of two major bone cells— osteoblasts and osteoclasts. Osteoblastic lineage cells, 

including mesenchymal stem cell progenitors, pre-osteoblasts, osteoblasts and osteocytes control 

osteoclast function which includes the fusion of monocytic pronuclei and their attachment, activity 

and apoptosis during bone remodeling. Osteoclasts, on the other hand, resorb bone and regulate 

osteoblast function by both membrane-bound and secreted factors and through the release of 

factors within the matrix (Sims and Gooi 2008). In cellular fos (c-fos) and macrophage colony 

stimulating factor (M-CSF) knockout mice, the absence of osteoclasts leads to defective bone 

formation, suggesting essential roles of these factors in maintaining bone integrity (Henriksen, 

Neutzsky-Wulff et al. 2009, Eriksen 2010). Therefore, a constant flow of communication between 

osteoclasts and osteoblasts is essential to maintain synchronization between bone formation and 

resorption during bone remodeling (Matsuo and Irie 2008, Sims and Gooi 2008, Raggatt and 

Partridge 2010).  

Remodeling starts with the activation of latent bone-lining osteoblast precursors in 

response to mechanical load shifts. Mesenchymal stem cells and pre-osteoblasts increase their own 

surface expression of receptor activator of nuclear factor κB ligand (RANKL) and M-CSF. 
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RANKL and M-CSF promote the release of immature progenitors of osteoclasts, such as 

mononuclear monocytes into the circulation and their recruitment to the resorption surface. They 

also bind to their respective cell surface receptors on pre- osteoclasts [(i.e. RANKL to RANK and 

M-CSF to colony stimulating factor 1 receptor (CSF1R)] to stimulate the fusion of monocytes into 

pre-osteoclasts and eventually into multinucleated fully functional osteoclasts. The osteoclastic 

activation phase lasts for approximately 10 days and precedes bone resorption, reversal and 

formation (Figure 1). 

In the resorption phase, osteoclasts attach to the underlying bone matrix and produce actin 

ring-shaped sealing zones enclosed by a ruffled border, which isolates the bone resorbing 

compartment from the surrounding extracellular fluid. Osteoclasts then secrete tartrate resistant 

acid phosphatase (TRAP), cathepsin K and matrix metalloproteinases (MMP) 9 and 13, resulting 

in the dissolution of inorganic minerals from the bone leading to the degradation of organic matrix. 

The resorption phase continues for two to three weeks (~21 days) and ends with osteoclast 

apoptosis.  

The five-day reversal phase starts afterwards, which involves cessation of the resorption 

phase and then a transition towards the osteoblast-mediated formation phase. Osteoclasts stimulate 

bone formation following resorption by releasing stimulatory paracrine factors embedded in the 

bone matrix, including insulin like growth factor (IGF) I and II, fibroblast growth factor (FGF), 

transforming growth factor (TGF) 1 and 2, bone morphogenetic proteins (BMPs) 2, 3, 4, 6 and 7 

and platelet-derived growth factor (PDGF). In addition, the osteoblast-osteoclast contact-

dependent ephrin signaling pathway, which mediates the interaction between osteoclast-derived 

ephrinB2 and osteoblast-derived EphB4, suppresses osteoclastogenesis when the two bone cells 

come into contact with each other to initiate osteoblastogenesis (Sims and Gooi 2008, Henriksen, 
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Neutzsky-Wulff et al. 2009, Eriksen 2010).  

 

Figure 1. Different phases of bone remodeling cycle. Activation, resorption, reversal and 

formation. RANKL= receptor activator of nuclear factor κB ligand, M-CSF= macrophage colony 

stimulating factor, CSF1R= colony stimulating factor 1 receptor, OPG= osteoprotegerin, BMP= 

bone morphogenetic protein, FGF= fibroblast growth factor, TGFβ= transforming growth factor 

β, ALP= alkaline phosphatase, OC= osteocalcin, TRAP= tartrate resistant acid phosphatase, 

MMP= matrix metalloproteinase. Figure adapted from Maria et al, 2014 (Maria and Witt‐Enderby 

2014). 

Mature osteoblasts start producing osteoprotegerin (OPG), which acts as a decoy receptor 



 

5 

for RANKL to negatively regulate RANK-RANKL binding and osteoclastogenesis. An inverse 

correlation exists between OPG and RANKL expression levels, which depends on the state of 

osteoblast differentiation (i.e., OPG levels are highest when osteoblasts are mature and RANKL 

levels are highest in immature pre-osteoblasts). Bone formation takes place for four to six months. 

Here, osteoblasts proliferate and synthesize new bone matrix (osteoid) that serves as a template 

for mineralization resulting from the accumulation of calcium phosphate hydroxyapatite crystals. 

Several other factors contribute to osteoblastic bone formation which include alkaline phosphatase 

(ALP) and osteocalcin (OC). ALP is used as a marker of bone formation because its activity 

increases with an increase in osteoblast differentiation; however, ALP activity does not always 

correlate with bone mineralization. OC is another bone formation marker, which increases bone 

mineralization by regulating the growth of apatite crystals and also plays an important role in 

fracture resistance (Gasser and Kneissel 2017). Osteoblasts then undergo one of the following 

three fates—they either undergo apoptosis, they become entrapped in the mineralized bone matrix 

as terminally differentiated ‘osteocytes’ or they remain as inactive cells lining the bone surface. 

These apparently quiescent cells reactivate when new bone formation is required. Primary 

mineralization accounts for approximately 70% of the mineral deposition that occurs in bone and 

this process takes two to three weeks. Secondary mineralization, which entails the maturation of 

mineralization crystals, may require more than a year to accomplish. During high bone turnover, 

tissue mineralization decreases and the degree of heterogeneity in mineralized matrix increases 

leading to bone loss. Balanced mineralization is required for optimal bone quality as high degree 

of mineralization makes new bone more rigid but breakable, whereas low mineralization makes 

bone less rigid but tough (Boyce and Xing 2008, Matsuo and Irie 2008, Seeman 2008, Sims and 

Gooi 2008, Henriksen, Neutzsky-Wulff et al. 2009, Eriksen 2010, Raggatt and Partridge 2010, 



 

6 

Iolascon, Frizzi et al. 2014, Gasser and Kneissel 2017). The mechanisms governing bone 

remodeling are still not clear. An accurate understanding of the mechanism(s) that couples bone 

formation and resorption is essential to successfully design interventions for preventing bone loss 

while upholding bone quality.  

1.2 Bone loss- osteopenia and osteoporosis 

1.2.1. Introduction to osteopenia and osteoporosis 

Osteopenia and osteoporosis primarily emerge from a disruption in the well-orchestrated 

and equalized functions of osteoblast and osteoclast and shifting towards greater osteoclastic bone 

resorption in bone remodeling (Feng and McDonald 2011). Osteopenia (from Greek ‘ostoun’ 

meaning bone and ‘penia’ meaning deficiency), also known as “low bone mass”, is the first stage 

of bone loss where bone mass begins to decline because of irregular bone remodeling. Osteopenia 

is characterized as below normal bone density and the precursor to osteoporosis, with a T-score 

that is between or equal to -1 and -2.5 (Maria and Witt‐Enderby 2014) (Figure 2). Bone loss 

typically progresses insidiously and unnoticed during osteopenia until a fracture occurs and/or 

osteoporosis develops. If a bone density scan by DXA is performed during the osteopenic stage, it 

can serve as a baseline bone mineral density (BMD) assessment for diagnosis and future 

monitoring.  

The systemic bone disease osteoporosis (from Greek ‘ostoun’ meaning bone and ‘poros’ 

meaning passage or pore) is defined based on World Health Organization (WHO) diagnostic 

criterion of a T-score less than -2.5. This implies that the bone density is moving towards a 

worsening of bone density by 2.5 standard deviations from the mean bone density of a 30 years 

old. Characteristic features of osteopenia-osteoporosis include reduction of bone density, 

degradation of bone tissue and disturbance of bone microarchitecture. This leads to compromised 
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bone strength and increased fracture risk following minor or no trauma such as a fall from standing 

height. A normal bone remodeling cycle causes nearly zero net change in bone mass and strength. 

High osteoclast activity in imbalanced remodeling leads to low bone mass and high intra-cortical 

and trabecular porosity, resulting in cortical fragility and loss of trabecular continuity. Defective 

bone microarchitecture accompanied by poor matrix mineralization weakens the bone’s ability to 

withstand mechanical load below the threshold level. As a result, even typical load produces more 

stress on bone, predisposing one to osteopenia-osteoporosis and fragility fractures (Seeman 2002, 

Seeman 2008, Baron and Hesse 2012, Cosman, De Beur et al. 2014, Siris, Adler et al. 2014). Hip 

and other osteoporotic fractures, which typically occur at the lumbar spine, femoral neck and wrist, 

are associated with high morbidity and mortality (Baron and Hesse 2012).  

 

Figure 2: Different stages of bone loss 

1.2.2. Risk factors for osteopenia and osteoporosis 

Osteopenia-osteoporosis can be classified as primary or secondary based on underlying 

risk factors. Primary bone loss progresses with age and typically results in approximately 10% loss 
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of bone mineral mass and trabecular bone volume per decade starting after age 40 (Hui, Slemenda 

et al. 1990). Although the structural bone damage is similar in men and women during youth, 

elderly women are often more vulnerable to bone loss than elderly men. This is due, in part, to the 

fact that men have larger skeletons than women and have thicker trabecular density and so their 

bones can tolerate more absolute loads. Menopause-related estrogen deficiency is another great 

contributor to bone loss in elderly women and a rapid decline in bone is observed in the first three 

years of menopause (Seeman 2002, Seeman 2008, Macdonald, Nishiyama et al. 2011, Baucom, 

Pizzorno et al. 2014). Other common risk factors for primary osteopenia-osteoporosis include 

malnutrition, smoking, sedentary and/or irregular lifestyle, family history, inadequate intake of 

calcium, and heavy alcohol consumption (Loh and Shong 2007, Cosman, De Beur et al. 2014). 

Vitamin D3 insufficiency has been established in several studies in the last 20 years as yet another 

significant risk factor of primary osteopenia-osteoporosis (Baucom, Pizzorno et al. 2014). 

Secondary osteopenia-osteoporosis mostly emerges from prolonged use of glucocorticoid therapy 

(Angeli, Guglielmi et al. 2006), or from diseases such as thyroid disorders, rheumatoid arthritis, 

diabetes mellitus (Inaba 2004), and numerous hematological, gastrointestinal, neurological and 

mobility disorders (Loh and Shong 2007, Mohammad, Khan et al. 2009, Cheng, Lin et al. 2014, 

Cosman, De Beur et al. 2014). Psychological conditions such as depression as well as poor sleep 

also contribute to bone loss, osteopenia and osteoporosis and related fractures (Brassington, King 

et al. 2000, Cizza, Primma et al. 2009). Finally, recent studies have shown that chronic circadian, 

sleep and melatonin disruption (e.g. in shift workers) can adversely affect bone resulting in low 

bone density and increased risk of hip and wrist fractures (Quevedo and Zuniga 2010, Kim, Choi 

et al. 2013, St Hilaire, Rahman et al. 2018) .  
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1.2.3. Prevalence of osteopenia and osteoporosis 

Osteopenia and osteoporosis are among the most common skeletal disorders worldwide, 

taking a toll on our world’s overall health status. The International Osteoporotic Foundation (IOF) 

has reported ~ 200 million sufferers (age > 50) of osteoporosis worldwide (Reginster and Burlet 

2006). Based on a recent survey by the National Osteoporosis Foundation (NOF), it is estimated 

that 10.2 million US adults suffer from osteoporosis at present and another 43.4 million osteopenic 

population are under great threat of developing osteoporosis in the near future. This accounts for 

54.2% of the total US adult population with bone loss irrespective of ethnicity (Wright, Looker et 

al. 2014). These numbers are predicted to increase up to 11.9 million for osteoporosis and 64.3 

million for osteopenia by 2030 (Maria and Witt‐Enderby 2014). The European Union also shows 

a similar prevalence with an estimated 22 million women and 5.5 million men (50-84 years) with 

bone loss and, if left untreated, these numbers will rise to 23% by 2030 (Hernlund, Svedbom et al. 

2013). For the rest of the world, bone loss scenarios are similar. For example, in Asia a high 

prevalence for osteopenia and osteoporosis exists and these are conservative estimates considering 

that bone loss is highly undiagnosed in most Asian countries until a fracture occurs and, even if 

this happens, many fractures are treated conservatively at home rather than in hospitals (Siris, 

Adler et al. 2014).  

The increased prevalence of bone loss is also rapidly increasing the risk of its life-

threatening consequence— fractures. Nearly 8.9 million annual fractures are reported worldwide, 

accounting for one fracture every three seconds. Fracture rate is higher in women than men with 

one in three women and one in five men over age 50 experiencing a fracture. Overall 61% of 

osteoporotic fractures occur in women and most occur in the humerus, hip and spine (Johnell and 

Kanis 2006, Sale, Beaton et al. 2014). In the US, the annual fracture rate is 1.5 to 2 million per 
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year (Burge, Dawson‐Hughes et al. 2007) and the rate is expected to increase to 3 million by 2025. 

Among all fractures, hip fractures are responsible for 8.4 to 36% mortality within a year of 

incidence in the US. Only 40% of the population with hip fractures fully recover to their pre-

fracture health following long-term care. Even though vertebral fractures are clinically silent at the 

initial phase, they are the chief predictor of future fracture risk. For example, if one experiences a 

vertebral fracture, then their risk for a subsequent vertebral fracture increases 5-fold. For a non-

vertebral fracture, the risk increases 2- to 3-fold (Cosman, De Beur et al. 2014). Twice the number 

of fractures arise in women with osteopenia. This is significant considering that women with 

osteopenia represent almost 50% of the total population at risk (Pasco, Seeman et al. 2006) and 

the prevalence of osteopenia is 3.4 times more than osteoporosis (Pfister, Welch et al. 2016). 

Bone-related disorders also contribute to the global health burden in an indirect way 

through back pain, height loss, spine deformity and disability (Cosman, De Beur et al. 2014). 

Fracture is often accompanied by long-term chronic pain, greater disability, poor quality of life 

(QOL) and early death. On a day-to-day basis, osteoporosis affects one’s physical state of health 

such as chronic daily backache, a limited social life and loss of free movement (Brenneman, 

Barrett‐Connor et al. 2006, Masaryková, Fulmeková et al. 2015). Besides these, morbidity and 

mortality rates associated with osteoporotic fractures are increasing and posing huge economic and 

social burdens. For example, the annual fracture-related treatment and post-treatment care expense 

is $19 billion in the US, and €37 billion in the European Union (Johnell and Kanis 2006, Burge, 

Dawson‐Hughes et al. 2007, Kanis, Odén et al. 2012, Hernlund, Svedbom et al. 2013, Maria and 

Witt‐Enderby 2014). The projected annual total fracture cost across all fracture types for US 

women is more than 18 billion by 2025, which is more than that of myocardial infarction, stroke 

and breast cancer (Singer, Exuzides et al. 2015).  
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1.3. Menopause and bone loss 

The menopausal transition is characterized by irregular lengths of the menstrual cycle and 

natural amenorrhea (absence of menstrual period) for at least one year accompanied by elevated 

serum levels of follicle-stimulating hormone (FSH). Postmenopause refers to the period where 

menstruation ceases permanently due to a complete loss of follicular activity in the ovary. Despite 

being a natural physiological phenomenon, the menopausal transition is often accompanied by 

debilitating consequences of osteopenia, osteoporosis and related fractures (Greendale, Sowers et 

al. 2012, Finkelstein, Brockwell et al. 2013). In addition to age and gender, hormonal status affects 

the steady diurnal rhythm of bone remodeling (Maria and Witt‐Enderby 2014). Low estrogen 

levels as observed in postmenopause increases the life span of osteoclasts and stimulates loss of 

connectivity between trabecular bone units. Increases in trabecular porosity leads to attenuated 

bone strength, specifically in the vertebrae; this results in more vertebral fractures in women than 

men (Seeman 2002, Seeman 2008).  

Women begin to experience bone loss during late perimenopause, which continues even 

after menopause. The annual rate of bone loss is typically slow and steady with a rate of ~ 0.4%, 

which increases to 2 to 5% per year for the first 5 to 10 years following menopause (Riis, Hansen 

et al. 1996). Total trabecular and cortical bone loss in women during the course of their lifetime is 

about 50% and 30%, respectively, half of which occurs in the first 10 years of menopause 

(Finkelstein, Brockwell et al. 2013). After the first 15 years of menopause, cortical bone loss 

surpasses trabecular bone loss, resulting in fragility fractures (Zebaze, Ghasem-Zadeh et al. 2010). 

Bone biopsies of normal postmenopausal women show an increase in the number of resorption 

pits on the bone surface indicating an increase in bone resorption (Garnero, Sornay‐Rendu et al. 

1996). 
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Currently, about 30% of postmenopausal women in the western world are suffering from 

osteoporosis and 40% of them have high risk of having one or more fractures in their lifetime 

(Reginster and Burlet 2006). The US Preventive Services Task Forces recommends that all women 

aged 65 years or older should undergo regular BMD screening. The International Society for 

Clinical Densitometry recommends an earlier screening for women (age <65 years), who are at 

high risk of developing fracture due to low body weight, prior fracture history or high-risk 

medication intake; the screening age for men is usually 70 years or above (Lim, Hoeksema et al. 

2009). Interestingly, a study involving 149,524 white postmenopausal women (mean age 64.5 

years) estimates that 82% of new fractures occurs in women with low bone mass (osteopenia) after 

one year (Siris, Chen et al. 2004). Similar outcomes were observed in a 5.6-year study with 

postmenopausal women (Pasco, Seeman et al. 2006), suggesting that although osteoporosis is a 

high risk stage for recurrent fractures in postmenopausal women, initial fractures mostly arise in 

this cohort when they are osteopenic. All these factors necessitate the need of proper attention and 

care for the osteopenic population as well as the osteoporotic population to minimize fracture-

related morbidity and mortality.  

In addition to bone loss, more than 80% postmenopausal women suffer from numerous 

physical and psychological symptoms with varying degrees of severity that disrupt their life. Major 

menopause-related physical symptoms include hot flashes, night sweats, fatigue, sleep 

disturbances, breast pain, palpitations, weight gain, urinary incontinence and vaginal dryness. 

Psychological health disturbances result in the emergence of anxiety, stress and depression. In fact, 

studies show that women experience at least one or more of these symptoms while transitioning 

through menopause. The large multiethnic Study of Women’s Health Across the Nation (SWAN) 

explained that all these changes collectively have a debilitating effect on the overall health-related 
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quality of life in this cohort. Health-related quality of life (QOL) is a part of the broad, 

multidimensional concept “Quality of life” that specifically measures how an individual’s life is 

affected by changes in his/her health status based on following aspects: physical health and 

performance, emotional activity, role limitations, and social functioning. The impact of menopause 

on health-related QOL is an important outcome measure in health sectors to provide effective 

treatment and care to the symptomatic postmenopausal women (Avis, Colvin et al. 2009, 

Greenblum, Rowe et al. 2013).  

1.4. Bone loss therapy—current and future perspectives 

Most of the conventional pharmaceutical bone loss therapies are treatment-focused rather 

than preventative, focusing primarily on attenuating further bone loss by inhibiting osteoclast 

function. Although these antiresorptive therapies lower fracture rate by 30 to 50%, they do not 

result in new bone formation or cortical microarchitecture improvement, which is essential during 

late-stage osteoporosis to maintain bone health and prevent fragility fractures. Even though clinical 

trials show increases in BMD with antiresorptives, this occurs by the secondary mineralization of 

existing (but declined) bone tissue rather than through the formation of new healthy bone. For 

instance, bisphosphonates (e.g. alendronate), which are the most effective first line bone loss 

therapies prevent degeneration of cancellous bone and thinning of cortex by inhibiting bone 

resorption; however, alendronate does not improve bone mass and microarchitecture. Bone 

anabolism needs to be an integral part of new bone loss therapies to aid in restoring bone mass and 

microarchitecture to protect mechanical integrity. A lack of bone-tropic properties in current 

antiresorptives makes them less than ideal for improving bone quality, density and bone strength 

(Boivin and Meunier 2002, Lyritis, Georgoulas et al. 2010, Iolascon, Frizzi et al. 2014).  

Despite the ample availability of conventional osteoporosis drugs, an alarming rise in the 
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prevalence of osteopenia-osteoporosis as well as the rate of fracture-related morbidity and 

mortality are still being observed in the geriatric population (Reginster and Burlet 2006). The 

reasons for this are not clear but probably associated with their adverse effects in the body and due 

to a lack of compliance (Caro, Ishak et al. 2004). Bisphosphates remain in the bone remodeling 

area for years even after discontinuation of the therapy due to their high affinity for calcium. This 

long residence time in bone contributes to the occurrence of osteonecrosis of the jaw, atypical 

femoral shaft fractures and hypocalcemia. The concept of a “three to five years bisphosphonate 

drug holiday” has emerged to avoid these circumstances. Discontinuation of bisphosphonate 

therapy, however, will halt these adverse effects, but will not prevent further bone loss and may, 

in fact, accelerate bone loss (Watts and Diab 2010). Denosumab, a monoclonal RANKL inhibitor, 

has been found to produce eczema and cellulitis in the FREEDOM (Fracture Reduction Evaluation 

of Denosumab in Osteoporosis Every 6 Months) and HALT (Hormone Ablation Bone Loss Trial) 

clinical trials, as well as osteonecrosis of the jaw and atypical femur fractures, result from its blood 

calcium lowering effects (Scotland, Waugh et al. 2011, Diz, López-Cedrún et al. 2012). Hormone 

therapy (HT) such as selective estrogen receptor modulators (SERMs) are popular among women 

going through the menopausal transition due to their positive effects on menopausal symptoms 

(e.g., vasomotor symptoms). However, awareness has risen towards the serious side-effects such 

as mammary cancer, deep venous thrombosis and other cardiovascular events associated with 

long-term use of HT (Grady, Ettinger et al. 2004, Baucom, Pizzorno et al. 2014). The only anabolic 

therapy available in the market is teriparatide— a parathyroid hormone (PTH) analog. Because 

long-term teriparatide treatment increases the incidence of rat osteosarcoma, its use is FDA-

restricted to two years (Vahle, Sato et al. 2002). These factors contribute to limited adherence and 

poor compliance amongst those with diagnosed osteoporosis to the current antiresorptive 
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therapies. Particularly in postmenopausal women, where the relationship between compliance and 

adherence to the therapy was measured by their medication possession ratio, low compliance 

caused a 17% increase in fracture rate, a 37% increase in the risk of hospitalization and associated 

cost of medical services. Bisphosphonate studies show that among the osteoporotic women aged 

45 years or older, only 50% new users were compliant after first three months, which dropped to 

30% after one year and 16% after three years (Warriner and Curtis 2009, Silverman and Gold 

2010, Genuis and Bouchard 2012).  

For those individuals with osteopenia, the pharmacological treatment regimen is typically 

delayed or given “watchful waiting” until the transition to osteoporosis is diagnosed (T-score less 

than -2.5 at the femoral neck/spine). Interventions may also occur if the individual with osteopenia 

has a history of having a previous hip or vertebral fracture; or when the T score is between -1.0 

and -2.5 at the femoral neck/spine and the 10-year risk of hip fracture ≥ 3%; or the 10-year risk of 

major osteoporosis-related fracture ≥ 20% by Fracture Risk Assessment Tool (FRAX®) calculation 

(Watts, Lewiecki et al. 2008). The osteopenic phase of bone loss consists mostly of unawareness, 

no treatment or a non-pharmacological self-care approach through diet, exercise and micronutrient 

supplementation. The non-pharmacologic treatment guidelines for osteopenia and osteoporosis 

routinely recommend calcium and vitamin D supplementation as a prevention; however, neither 

alone has proven to have any significant effect for reducing the incidence of fractures or preventing 

osteoporosis; and taking the combination of calcium plus D only slightly reduces the risk of hip 

and other fractures (Avenell, Mak et al. 2014, Bolland, Leung et al. 2015). A diagnosis of 

osteopenia is important considering the fact that a majority of osteopenic individuals will develop 

osteoporosis within 10 years (Kanis and Organization 2008). Osteopenia often carries a significant 

treatment uncertainty during the time of the greatest fracture risk burden (Pfister, Welch et al. 
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2016). Therefore, the current treatment approach to osteopenia as compared to osteoporosis could 

be analogous to the progression and treatment options of prediabetes as compared to diabetes, 

considering the similar risk factors between two phases of each disease. Interventions at this stage 

focusing on bone anabolism would be a critical first step for maintaining normal bone integrity 

and to prevent future fractures (Lyritis, Georgoulas et al. 2010). Thus, novel and safe bone loss 

therapies targeting the function of both osteoclasts and osteoblasts to minimize bone loss and 

advance bone growth without producing adverse effects is warranted. 

1.5. Research objective  

The “silent” disease osteopenia and subsequent osteoporosis are creating a loud impact in 

terms of morbidity, mortality and greater economic burden in the life of postmenopausal women. 

In addition to bone loss, their transitioning through several menopausal and psychological changes 

as well as the side effects and treatment costs associated with current therapies tallying to their 

suffering and thus worsening their health-related QOL and reducing compliance rate. Therefore, 

an ideal bone therapy that is efficacious with high compliance for postmenopausal cohort should 

satisfy both the objective health outcome (e.g., improves bone growth) and subjective health 

outcome (e.g., improves compliance). These observations lend support for the development of a 

safe alternative to current therapies to ensure maximum bone health improvement with minimum 

side effects.  

The objective of this study entitled Melatonin-micronutrients Osteopenia Treatment Study 

(MOTS) was to develop a safe and effective bone loss therapy for the osteopenic population. 

Interventions given at this stage of bone loss are expected to not only stop bone loss but also enrich 

new bone growth and improve overall QOL to prevent its progression to osteoporosis and 

fractures. In pursuit of study goal, a unique combination of natural bone tropic agents— melatonin, 
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strontium citrate, vitamin K2 and vitamin D3 was developed and referred to as “MSDK”. The 

MOTS investigated if MSDK could improve bone density and bone turnover and health-related 

QOL in postmenopausal women and if this was due to MSDK-mediated modulation of the bone 

remodeling process.  

1.6. Effects of melatonin, strontium citrate, vitamin D3 and vitamin K2 on bone  

1.6.1. Melatonin 

Melatonin, the first compound of interest in this therapy, is the endogenous chronobiotic 

molecule that is synthesized and secreted during the hours of darkness from the pineal gland. 

Melatonin is well known for its effects on sleep; however, supplementation with melatonin also 

produces favorable effects on bone including increasing bone density and reversing bone loss in 

models of osteoporosis as reviewed (Maria and Witt‐Enderby 2014). Melatonin synchronizes 

circadian rhythms in bone metabolism, in part, and favors bone growth when present at a higher 

level (Witt‐Enderby, Radio et al. 2006, Maria and Witt‐Enderby 2014). This is yet another 

important mechanism of melatonin’s considering that decreased nocturnal melatonin levels due to 

aging, light exposure at night or poor sleep quality increases the risk of bone loss and related 

fractures (Sandyk and Awerbuch 1992, Cardinali, Ladizesky et al. 2003, Ostrowska, Kos-Kudla 

et al. 2003, Feskanich, Hankinson et al. 2009, Witt‐Enderby, Slater et al. 2012, Maria and Witt-

Enderby 2017). Melatonin has been shown clinically in the Melatonin Osteoporosis Prevention 

Study (MOPS; NCT01152580) to renormalize osteoclast:osteoblast ratios (NTx: Osteocalcin) 

back to equilibrium and improve the physical symptoms of menopause in healthy perimenopausal 

women; this occurred following a nightly intake of 3 mg melatonin for six months (Kotlarczyk, 

Lassila et al. 2012). The MOPS was a double-blind randomized placebo-controlled trial (RCT) 

involving 18 perimenopausal women (ages 45-54) with a T-score > -2.0. In a follow-up study of 
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the MOPS using a therapeutically equivalent concentration of melatonin, it was shown that 

melatonin (50nM) given for 21 days to human mesenchymal stem cells (hMSCs) and peripheral 

blood monocytes (hPBMCs) grown as co-cultures induces osteoblast differentiation. The effect of 

melatonin on osteoclast differentiation is dependent upon the type of co-culture—layered or 

transwell where melatonin inhibits osteoclast differentiation in the layered co-culture (when 

hMSCs and hPBMCs were in contact with one another) and is without effect in the transwell co-

culture (when hMSCs communicated with hPBMCs via paracrine effects) (Maria, Samsonraj et 

al. 2017). The Treatment of Osteopenia with Melatonin study (MelaOst), which was another 

double-blind placebo-controlled RCT involving 81 postmenopausal women with osteopenia (ages 

56-73), demonstrates that one-year nightly dosing with melatonin (1mg, 3mg) increases femoral 

neck BMD compared to placebo. This study also demonstrates that urinary calcium excretion 

decreases in women taking melatonin as compared to those taking placebo suggesting that the bone 

density increases were due, in part, to melatonin-mediated increases in bone mineralization. 

Melatonin is shown to benefit metabolic conditions in this cohort as a decrease in total fat mass 

and a trend towards an increase in lean body mass occurs in women taking melatonin but not 

placebo (Amstrup, Sikjaer et al. 2015, Amstrup, Sikjaer et al. 2015). This important clinical finding 

served as the rationale as to why the metabolic proteins, peroxisome proliferator-activated receptor 

gamma (PPAR), glucose transporter type 4 (GLUT4) and beta subunit of insulin receptor (IRβ), 

were assessed in the co-culture model because melatonin may induce osteoblastogenesis by 

regulating the fate of the mesenchymal stem cell from adipogenesis to osteogenesis as recently 

reported (Maria, Samsonraj et al. 2017). 

The outcomes from the two clinical studies, MOPS and MelaOst, are supported by myriad 

preclinical and in vitro models, which revealed melatonin’s inducing effects on osteoblastogenesis; 
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inhibitory effects on osteoclastogenesis; and inducing effects on bone formation (Maria and Witt‐

Enderby 2014). Melatonin promotes osteoblastogenesis by enhancing the differentiation of 

mesenchymal stem cells (hMSCs) and pre-osteoblasts into osteoblasts (Radio, Doctor et al. 2006, 

Zaminy, Ragerdi Kashani et al. 2008, Sethi, Radio et al. 2010, Zhang, Su et al. 2010, Park, Kang 

et al. 2011). Melatonin stimulates osteoblast proliferation (Nakade, Koyama et al. 1999, Satomura, 

Tobiume et al. 2007); and suppresses osteoclastogenesis and bone resorption (Koyama, Nakade et 

al. 2002, Suzuki and Hattori 2002) in vitro. These data correlate with in vivo findings from our lab 

where exogenous melatonin intake for one year increases bone density in an intact female mouse 

model similar to that induced by HT (Witt‐Enderby, Slater et al. 2012). Melatonin linked to 

calcium aluminate scaffolds also induces bone regeneration in ovariectomized (estrogen-depleted) 

female rats (Clafshenkel, Rutkowski et al. 2012) and augments the bone-forming effects of 

estradiol in ovariectomized female rats (Ladizesky, Boggio et al. 2003). Because these models 

mimic the postmenopausal condition where levels of both estrogen and melatonin decline suggests 

that restoration of nocturnal melatonin peaks with exogenous melatonin may help to offset the 

bone loss that also occurs during this time in a woman’s life as reviewed (Witt‐Enderby, Radio et 

al. 2006).  

Besides producing direct effects on bone density, melatonin shows favorable effects on the 

physical symptoms of menopause (such as vasomotor symptoms and bloating) in the MOPS cohort 

(Kotlarczyk, Lassila et al. 2012). Further assessments of the MOPS daily diary logs also reveal 

that melatonin improves subject-reported mood and sleep quality in this cohort (Maria, Samsonraj 

et al. 2017) and also improves depression, anxiety and stress (Bellipanni, Bianchi et al. 2001, 

Haridas, Kumar et al. 2013, Hansen, Andersen et al. 2014, Sun, Wang et al. 2017, Zhang, Guo et 

al. 2017). Psychological health plays a prominent role in maintaining bone health. For example, 



 

20 

depression is found to significantly correlate with lower BMD in the lumbar spine and femur and 

high cortisol levels in postmenopausal women (Furlan, Ten Have et al. 2005). Sleep deficiency 

due to shift work (Feskanich, Hankinson et al. 2009, Quevedo and Zuniga 2010, Kim, Choi et al. 

2013, Wang, Wu et al. 2015) or stress produces adverse effects on bone and these may be attributed 

to their effects on melatonin levels; because shift work and stress have been shown to decrease 

melatonin levels as reviewed (Maria and Witt-Enderby 2017). All these findings coupled with its 

relative safety in aging population (Witt‐Enderby, Radio et al. 2006, Maria and Witt‐Enderby 

2014) makes melatonin an important component of MSDK to improve not only bone health, but 

also QOL and compliance associated with it.  

1.6.2. Strontium 

Strontium is the 15th most abundant alkaline earth metal named after the Scottish village 

Strontian where it was first discovered (Murray 1993). The adult body burden of strontium is about 

0.3–0.4 g, with 99% found in the skeleton as bone or teeth (Cabrera, Schrooten et al. 1999). 

Strontium is available as ranelate, citrate, chloride, carbonate or lactate. Among them, strontium 

ranelate is an approved therapy for osteoporosis treatment in Europe and Australia. In the US, 

strontium citrate is the FDA-approved bone support supplement. It is available over-the-counter 

with a typical 680mg recommended dosage as compared to the 2g therapeutic dose for strontium 

ranelate (Hernlund, Svedbom et al. 2013).  

Numerous clinical studies have shown beneficial effects of elemental strontium on bone 

health in the postmenopausal osteopenic and osteoporotic population, specifically on vertebral and 

femoral bone density and vertebral and non-vertebral fracture risk (Meunier, Roux et al. 2004, 

Reginster, Seeman et al. 2005, Malaise, Bruyere et al. 2007). The therapeutic efficacy of strontium 

ranelate in postmenopausal osteoporosis was established following two major clinical trials: 
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Treatment of Peripheral Osteoporosis (TROPOS) and Spinal Osteoporosis Therapeutic 

Intervention (SOTI), respectively. SOTI was a phase III double-blind placebo-controlled RCT, 

which included 1649 postmenopausal women (mean age 70) with osteoporosis and at least one 

vertebral fracture. This cohort received 2gm of strontium ranelate or placebo orally daily for one 

to three years. In this study, strontium ranelate increases lumbar spine and femoral neck BMD by 

12.7% and 7.2%, respectively, after one year; which increases up to 14.4% and 8.3%, respectively, 

after three years compared to placebo (Meunier, Roux et al. 2004). TROPOS was another double-

blind placebo-controlled RCT involving 5091 postmenopausal women with osteoporosis (age 

>70). In this study, strontium ranelate (2gm/day) increases femoral neck and total hip BMD by 

8.2% and 9.8%, respectively after three years vs. placebo (Reginster, Seeman et al. 2005). A post-

hoc analysis performed on 1428 postmenopausal osteopenic women chosen from the SOTI and 

TROPOS cohort (based on having osteopenia at a non-osteoporotic site at baseline) reveals that 

strontium ranelate renormalizes spine and hip BMD at a progressive level after one, two and three 

years of treatment and is well-tolerated in this population (Malaise, Bruyere et al. 2007). Strontium 

incorporates mostly in newly formed mineralized bone structures without replacing calcium from 

the existing bones; this is to maintain secondary mineralization at a normal level. This is supported 

by the analysis of bone biopsies in postmenopausal women treated chronically with strontium 

ranelate, which demonstrates that strontium preserves bone microarchitecture and quality by 

preserving bone mineralization (density and heterogeneity at tissue level). These findings further 

support a role for strontium at reducing fracture risk (Ammann, Badoud et al. 2007, Li, Paris et al. 

2010, Doublier, Farlay et al. 2011). 

Despite being available as an over-the-counter supplement for bone health, the underlying 

mechanism of strontium citrate on bone health has yet to be determined. To our knowledge, the 
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MOTS is one of the first trials to evaluate the efficacy and safety of strontium citrate in treating 

postmenopausal osteopenia when used in a combination with melatonin, vitamin D3 and vitamin 

K2. Out of the very few studies available on strontium citrate, one significant study worth 

mentioning is the Combination of Micronutrients for Bone (COMB) study. The COMB assessed 

the efficacy of a one-year treatment with strontium citrate (680mg), vitamin D3 (2000IU) and 

vitamin K2 (100mcg) on bone density in 77 participants; 72 of the 77 were females of which 56 

were postmenopausal and 5 of the 77 were males (Genuis and Bouchard 2012). Although the 

citrate form slightly differs from the ranelate in terms of their chemical structure, the efficacy of 

strontium citrate in improving BMD is equal to that of strontium ranelate (Genuis and Bouchard 

2012), probably because strontium is equally delivered to bone regardless of the analogues (Wohl, 

Chettle et al. 2013). However, strontium citrate is associated with less side effects (Genuis and 

Bouchard 2012). 

In vitro and preclinical studies have also supported the clinical data by demonstrating that 

strontium maintains skeletal morphology and bone remodeling via multiple mechanisms (Figure 

3). Strontium stimulates osteoblast growth, maturation, function and survival (Atkins, Welldon et 

al. 2009, Fromigué, Haÿ et al. 2009, Peng, Zhou et al. 2009, Saidak, Haÿ et al. 2012, Querido and 

Farina 2013, Almeida, Nani et al. 2016) and inhibits osteoclastogenesis (Bonnelye, Chabadel et 

al. 2008, Yamaguchi and Weitzmann 2012). Strontium induces vertebral bone mass in intact 

female mice with no deleterious effect on bone mineralization (Delannoy, Bazot et al. 2002). It 

attenuates loss of trabecular bone, conserves bone strength and microarchitecture while facilitating 

the fracture healing process in ovariectomized rats (Bain, Jerome et al. 2009, Thormann, Ray et 

al. 2013).  
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1.6.3. Vitamin D3 

Vitamin D, also known as the “sunshine vitamin”, has been recognized as an essential 

nutrient for bone health since 1930 (Wacker and Holick 2013). Adequate levels of vitamin D3 

(cholecalciferol) are critical for increasing the intestinal absorption of calcium from 10% to 30-

40% (Kidd 2010). Also, an attenuation of bone loss in the hip is observed with a minimum daily 

dose of 1000 IU vitamin D3 in postmenopausal women (Macdonald, Wood et al. 2013). Apart 

from vitamin D3’s action on the calcium absorption, it performs a dual mode of action on bone 

favoring both osteogenesis (Anderson, Lam et al. 2013, Chen, Dosier et al. 2013, Yang, Atkins et 

al. 2013) and bone resorption (Bar-Shavit, Teitelbaum et al. 1983, Kitazawa, Kajimoto et al. 2003, 

Kogawa, Findlay et al. 2010, Anderson, Lam et al. 2013) (Figure 3) 

1.6.4. Vitamin K2  

Vitamin K2 (menaquinone 7; MK7) is the approved dietary supplement for osteoporosis in 

Japan for its efficacy in carboxylating osteocalcin, a crucial biomarker of bone matrix formation. 

Carboxylation of osteocalcin decreases osteoclast activity and so, during the bone remodeling 

process, carboxylated osteocalcin will remain in the bone under bone resorption is required where 

it will then be decarboxylated to activate osteoclasts (Lacombe and Ferron 2015). A majority of 

the observational studies found correlations between low vitamin K2 intake, low bone mass and 

increases in the risk of fracture (Frandsen and Gordeladze 2017). In healthy postmenopausal 

women, vitamin K2 (MK7) intake at a dose of 180 mcg/day for three years significantly induces 

serum levels of vitamin K and attenuates age-related decreases in lumbar spine and femoral neck 

BMD. Vitamin K2 supplementation also improves bone strength and prevents loss of vertebral 

height at the lower thoracic region of vertebrae (Knapen, Drummen et al. 2013). Other studies in 

postmenopausal women demonstrate that vitamin K2 (MK7, 375mcg per day for one year) reverses 
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osteopenia and improves bone microarchitecture (Rønn, Harsløf et al. 2016). The mechanisms 

underlying vitamin K2’s effects on bone appear to target bone microarchitecture and bone tissue 

quality by improving cortical thickness, trabecular number and connectivity (Ammann, Badoud et 

al. 2007, Iolascon, Frizzi et al. 2014) and by increasing collagen production (Sato 2014). In vitro 

studies demonstrate stimulatory effects of MK7 on osteoblastogenesis and suppressive effects on 

osteoclastogenesis (Yamaguchi, Sugimoto et al. 2001, Katsuyama, Otsuki et al. 2005, Atkins, 

Welldon et al. 2009, Yamaguchi and Weitzmann 2011) (Figure 3).  

Although, the MK7 analogue of vitamin K2 is relatively less studied than the MK4 

(menaquinone 4) analogue, the MOTS used MK7 due to its longer half-life in the circulation, its 

better bioavailability than MK4 and its relative safety when used as a dietary supplement (Sato 

2014, Marles, Roe et al. 2017). This supports our contention that a lower dose of MK7 (60 mcg) 

will lead to greater K2 accumulation in extrahepatic tissues compared to MK4 where higher doses 

would be required to achieve the same effect (Sato, Schurgers et al. 2012).  

1.7. Rationale for choosing melatonin, strontium citrate, vitamin D3 and K2 (MSDK) 

Combination therapies have demonstrated a greater benefit to preserving bone versus 

monotherapies since each drug targets a different mechanism (Figure 3). Clinically, this is also 

supported. For example, combination of vitamin D3 and K2 increases vertebral bone density in 

postmenopausal women with osteopenia and osteoporosis compared to each alone (Ushiroyama, 

Ikeda et al. 2002). Also, a recent study demonstrates that severe deficiency in vitamins D3 and K2 

are associated with femoral fracture; these findings imply that adequate supplementation with both 

of these vitamins is essential when treating patients with osteopenia and osteoporosis (Franke 

2017). Improved vitamin D3 status in postmenopausal women also significantly enhances BMD in 

response to strontium ranelate, particularly in the femoral neck (Catalano, Morabito et al. 2015). 
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The effects of elemental strontium as well as other micronutrients (vitamin D3 and K2) on bone 

health in postmenopausal cohort are more pronounced when used in combination. This is 

demonstrated in the COMB study where a majority (81%) of the postmenopausal cohort with 

osteopenia or osteoporosis show an increase in BMD in the femoral neck (4%), total hip (3%) and 

spine (6%). In fact, this supplementation is found as effective as bisphosphonates and strontium 

ranelate at increasing BMD in a postmenopausal population (Genuis and Bouchard 2012).  

Although the micronutrients used in the COMB study successfully improves bone density, 

37 out of 114 participants (32.45%) either were non-compliant or did not complete the intervention 

(Genuis and Bouchard 2012). Compliance is a critical factor in developing long-term therapies as 

low compliance limits adherence and severely hampers the effectiveness of the therapy. Unique to 

the MOTS was the inclusion of melatonin, which is known for its soporific effects and positive 

effects on menopause-related physical symptoms, mood and sleep quality (Kotlarczyk, Lassila et 

al. 2012, Maria, Samsonraj et al. 2017). In the MelaOst trial, melatonin increases BMD, decreases 

total fat mass and shows trend towards an improvement in sleep especially in those with poor sleep 

as measured by a Pittsburgh Sleep Quality Index (PSQI) score greater than 5 (Amstrup, Sikjaer et 

al. 2015, Amstrup, Sikjaer et al. 2015, Amstrup, Sikjaer et al. 2015). Because melatonin improves 

both objective and subjective measures—all of which could improve bone health—melatonin was 

added in combination with a lower dose of strontium citrate (450mg), vitamin K2 (60 mcg) and 

vitamin D3 (2000 IU) to enhance bone density and improve compliance. Melatonin was also given 

at night to supplement the nocturnal surge in melatonin which was based on past studies 

demonstrating that factors that inhibit melatonin production at night, for example, light exposure 

at night, pinealectomy (Ostrowska, Kos-Kudla et al. 2003) and shift work (Feskanich, Hankinson 
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et al. 2009) reduce BMD and increase the risk of fractures (Feskanich, Hankinson et al. 2009, 

Quevedo and Zuniga 2010, Kim, Choi et al. 2013).  

The MOTS used four drugs (MSDK) combined in a unique formulation using specific 

dosages of each melatonin (5mg), strontium citrate (450mg), vitamin D3 (2000IU) and vitamin K2 

(60mcg) and timed for intake at night to achieve maximal therapeutic efficacy and to minimize 

adverse effects. The 60mcg dose of vitamin K2 was expected to minimize any possible risk of 

blood coagulation although no such adverse effects are reported in clinical studies using MK7 at a 

higher dose and for a longer time (Kanellakis, Moschonis et al. 2012, Knapen, Drummen et al. 

2013). Unlike the COMB study, the MOTS also targeted the more fracture-prone stage of bone 

loss—osteopenia. Moreover, these compounds of MSDK share common signaling pathways 

involved in osteoblastogenesis, osteoclastogenesis and bone mineralization (Figure 3).  

As shown in Figure 3, melatonin induces the expression of RUNX2, the master regulator 

of osteoblastogenesis and TGF-ß, BMP and/or Wnt/ß-catenin (Maria and Witt‐Enderby 2014). 

Melatonin, like strontium, can also govern the lineage allocation of mesenchymal stem cells from 

adipocytes to osteoblasts through the MAPKs— MEK1/2 and MEK5 and through the metabolic 

proteins— PPARγ and GLUT4 (Maria, Samsonraj et al. 2017). Strontium works through the 

calcium sensing receptor in osteoblasts via activation of MAPK-ERK1/2 and Wnt signaling, 

leading to increased bone formation, decreased adipogenesis and increased bone mass in vivo 

(Saidak and Marie 2012). Vitamin K2 produces osteoblast-inducing effects via TGF-ß and the 

Wnt/ß-catenin pathway (Yamaguchi 2014). Both melatonin and strontium decrease RANKL in 

osteoblast precursors resulting in an inhibition of osteoclast formation (Koyama, Nakade et al. 

2002, Saidak and Marie 2012). For melatonin, these inhibitory effects on osteoclast differentiation 

are dependent upon contact with osteoclasts (Maria, Samsonraj et al. 2017). Vitamin K2 also 
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antagonizes RANKL-induced activation of the NFκB pathway, which is crucial for 

osteoclastogenesis (Yamaguchi 2014). An exception to these compounds is vitamin D3, which 

induces both osteoblast and osteoclast to balance bone remodeling and promote mineralization 

(Anderson, Lam et al. 2013, Nahas-Neto, Cangussu et al. 2017). 

 

Figure 3. Regulation of signaling pathways in osteoblast and osteoclast and bone remodeling 

by melatonin (Mel), strontium (Sr), vitamins D3 and K2. Stimulation of MAPKs (ERK1/2, p38 or 

JNK) pathways by melatonin and strontium, TGF-ß by melatonin and vitamin K2 and Wnt/ß-

catenin pathways by melatonin, strontium and vitamin K2— all lead to increased expression of 

osteogenic genes (RUNX2, BMP2, OSTERIX and OSTEOCALCIN) and subsequent osteoblast 

differentiation and bone formation. RANKL, released from osteoblast progenitors, binds to RANK 

on osteoclast precursors and recruits the adaptor protein, TRAF6. TRAF6 then activates multiple 
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signaling cascades including: NFκB, Akt/PKB, mTOR and MAPKs (JNK, ERK, and p38) 

resulting in osteoclast differentiation and bone resorption. Inhibition of RANKL by melatonin or 

strontium inhibits osteoclastogenesis and bone resorption. Vitamin K2 specifically blocks the 

NFκB pathway in osteoclasts and inhibits resorption. Vitamin D3 primarily enhances 

mineralization by increasing calcium uptake. It also supports both bone formation and resorption 

in an optimal way, aiding in balanced bone remodeling. Furthermore, strontium and vitamin K2 

improve bone microarchitecture, aiding in bone quality. TGF= transforming growth factor, 

MEK1/2= MAP kinase/ERK kinase, ERK1/2= extracellular signal-regulated kinase, JNK= c-Jun 

N-terminal kinases, ALP= alkaline phosphatase, RUNX2= runt-related transcription factor 2, 

BMP-2= bone morphogenetic protein 2, Wnt= wingless type, M-CSF= macrophage colony-

stimulating factor, c-Fms= colony-stimulating factor 1 receptor, RANKL= receptor activator of 

NFκB ligand, RANK= receptor activator of NFκB, OPG= osteoprotegerin, TRAF6= TNF 

receptor-associated factor, mTOR= mammalian target of rapamycin, Akt/ PKB= protein kinase B, 

NFATc1= nuclear factor of activated t cells calcineurin-dependent 1, TRAP= tartrate-resistant acid 

phosphatase, CTR= calcitonin receptor, GSK= glycogen synthase kinase, R-Smad= receptor-

regulated Smad, Co-Smad= common mediator Smad, OCN= osteocalcin. Figure adapted from 

Maria et al 2014 (Maria and Witt‐Enderby 2014). 

In addition to improving bone health outcomes in people, a recent budget impact analysis 

determines that the introduction of melatonin into an osteoporosis treatment formulary may result 

in a saving of $1.3 million in annual treatment costs (Bondi, Khairnar et al. 2015), thereby lowering 

the economic burden associated with bone loss therapies. All these findings provide the rationale 

for the testing of MSDK as a potential therapeutic candidate for postmenopausal osteopenia.  
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1.8. Hypothesis 

Combination therapy using melatonin, strontium citrate, vitamin D3 and vitamin K2 will 

improve bone formation and prevent bone loss by increasing osteoblast activity, by reducing 

osteoclast activity and by improving the overall health-related QOL in postmenopausal women 

with osteopenia.  

1.9. Specific aims 

A translational research approach was taken using both clinical and in vitro 

hMSCs/hPBMCs co-culture models to test the study hypothesis. The clinical component of this 

translational research study involved the assessment of MSDK’s effect on bone health and QOL 

in postmenopausal osteopenic women whereas the in vitro component of this study assessed the 

molecular mechanisms underlying the clinical effects of MSDK therapy, particularly focusing on 

its role in regulating the activity of osteoblasts and osteoclasts. The specific aims include: 

1. Assess the effects of melatonin/strontium citrate/vitamin D3/vitamin K2 (MSDK) on bone 

density, bone marker turnover and fracture risk in postmenopausal osteopenia. 

2. Assess the effects of melatonin/strontium citrate/ vitamin D3/vitamin K2 (MSDK) on 

menopause-specific quality of life, perceived stress, anxiety, depression and general 

well-being in postmenopausal osteopenia. 

3. Assess the effects of melatonin/strontium citrate/vitamin D3/vitamin K2 (MSDK) on 

human bone cells (osteoblast and osteoclast) viability and activity in vitro in 

hMSCs/hPBMCs co-cultures grown as transwell or layered. 

 



 

30 

Chapter 2: MOTS clinical trial— Assessing the effects of melatonin, strontium 

citrate, vitamin D3 and vitamin K2 (MSDK) on bone health (bone density, bone 

markers turnover, fracture risk and health-related quality of life in postmenopausal 

osteopenia 

2.1. Materials and Methods 

2.1.1. Recruitment and enrollment 

The clinical component of this translational study was designed as a randomized double-

blind placebo-controlled one-year trial and referred to as “Melatonin-micronutrient Osteopenia 

Treatment Study (MOTS)”. All study-related investigations were conducted in accordance with 

the ethical standards and following the Declaration of Helsinki and national and international 

guidelines. The clinical trial received IRB approval by the Duquesne University Institutional 

Review Board on May 23, 2013 (IRB Grant protocol number 13-59) and was documented at the 

clinicaltrials.gov on June 5, 2013 (Identification no.: NCT01870115) (see Appendix I).  

Study subject recruitment was initiated soon after the study received IRB approval and the 

MOTS was approved by clinicaltrials.gov. Strategies for recruiting participants included 

publishing of study-related articles in neighborhood and city newspapers (e.g. South Hills 

Almanac and Pittsburgh Post-Gazette) and in the Duquesne University’s DU Daily website, 

advertising on Craigslist and posting of flyers around the Pittsburgh community. Samples of 

materials used for recruitment are shown in Appendix II. During the phone interview, potential 

participants were first informed in detail about the study expectations and procedures and then 

were screened for their eligibility criteria.  

Inclusion criteria included being postmenopausal with osteopenia (T-score between -1 to -

2.5), willingness to participate in a 12-month study, willingness to take the therapy right before 
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bed, must not consume alcohol with the medication, willingness to undergo testing of bone 

markers and other biochemical parameters before and after the drug therapies, and willingness to 

provide a self-assessment on the quality of life throughout the program. Once all the inclusion 

criteria were satisfied, subjects were screened further and eliminated based on our exclusion 

criteria. Exclusion criteria primarily focused on eliminating the factors that might have any 

positive or negative impact on bone health and quality of life or could interfere with the treatment 

effects. Women who already developed osteoporosis (T-score less than -2.5), while being on 

medication or not, were excluded because our study intent to examine the treatment effect on 

osteopenia. Also, if bone deterioration proceeds towards an advanced stage of bone loss leading 

to osteoporosis, established pharmacotherapy is required to avoid serious consequences such as 

fracture. Other exclusion criteria included: women who developed osteopenia because of other 

medical conditions such as hyperparathyroidism, metastatic bone disease, multiple myeloma or 

chronic steroid use; and women who were recently taking any medications or treatment that could 

potentially improve or deteriorate bone health and affect their quality of life. These included: 

hormone therapy (HT), birth control pills, prescription medications for bone loss such as 

bisphosphonates, sleep, depression or anxiety, ulcerative colitis or regulation of blood pressure; 

and steroids used either recently or chronically for the past 6 months. Moreover, women with other 

medical conditions such as uncontrolled hypertension, moderate or severe hepatic impairment, 

severe sleep apnea, chronic obstructive pulmonary disease, and current use of tobacco were 

excluded from the study. The rationale for choosing these criteria has been discussed further in the 

Discussion.  

Individuals who satisfied both the inclusion and exclusion criteria were invited to schedule 

an initial visit with the study team at the Center for Pharmacy Care at Duquesne University. Prior 
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to the visit, an information package was sent to their addresses. This package contained the consent 

form in which all necessary study-related information were described (e.g., purpose of the study, 

risks and benefits of joining the study, possible side effects of the medications, study 

confidentiality and participant’s rights) along with the study team contact information. The 

package also contained a welcome letter, directions and map to the Center for Pharmacy Care at 

Duquesne University and a sheet containing frequently asked questions. The information packet 

was sent beforehand to provide sufficient time for the potential participants to review the study 

documents and to familiarize themselves with the overall study plan.  

At the first visit, participants’ osteopenia was confirmed by their recent DXA report. Free 

DXA scans were given to the potential participants who fulfilled all other eligibility criteria but 

did not present a recent DXA report. Osteopenia was also verified by heel ultrasonography using 

the Achilles Insight Ultrasonometer (GE Healthcare, USA) even though the heel ultrasonography 

was only used to assess its validity against DXA. Blood pressure readings were taken from both 

arms to ensure that participants had an average blood pressure between 140/90 and 100/60. Women 

who fulfilled the bone density and blood pressure requirements were invited to enroll in the study. 

Women who were excluded because of the DXA scores revealing osteoporosis (T-score <-2.5), 

high blood pressure or any other serious medical issues were encouraged to contact their primary 

care physician. Enrolled participants then completed a baseline intake form (Figure 4) detailing 

basic demographic information and consumption of any prescription and nonprescription drugs 

and/or supplements. An experienced registered nurse blinded to the group assignments performed 

the study-related health assessments and blood draws. Participants were randomly assigned to the 

MSDK or placebo groups based on a block randomization design (see section 2.1.2.) and were 

then given an adequate supply of study capsules and diary pages for two months. Participants also 
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were given necessary instructions about pill intake, diary pages and study-related appointments. 

An initial visit form was prepared to crosscheck if all the procedures were performed correctly 

(see Appendix III). After the interview, the form was completed by the study coordinator and 

signed by the principal investigator.  
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Figure 4. Baseline intake form 
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Figure 4 (continued). Baseline intake form 
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Figure 4 (continued). Baseline intake form 

2.1.2. Randomization and treatment allocation  

As determined by mixed model analysis and based on the means and standard deviations 

obtained for the serum bone marker data from the MOPS (Kotlarczyk, Lassila et al. 2012), a 

difference of 10% in T-scores (12 month-baseline; average of % increases in lumbar spine density) 

would be necessary to achieve a statistically significant result. Thus, a sample size of 10 per group 

would provide enough participants to detect a significant (i.e., 10%) change in lumbar bone density 
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with 80% power, and an alpha of .05. Recruiting 12 per group factors in a 20% attrition rate. A 

computer-generated block randomization scheme was designed to assign the recruited participants 

(n=22) in either placebo (n=11) or MSDK (n=11) group. MSDK referred to the group receiving 

the medication. The block randomization method was chosen to preserve the balance in sample 

size between groups throughout the study period (Suresh 2011). In this process, participants were 

recruited in small blocks in a way that randomly allocated half of the participants to placebo and 

the other half to MSDK within each block. Random allocation was performed using a list of 

numbers generated with the statistical software Microsoft Excel (version 2012). Since there were 

only two treatment groups in our study (i.e. placebo and MSDK), a block size of 4 was utilized. 

Both the study subjects and investigators were blinded to the group assignments ensuring a double-

blind structure and, upon enrollment, each participant received an identification number to 

maintain anonymity. Study participants were unblinded only after the treatment interventions had 

been completed and study data were analyzed. Since the MOTS followed a highly selective 

inclusion and exclusion criteria to avoid any bias, it took nearly 21 months to achieve the optimum 

number of participants. Allocation concealment was maintained among the participants and the 

MOTS team throughout the entire study ensuring the validity of study outcome.  

2.1.3. Treatment regimen 

Treatment capsules, referred to as “MSDK” were formulated using 5 mg melatonin, 450 

mg strontium citrate, 2000 IU vitamin D3 and 60μg vitamin K2 divided into two capsules. 

Therefore, each capsule contained melatonin 2.5 mg / strontium citrate 225 mg / K2 (MK7) 30 mcg 

/ D3 1000 IU). This dosage regimen was previously used by the naturopathy specialist Dr. Mark 

Swanson, where it demonstrated therapeutic efficacy. Besides, this study intended to use the 

compounds at a low therapeutic dose in the combination therapy MSDK to ensure safety while 
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maintaining efficacy. Identical placebo capsules matching in size, shape and color contained plant 

fiber. Study capsules were formulated and manufactured according to the principal investigators’ 

specifications and supplied by Pure Encapsulations, Inc. (Sudbury, MA, USA). Both MSDK and 

placebo were supplied in identical pill bottles as shown in Figure 5. The groups were coded as A 

and B and only the graduate student on the study team was unblinded to this coding procedure and 

was responsible for delivering the pill bottles. Subjects were instructed to take two capsules by 

mouth daily at night at their usual bedtime. Pill bottles contained a medication label (see Appendix 

IV), where the dosing regimen, date of delivery and other necessary information about the study 

were clearly described. In addition to the study pills, participants were allowed to take <1000 IU 

of vitamin D3 and 600 mg of calcium daily for ethical reasons; however, the amount and duration 

of their use were recorded by each participant through the daily diaries.  

 

 

Figure 5. Study medications (MSDK and Placebo) in identical bottles  
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2.1.4. Treatment follow-up  

After the first visit, bimonthly visits (at months 2, 4, 6, 8, 10 and 12) were arranged at the 

Center for Pharmacy Care at Duquesne University over a 12-month period. Study-related physical 

examinations were performed by the same nurse co-investigator to avoid procedural variation. 

Participants received a 2-month supply of medication and daily diaries at each visit to keep track 

of their daily pill intake, sleep duration, physical activity and any other information about their 

general well-being that the participant would feel was important to note. At visits 2-6, study 

participants were asked to bring with them their pill bottles from the preceding two months to be 

counted and the diary pages. Similar to initial visit form, month-specific visit forms were prepared 

to keep track of all completed assessments and signed by the principal investigator. An 

appointment card was given to each participant to carry with them during study visits so that it 

could be updated with the next appointment date, even though the graduate student called each 

participant to remind them about the visit at least a week prior to the appointment day. Usually the 

bimonthly visits were short, around 15-20 minutes, except the ones held at months 6 and 12. These 

two visits were long because blood samples were taken from the participants and participants were 

asked to complete the psychological questionnaires. Treatment follow-up ensured that there was 

no missing data for any participants. The study timeline is shown in Table 1. 

2.1.5. Participants’ right and confidentiality of the study 

Emphasis was placed on preserving the subject’s rights. For example, subjects could 

withdraw from the study at any time without any obligation. Attrition from the MOTS was 

minimized by having the study coordinator call each subject monthly to answer any questions or 

concerns. Participants were also allowed to contact the study coordinator at any time. A clinician 

in naturopathy, who was one of the co-investigators of this study, also reviewed the health record 



 

40 

of each participant. Alongside the free health assessments and two DXA scans, participants were 

also given a necessary compensation of $80 for their time to answer the questionnaires, for the 

discomfort they experienced during the blood draws as well as to cover the costs for their 

transportation.  

 

Table 1: Experimental timeline of MOTS clinical trial 

Participant confidentiality was highly preserved throughout the study and while publishing 

the study data. A HIPAA compliant coding procedure was applied that provided for identification 

coding on all data collection forms. Information gathered from the participants were only 

accessible by the research team and were used for research purposes only. All written materials 
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and consent forms were stored in a locked file cabinet in the principal investigator’s laboratory. 

Only the participants’ responses but not their identity appeared in the statistical analysis as well as 

in the published paper (Maria, Swanson et al. 2017). Following IRB instructions, all research 

materials will be destroyed after 7 years following completion of the study. 

2.1.6. Bone density measurement 

Bone mineral density (BMD) was measured at baseline (month 0) and at month 12 in the 

left femoral neck, total left hip and lumbar spine L1-L4 area via Dual-energy X-ray absorptiometry 

(DXA). DXA is the most widely accepted and pain-free method for bone densitometry scanning 

and gives the most accurate T-score reading (Imaging 2017). Participants were given necessary 

instructions regarding where to go for their bone density assessments. DXA scans were performed 

using Hologic bone densitometer (Weinstein imaging, PA, USA). Changes in BMD (g/cm2) from 

baseline to month 12 were evaluated, compared between groups and reported as means ± S.E.M.  

Participant’s calcaneus (heel) bone density T-scores were measured bimonthly using the 

Achilles InSight Ultrasonometer (GE Healthcare, USA) to assess how this measurement correlated 

with DXA. Achilles ultrasonography is a quick, comfortable and pain-free process in which the 

participants were asked to place their non-dominant foot in between the two membranes of the 

ultrasonometer. The membranes filled with warm water surrounding the foot and were then 

subjected to ultrasound through the heel. Just prior to testing, the heel area was thoroughly wet 

with ethanol spray to ensure proper signal transduction (Healthcare). The machine automatically 

created a result sheet containing the T-scores for the ease of interpretation. Mean (± S.E.M.) 

changes in heel T-score were calculated for each time point and compared within and between 

groups.  
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2.1.7. Fracture risk assessment 

Fracture risk was assessed at months 0 and 12 using the FRAX®–a computer-generated 

algorithm (http://www.shef.ac.uk/FRAX/). The FRAX® estimates the 10year probability of a 

major osteoporotic fracture (clinical spine, forearm, hip or shoulder fracture) and a hip fracture in 

men and women based on their current femoral neck bone density, body composition, previous 

fractures, parental history of hip fracture and current risk factors (Kanis, McCloskey et al. 2010, 

Kanis, Hans et al. 2011). A fracture assessment questionnaire (Figure 6) was prepared for 

collecting information required to calculate FRAX® scores from participants and the scores were 

calculated using the validated FRAX®- fracture risk assessment tool (Figure 7). Mean (± S.E.M.) 

changes in fracture risk from month 0 to month 12 were calculated and compared between groups.  
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Figure 6. Fracture risk (FRAX®) assessment questionnaire 
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Figure 7. Fracture risk (FRAX®) assessment tool 

2.1.8. Collection and storage of serum and urine samples 

To assess bone turnover marker status (described in section 2.1.9. Biochemical assessments 

and other hormones associated with bone health, participants’ serum samples were collected at 

months 0, 6 and 12. Approximately 2mL of blood sample was taken via venous puncture using 

BD Vacutainer® Safety-Lok blood collection set with a 23-gauge needle (BD, USA) and collected 

in 8.5 mL BD Vacutainer® SSTTM Plus blood collection tubes (BD, USA). Blood collection was 

performed by the registered nurse in the MOTS. Collected samples were allowed to clot for at least 

30 min at room temperature. Serum was isolated by centrifugation (1200g for 25 min) and stored 

at -20°C until the time of analysis. To maintain the integrity of the serum samples, small aliquots 



 

45 

of each sample were frozen and stored. All samples were tested at the same time to minimize 

analytical variation.  

For the melatonin measurement, participants’ first morning urine were collected at the end 

of the study (month 12). Participants were asked to collect all their urine samples between 10pm 

and 6am the night preceding the day of their last visit and to freeze them. At their previous (month 

10) visit, they were supplied two urine cups and ice packs to collect and store their urine and an 

instruction sheet detailing how to collect, store and transport the sample to the Center for Pharmacy 

Care. 

2.1.9. Biochemical assessments 

Bone markers. Bone marker turnover was assessed in serum sample at months 0, 6 and 12. Serum 

bone formation markers, total procollagen type 1 amino-terminal propeptide (P1NP) and 

osteocalcin (OC; both intact and N-terminal mid-fragments) were measured via sandwich enzyme 

linked immunosorbent assay (ELISA) assay using the human total P1NP ELISA kit (CAT# 

MBS2504819, Mybiosource, CA, USA) and osteocalcin (1-43/49) enzyme immunoassay assay kit 

(CAT# 43-OSNHU-E01, ALPCO Diagnostic, NH, USA), respectively, according to the 

manufacturer’s instructions. The serum bone resorption marker, collagen type I c-telopeptide 

(CTx) was measured via sandwich ELISA assay using Human Cross-linked Carboxy-terminal 

Telopeptide Of Type I Collagen (CTX-I) ELISA Kit (CAT# MBS700254, Mybiosource, CA, 

USA) following kit instructions. In the sandwich ELISA assays, micro ELISA plates pre-coated 

with an antibody specific to the desired bone marker (e.g. P1NP or OC or CTx) were used. When 

serum samples were added to the plate, the bone marker present in the sample bound with that 

specific antibody. Next, a biotinylated detection antibody, specific for the protein and Avidin-

Horseradish Peroxidase (HRP) enzyme conjugate, was added to the plate and incubated following 
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the removal of unbounded components from the plate via washing. The bone marker was 

“sandwiched” between the two antibodies. Then substrate solution was added to initiate the 

enzyme-substrate reaction. The absorbance (OD) was proportional to the concentration of the 

desired bone marker present in the test sample. Absorbance readings of standards, controls and 

test samples were measured spectrophotometrically at a wavelength of 450 nm using the Perkin 

Elmer Victor 1420 Multilabel plate reader (Waltham, MA, USA). A standard curve was generated 

from the OD values for each assay using the four-parameter logistic curve fit function. 

Concentrations were then calculated from the generated standard curves using Workout 2.0 

software (Waltham, MA, USA). Mean (± S.E.M.). Changes in the concentration of bone markers 

P1NP (in pg/mL), OC (in ng/mL) and CTx (in ng/mL) were calculated for each time point and 

compared within and between groups. Ratios of bone resorption to bone formation (i.e. CTx:P1NP 

and CTx:OC) were calculated over time and compared within and between groups. All controls 

contained within each of the kits were within normal ranges. 

Melatonin. Participants’ nocturnal urinary melatonin levels were measured at month 12 to 

investigate the therapeutic range of melatonin contained within MSDK required to attain an effect 

on bone. Urinary melatonin levels (in ng/mL/hr) were calculated via sandwich ELISA using the 

Melatonin-Sulfate Urine ELISA kit (CAT# RE54031, IBL International, Germany) per kit 

instructions and then mean (± S.E.M.) concentrations were compared between groups.  

Vitamin D3. Serum vitamin D3 levels were measured at months 0 and 12 by ELISA using the 

25(OH) Vitamin D ELISA kit (CAT# ADI-900-215-0001, Enzo Life Science, NY, USA), 

according to the manufacturer’s instructions. This kit offered a competitive ELISA assay which 

detected the 25(OH) Vitamin D metabolite as an indicator for total Vitamin D concentration. Mean 
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(± S.E.M.) concentrations of vitamin D3 (in ng/mL) were calculated for each time point and 

compared between groups. 

C-reactive protein (CRP). Serum CRP levels were measured at months 0 and 12 by sandwich 

ELISA using the High sensitivity human C-reactive protein (hsCRP) ELISA kit (CAT# 

EKD01009, Biomatik LLC., DE, USA), following kit instructions. Following the assessment of 

absorbance (OD) values, mean (± S.E.M.) concentrations of CRP (in ng/mL) were calculated for 

each time point and compared between groups. 

2.1.10. Blood pressure and body composition 

Participants’ blood pressure was measured at the initial visit (month 0) as a screening tool 

for the inclusion criteria and then every two months until the end of the study to assess the effect 

of MSDK on blood pressure. Systolic and diastolic blood pressure measurements were taken by 

the MOTS nurse on three separate occasions from the right and left arms. Mean (± S.E.M.) blood 

pressure readings at each time point were calculated and compared within and between groups. To 

avoid experimental variation, the same blood pressure cuffs was used in all assessments.  

To assess the effect of MSDK on body composition, morphometric analysis was carried 

out at baseline (month 0) and at the end of the study (month 12) using TANITA body 

composition analyzer (Model# TBF-215, IL, USA). Participants were asked to stand on the 

analyzer and the machine automatically measure the participants’ height, weight, body mass index 

(BMI), basal metabolic rate (BMR), fat percentage, fat mass (FM), lean body mass (FFM) and 

total body water (TBW). Mean (± S.E.M.) changes in body composition from baseline to month 

12 were calculated and compared within and between groups.  
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2.1.11. Psychometric analyses 

The effect of MSDK on subjective measures were assessed using four validated 

questionnaires: Menopause Specific Quality of Life (MENQOL) (Lewis, Hilditch et al. 2005, 

Hilditch, Lewis et al. 2008), Spielberger’s State-Trait Anxiety Inventory (STAI) (Spielberger, 

Gorsuch et al. 1970, Yu and Ho 2010), Cohen’s Perceived Stress Scale (PSS) (Cohen, Kamarck et 

al. 1983, Cohen 1988, Yu and Ho 2010) and the Center for Epidemiologic Studies Depression 

(CES-D) (Radloff 1977). Questionnaires were administered to the study cohort at baseline and 

then at months 6 and 12. A quiet and isolated environment was provided to the participants so that 

they could fill out the questionnaires without any distraction. Participants were asked to complete 

all questions so that there were no missing or incomplete data. Samples of psychometric 

questionnaires are shown in Figures 8 and 9. 

Menopausal quality of life: Menopause Specific Quality of Life (MENQOL) questionnaire 

(Figure 8) is a widely used validated tool that measures self-perceived quality of life related to 

menopausal health in middle aged women (Lewis, Hilditch et al. 2005, Hilditch, Lewis et al. 2008). 

The concept of MENQOL relies on the fact that menopause brings a sudden change in a woman’s 

life by producing symptoms that may disrupt her physical, emotional and social well-being. 

MENQOL contains 32 menopausal symptoms- related items, which are sub-divided into four 

domains: vasomotor (items no. 1-3), psychosocial (items no. 4-10), physical (items no. 11-26, 30-

32) and sexual (items no. 27-29). In the questioning process for MENQOL, participants first 

identify if they have experienced a specific symptom (i.e. item) in the previous month by 

answering “yes” or “no”. If they answer “no”, they then move to the next item. If they answer 

“yes”, then they are further asked to rate the symptom on a scale of 0 to 6 based on how much they 

were bothered by that item (0 means “not bothered” and 6 means “extremely bothered”). 
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MENQOL scoring was performed according to the established guidelines (Lewis, Hilditch et al. 

2005, Hilditch, Lewis et al. 2008). Briefly, the items were scored on a scale of 1 to 8—1 

corresponded to answer “no”, 2 corresponded to answer “yes” but not bothered, and a score of 3 

to 8 depending upon how bothered the women was by the item; a value to 8 corresponded to “yes” 

with maximum botheration. Each domain was scored separately, and a high score indicates that 

the item was bothersome to the participant. Mean (± S.E.M.) scores of MENQOL domains were 

calculated for each time point and compared within and between groups. 

Anxiety: Spielberger’s State-Trait Anxiety Inventory (STAI) is a widely used validated 40 item 

questionnaire that assess the intensity of anxiety-related feelings (Spielberger, Gorsuch et al. 

1970), and, more recently, may be helpful in detecting certain mental disorders such as depression 

(Kvaal, Ulstein et al. 2005). The STAI questionnaire is sub-divided into two forms: form Y-1 

measures state anxiety which refers to the short-term or transient level of anxiety (items no. 1-20) 

and form Y-2 measures trait anxiety referring to the long-term or enduring level of anxiety (items 

no. 21-40) (Spielberger, Gorsuch et al. 1970). Half of the items in each form indicate the presence 

of anxiety symptoms and the other half indicates the absence of anxiety symptoms. Participants’ 

scores were rated on a scale of 1 to 4 depending on the intensity of anxiety; a high score indicates 

more anxiety. For state form (Y-1), which measured how the participant was feeling at that 

moment or felt at the recent past, a score of 1 corresponded to “not at all” whereas 4 corresponded 

to “very much so”. For trait items (Y-2), which measured how the participant generally felt, the 

response scale went from 1 to 4 (1= “almost never, 4= “almost always”). Items that indicated an 

absence of anxiety were scored inversely. A total score ranging from 20-80 was obtained by 

summing up the responses on all items (Spielberger, Gorsuch et al. 1970, Yu and Ho 2010). Mean 

(± S.E.M.) scores of STAI were compared over time within and between groups. 
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Stress: The Perceived Stress Scale (PSS) is another validated questionnaire (Figure 9) used to 

predict the degree to which one perceives stressful life events (Cohen, Kamarck et al. 1983, Cohen 

1988). The version utilized in this study had 10 questions measuring how often the participants 

encountered psychological stress during the last month (i.e. “how often they felt that they were 

unable to control any situation?”). There were some positive questions such as “how confidently 

they overcame any situation in the last month?”(Cohen 1988). Participants were asked to rate the 

stressful events based on a 5-point scale (0= “never” to 4= “very often”); a high score indicates 

the presence of stress. Positive questions were scored inversely. Responses on all items were 

summed up to obtain a total score ranging from 0 to 40 as described. (Cohen, Kamarck et al. 1983, 

Yu and Ho 2010). Mean (± S.E.M.) scores of PSS were compared over time within and between 

groups. 

Depression: The Center of the Epidemiological Study of Depression Scale (CES-D) is a validated 

20-item instrument that detects one’s current level of depressive symptoms including: depressed 

mood, loss of appetite, feeling of guiltiness and failure, lack of hope and ambitions, and 

forgetfulness in an adult community sample (Radloff 1977). Participants were asked to rate each 

of these symptoms based on a 4-point scale depending on their frequency of occurrence (0 = “rarely 

or none of the time or less than 1 day” and 3 = “most or all of the time: 5 to 7 days”). The severity 

of the depressive state was measured based on their total scores ranging from 0 to 60 as described, 

where the positive items were scored inversely (Radloff 1977, Yu and Ho 2010). Mean (± S.E.M.) 

scores of CES-D were compared over time within and between groups. 
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Figure 8. Menopause Specific Quality of Life (MENQOL) questionnaire 
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Figure 8 (continued). Menopause Specific Quality of Life (MENQOL) questionnaire 

MENQOL reprinted from Maturitas, 50(3), Lewis JE, Hilditch JR, Wong CJ, Further 
psychometric property development of the Menopause-Specific Quality of Life 
questionnaire and development of a modified version, MENQOL-Intervention 
questionnaire, pp 209-221, copyright 2005, with permission from Elsevier. 
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Figure 9. Perceived Stress Scale (PSS) questionnaire 

PSS is available for free download from: 

https://www.mindgarden.com/documents/PerceivedStressScale.pdf  
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2.1.12. General well-being and treatment compliance as measured by daily diary 

Participants’ feeling of well-being and compliance to the treatment were assessed using a 

daily diary appropriate for the postmenopausal cohort (Error! Reference source not found.). The 

diary utilized in this study was a modified version of the daily diary used in our previous MOPS 

clinical trial (Kotlarczyk, Lassila et al. 2012). Participants were asked to record daily information 

regarding their sleep duration and experience, use of any prescription and non-prescription 

medications, exercise and general well-being. New diary pages were given to the participants at 

their bimonthly visits after collecting the old diary pages. Comments written on the diary pages 

were collated at the end of the study to see which themes emerged. In the MOTS, four categories 

emerged that included comments made about sleep quality, general mood, GI symptoms and 

general aches and pains (e.g. headache, ache in shoulder, ache in knees). Comments within each 

category were then sub-stratified as positive, negative or neutral. Comments related to an 

improvement in an existing physical condition or positive feelings were classified as positive; 

whereas comments that indicated worsening of any condition, the emergence of a new health 

problem, or negative (or sad) feelings were classified as negative. Comments that reflected 

indifferent thoughts such as those made about their daily activities or weather, or that did not reveal 

any health issue were classified as neutral. A study investigator blinded to the group assignments 

coded the comments as neutral= 0, negative= -1 and positive= +1. These comments were then 

summed up for each participant per group. Results for each category in each cohort (placebo and 

MSDK) were reported as percent of total comments per type per category per cohort. For data 

analyses, the positive and neutral comments made for each cohort (placebo vs. MSDK) were 

combined as per category and then compared to the negative comments made under the same 

category.  
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Sleep duration was determined by averaging the number of hours each participant slept at 

night. To assess if exercise had any confounding impact on participants’ bone health, exercise 

intensity was determined according to the US Centers for Disease Control and Prevention (CDC) 

guidelines (Medicine 2013). Based on the type and intensity of exercise, participants fell into four 

different groups that were scored as: no exercise= 0; light exercise= 1; moderate exercise= 2; and 

high intensity or vigorous exercise= 3. According to the CDC, examples of moderate intensity 

exercise include brisk walking (3 miles per hour or faster, but not race-walking), water aerobics, 

bicycling slower than 10 miles per hour, tennis (doubles), ballroom dancing, general gardening 

etc. Examples of vigorous (high) intensity exercise include race walking (jogging or running), 

swimming laps, tennis (singles), aerobic dancing, bicycling 10 miles per hour or faster, jumping 

rope, heavy gardening (continuous digging or hoeing), hiking uphill or with a heavy backpack etc. 

(Medicine 2013). Sleep hours and exercise scores were compared between study cohort (placebo 

vs. MSDK) and reported as mean ± S.E.M. Use of multivitamins/herbal/OTC supplements were 

also documented from their diary information and compared between groups. Other confounding 

factors were also assessed from the diary log that included: safety, tolerability and compliance to 

the treatment regimens. Compliance was also assessed at each visit through regular health 

assessments by the MOTS nurse and by counting the number of pills remaining from the last study 

visit.  
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Figure 10. Daily diary 
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2.1.13. Statistical interpretations  

To check if randomization was effective, a comparison of the baseline characteristics 

between MSDK and placebo groups were performed using Student’s two-tailed t-test for 

independent samples with Welch’s correction for unequal variances (continuous data) and Fishers 

exact test (categorical data). Mean changes and percentage mean changes from baseline to month 

12 in continuous variables were compared between treatment groups using Student’s one-tailed t-

test for BMD measurements and Student’s two-tailed t-test for all other endpoints with Welch’s 

correction. Longitudinal analyses were carried out for the continuous variables with repeated 

measures (e.g. serum bone markers, vitamin D3 and CRP levels, questionnaires, blood pressure 

and Achilles T-scores). Generalized linear mixed model (GLMM) approach was used to study the 

groups, the times, and the interaction between groups and times. In this analysis, groups and times 

were considered as fixed effects while subjects nested within the treatment groups were considered 

random. Comparisons of the groups over time were studied using orthogonal contrast. Pearson 

correlation was performed to analyze the correlation between age, melatonin, vitamin D3 and CRP 

levels with the bone density, bone markers and morphometric changes. Dairy comments were 

analyzed using two-tailed Fishers exact test for two categorical outcomes. All statistical testing 

was carried out using JMP versions 12 (SAS Institute Inc., Cary, NC, USA) and GraphPad Prism 

version 6 (GraphPad Software, San Diego, CA, USA) for Macintosh. Primary and secondary 

endpoints were analyzed following the intention-to-treat (ITT) principle. Results were presented 

as mean (± S.E.M.) with significance considered at p < 0.05.  
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2.2. Results 

2.2.1. Participant’s recruitment and enrollment  

Nearly all recruitment strategies successfully generated interest among people from 

different areas of Pittsburgh as well as its nearest cities. As shown in Figure 11. Responses to 

recruitment strategies employed in the study (n=184), an article published in the Pittsburgh 

Post-Gazette (PPG; see Appendix IIB) drew attention of nearly half of the women respondents.  

 

Figure 11. Responses to recruitment strategies employed in the study (n=184) 

The summary of participants’ screening and enrollment process is illustrated in Figure 12. 

Flow diagram of study subjects’ recruitment and enrollment.. A total of 184 women responded 

to our advertisements, of which 105 (57.1%) did not meet the inclusion and exclusion criteria. 

Individuals were excluded due to having normal bone density T-score or not having a DXA scan 

before (7.6%); being perimenopausal (2%); being osteoporotic with or without taking medications 

(32.4%); or being osteopenic taking bisphosphonates or HT (7.6%). Other common reasons for 
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exclusion included taking medications that would influence our outcome measures. These 

included: use of blood pressure and cholesterol medications (25%) or medications for depression 

or anxiety (17%). If the respondent had diseases such as ulcerative colitis, rheumatoid arthritis 

(7.62%) or smoked (1%), then they were excluded as well. Among the 79 women invited to enroll 

in the MOTS, 29 (37%) accepted our invitation and attended their initial appointment to the study 

center, while another 50 individuals (63%) chose not to participate for their own reasons. These 

reasons included: fear of being on placebo for one year (35%) or not being able to commit 

bimonthly visits (25%). Fifteen women (31%) did not share their reasons for not participating in 

the study and another 6 osteopenic women (12.2%) did not want to stop taking their bone loss 

medications. At the initial visit and during the blood pressure screening, another 6 individuals were 

excluded for having hypertension, which they were completely unaware. At the end of the 

recruitment and screening process, 23 women were enrolled into the MOTS and randomized to 

receive either placebo (n=11) or MSDK (n=12) via block randomization, as described previously. 

One subject withdrew the day following enrollment and was not included in the overall analysis 

because it had been determined that if a subject took <3 dosages of the medication, then they would 

be replaced and not included in the analysis. Another two subjects withdrew (one from treatment 

and one from placebo) at month 4 and month 6. They were included in the analysis following 

intention-to-treat (ITT) principle. All women were self-identified as Caucasian.  
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Figure 12. Flow diagram of study subjects’ recruitment and enrollment. 
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2.2.2. Similar baseline characteristics between groups ensured efficient randomization  

Our recruitment strategies resulted in a relatively healthy postmenopausal population 

(other than having osteopenia) with an age range [58.6 yr. (49 -75)]. Their blood pressure and body 

composition including height, weight, body mass index (BMI), basal metabolic rate (BMR), fat 

mass (FM), fat percentage (Fat%), lean body mass (LBM) and total body water (TBW) are reported 

in Table 2 and were normal for their age and physical status. The MOTS cohort had BMD and 

FRAX scores representative of an osteopenic population with a moderate risk of fracture. Also, 

both groups experienced almost an equal number of fractures. Each participant presented with 

osteopenia in different parts of the body (e.g. lumbar spine, total hip and femoral neck); however, 

these same regions are commonly affected as already discussed in the introduction. Although the 

bone markers, vitamin D3 and CRP levels varied widely among subjects, these variations were 

observed in both cohorts— placebo and MSDK. Psychological evaluation suggested that all 

subjects had normal mental health with no significant anxiety, stress, depression or severe 

menopause related symptoms. Nearly 87% subjects were taking either calcium/vitamin D3, 

multivitamins and/or other dietary supplements. Almost all subjects were recognized as healthy 

sleepers with an active lifestyle. Despite using a computer-generated block randomization scheme 

for stratification, significant differences in serum CTx level and diastolic pressure were found 

between MSDK and placebo groups, where baseline values for each were higher in the MSDK vs. 

placebo. All other parameters did not differ between cohorts suggesting an overall and well-

adjusted randomization. Baseline characteristics of the cohort, both total and stratified are 

illustrated in Table 2 and graphically represented as value per individuals at Figure 13. 
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Table 2: Baseline characteristics of the study cohort un-stratified and stratified by treatment 

(MSDK and placebo). n=11 per group and represented as mean ± S.E.M. (Range). BMI= body 

mass index, BMR= basal metabolic rate, P1NP= total procollagen type 1 amino-terminal 

propeptide, OC= osteocalcin, CTx= collagen type I c-telopeptide, MENQOL= menopause specific 

quality of life, STAI= state and trait anxiety inventory, PSS= perceived stress scale, CES-D= 

center for epidemiologic studies- depression. *p < 0.05 vs. placebo.  
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Figure 13. Baseline characteristics of the study cohort stratified by treatment (MSDK and 

Placebo). Each dot in the scatter plot represents the baseline parameters (age, blood pressure, 

height, weight, body mass index, basal metabolic rate, fat mass and fat%) for placebo (open circle, 

red) and treatment (closed circle, blue). *p ≤ 0.05 vs. placebo. 
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Figure 13 (continued). Baseline characteristics of the study cohort stratified by treatment 

(MSDK and Placebo). Each dot in the scatter plot represents the baseline parameters (lean body 

mass, total body water, BMD, Achilles T-score, FRAX and P1NP) for placebo (open circle, red) 

and treatment (closed circle, blue). *p ≤ 0.05 vs. placebo. 
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Figure 13 (continued). Baseline characteristics of the study cohort stratified by treatment 

(MSDK and Placebo). Each dot in the scatter plot represents the baseline parameters (bone 

markers, vitamin D3, CRP, menopausal symptoms, anxiety, stress and depression) for placebo 
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(open circle, red) and treatment (closed circle, blue). *p ≤ 0.05 vs. placebo. 

2.2.3. MSDK improved bone health in postmenopausal women  

To assess the effect of MSDK on bone health in MOTS cohort, three different parameters 

of bone health were monitored over the course of the one-year study— BMD via DXA and heel 

ultrasonography (Figure 14), fracture risk probability via FRAX (Figure 15) and serum bone 

markers via ELISA (Figure 16).  

MSDK increased bone density. As shown in Figure 14, the mean change in BMD (g/cm2) from 

baseline to month 12 in the left femoral neck, total left hip, lumbar spine and heel, as revealed by 

DXA scanning, increased in women taking MSDK. Specifically, in the femoral neck, women 

taking MSDK had an average BMD change of +0.015 (2.2%), whereas participants in the placebo 

group had an average BMD change of -0.023 (-3.6%) over one year. Data analysis showed 

significant differences between groups (p = 0.021) (Figure 14). In the total left hip, the average 

BMD change was +0.039 (5.03%) for women taking MSDK and +0.017 (2.2%) for placebo. Even 

though analyses showed no significant difference in BMD between groups in this area, a trend (p 

= 0.069) for an increase in total left hip BMD in the MSDK group was observed (Figure 14). 

Women taking MSDK showed the most significant increase in BMD in the lumbar spine (L1-L4) 

area (p < 0.001 vs. placebo) (Figure 14). Specifically, the mean BMD changes in lumbar spine for 

MSDK was +0.035 (4.3%) and for placebo was -0.029 (-3.2%). Corresponding mean (± S.E.M) 

changes in bone density T-scores following one-year of MSDK treatment are shown in Table 3 

and their bone density T-scores are shown in Appendix V. Bimonthly investigation of heel bone 

density T-scores revealed by Achilles ultrasonography showed high variability in T-scores within 

groups and did not significantly differ between MSDK and placebo (Figure 14 and Table 3). 

These findings suggest that this mode of bone measurement is relatively less reliable.  
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Figure 14. Treatment effects on bone mineral density (BMD) in placebo and MSDK groups. 

Bone mineral density (g/cm2) was assessed at baseline and month 12 via DXA. Each bar in the 

column graph represents the mean (± S.E.M.) change in BMD (g/cm2) from baseline to month 12 

in the (A) left femoral neck, (B) total left hip and (C) lumbar spine (L1-L4) area, respectively for 

placebo (open bar) and MSDK (closed bars); n=11 per group. *p ≤ 0.05 and ***p ≤ 0.001 vs. 

placebo, unpaired one tailed t-test with Welch’s correction. (D) Heel bone density T-score was 

measured bi-monthly using Achilles ultrasonometer. Each point in the line graph represents the 

mean (± S.E.M.) change in heel bone density T-scores at months 0, 2, 4, 6, 8, 10 and 12 

respectively, for placebo (open circle, red) and MSDK (closed box, blue); n=11 per group. 
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Longitudinal analysis for repeated measures using a generalized linear mixed model (GLMM) 

approach, considering groups and times as fixed effects and subjects nested within the groups as 

random.  

MSDK decreased fracture risk probability. FRAX® assessment data, as shown in Figure 15A and 

Table 3, indicated a significant and beneficial effect of MSDK treatment on the 10-year probability 

of major osteoporotic fracture risks. Specifically, one-year MSDK treatment significantly reduced 

the major vertebral and non-vertebral osteoporotic fracture risk by 6.48% from baseline compared 

to the 10.82% increase in placebo (p = 0.008). A trend towards a decrease in hip fracture risk was 

observed in women taking MSDK (p= 0.09 vs. placebo) (Figure 15B).  

 

Figure 15. Treatment effects on fracture risk probability (FRAX) in placebo and MSDK groups. 

Probability of (A) major osteoporotic and (B) hip fracture risks were measured via FRAX. Each 

bar in the column graph represents the mean (± S.E.M.) change in FRAX scores from baseline to 

month 12 for placebo (open bar) and MSDK (closed bars); n=11 per group. **p ≤ 0.01 vs. placebo, 

unpaired two tailed t-test with Welch’s correction.  
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MSDK decreased bone marker turnover. To identify potential mechanisms underlying MSDK-

mediated increases in bone density, serum bone formation markers, total procollagen type 1 amino-

terminal propeptide (P1NP) and osteocalcin (OC) and the bone resorption marker, collagen type I 

cross- linked telopeptide (CTx) were analyzed at baseline, month 6 and month 12 (Figure 16 and 

Table 3). MSDK treatment significantly increased serum P1NP levels at month 6 (p = 0.023) and 

month 12 (p = 0.004) compared to placebo (Figure 16A and Table 3). Serum P1NP levels varied 

widely within each group, ranging from 2.75 to 48.14 pg/mL (average: 31.76 ± 4.75) in placebo 

and 25.04 to 151.9 pg/mL (average: 66.62 ± 11.09) in MSDK at month 12. The analysis of P1NP 

over time revealed that the mean increase in P1NP levels in the MSDK group occurred primarily 

in the first six months of treatment (data shown in Appendix VIA). Serum osteocalcin (OC) levels 

did not significantly differ between groups at any time point; however, a gradual decrease in OC 

levels was observed in the placebo group, whereas levels remained steady in the MSDK group 

(p=0.071 vs. placebo at month 12). At month 12, the average level of OC in women taking placebo 

was 25.88 (± 2.5) ng/mL and 19.78 (± 1.21) ng/mL in women taking MSDK, respectively (Figure 

16B and Table 3). Even though the serum bone resorption marker, CTx levels were significantly 

higher in the MSDK group at baseline compared to placebo, it remained steady throughout the 

study, suggesting that MSDK either had no intrinsic effects on CTx or the dose of MSDK was not 

high enough to compensate for the higher baseline CTx levels in this group. Average CTx levels 

at month 12 in women taking MSDK was 8.99 (± 1.01) ng/mL and in women taking placebo was 

5.65 (± 0.42) ng/mL, respectively (Figure 16C and Table 3). The analysis of OC and CTx over 

time are also portrayed graphically in Appendix VIB and C, respectively. Since osteoclast activity 

is tightly coupled to osteoblast activity (Matsuo and Irie 2008), bone marker turnover was assessed 

by calculating the ratio of bone resorption (CTx) to bone formation (P1NP or OC). Despite having 
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higher baseline CTx level in the MSDK group (vs. placebo), the ratio of CTx:P1NP trended 

towards a time-dependent decrease in women taking MSDK compared to the time-dependent 

increase observed in women taking placebo (Figure 16). Although not significant, a similar trend 

towards a time-dependent decrease in the ratio of CTx:OC was observed in women taking MSDK, 

which was not observed in women taking placebo (Figure 16). 

 

Figure 16. Treatment effects on serum bone markers turnover in placebo and MSDK groups. 

Bone turnover markers were assessed at months 0, 6 and 12 using ELISA. Each point in the line 

graph represents the mean (± S.E.M.) concentration of bone formation markers (A) total 

procollagen type 1 amino-terminal propeptide (P1NP) and (B) osteocalcin (OC; both intact and N-

terminal mid-fragments); and (C) bone resorption marker collagen type I c-telopeptide (CTx) at 

months 0, 6, and 12, respectively for placebo (open circle, red) and MSDK (closed box, blue); 

n=11 per group. Each point in the scatter plot represents the ratio of (D) CTx: P1NP and (E) CTx: 

OC for each study subject, respectively at specific time point, where the solid line indicates the 
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mean (± S.E.M.) for each group. *p ≤ 0.05 and **p ≤ 0.01 vs. placebo at similar time points. 

Longitudinal analysis for repeated measures using a generalized linear mixed model (GLMM) 

approach, considering groups and times as fixed effects and subjects nested within the groups as 

random. 

In summary, one-year supplementation with MSDK significantly increased bone density 

in the left femoral neck and lumbar spine, with a trend towards an increase in the left total hip. 

These increases in bone density were associated with a reduction in major osteoporotic fracture 

risk probability. No such effect of MSDK on heel bone density T-score and hip fracture risk were 

observed. MSDK treatment also showed a decrease in bone marker turnover (i.e. CTx:P1NP) over 

the course of one year primarily through an increase in the bone formation marker, P1NP. Mean 

(± S.E.M) changes of bone density T-score, FRAX score, and bone marker per group in one year 

are stated in Table 3.  

2.2.4. One-year MSDK supplementation increased nocturnal melatonin levels, but did not 

change serum vitamin D3 levels in postmenopausal women 

Figure 17A illustrates the nocturnal urinary melatonin sulfate level assessed at month 12. 

Women taking MSDK had significantly higher levels of urinary melatonin-sulfate levels compared 

to placebo (p= 0.0463). Urinary melatonin-sulfate levels in the placebo group ranged from 0.43 to 

17.69 ng/mL/hr (average: 4.19 ± 1.83). Despite administering an equal nightly dose of melatonin- 

containing supplements for one year, participants in the MSDK group showed a wide variation in 

their nighttime melatonin-sulfate levels ranging from 73.13 to 2883 ng/mL/hr (average: 586.4 ± 

309.4). Melatonin levels were found to positively correlate with the annual changes in lumbar 

spine BMD (p=0.029; correlation co-efficient, r= 0.487; R2= 0.24; 95% CI= 0.0566 to 0.7648), 

supporting the requirement of daily melatonin for maintaining bone density.  
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Participants’ serum vitamin D3 levels were assessed at month 0, 6 and 12 (Figure 17B). 

Unlike melatonin, vitamin D3 levels did not differ between groups at baseline and over each time 

point even though participants in either group could take an additional 1000IU of vitamin D3 

supplement for ethical reasons. A wide variability in serum vitamin D3 levels occurred in both 

groups ranging from 2.54 to 57.32 ng/mL (average: 20.19 ± 5.84) in MSDK and from 0.5 to 38.59 

ng/mL (average: 13.71 ± 4.24) in placebo at month 12. Mean changes in vitamin D3 levels over a 

year per group are shown in Table 3. Correlations between vitamin D3 levels and bone resorption 

were performed since it was shown that low vitamin D3 levels are associated with high CTx levels 

(Napoli, Strollo et al. 2014). Similar to past-published studies, serum D3 levels in MOTS 

negatively correlated with the CTx levels (p=0.024; correlation co-efficient, r= -0.5011; R2= 0.25; 

95% CI= -0.7723 to -0.0752).  

 

Figure 17. Treatment effects on urinary nocturnal melatonin and serum vitamin D3 in placebo 

and MSDK groups. (A) Nocturnal hourly melatonin secretion in urine was measured at month 12 

via ELISA. Each point in the scatter plot represents an individual’s urine melatonin-sulfate level, 

in placebo (open circle, red) and MSDK (closed circle, blue); (n=10 per group). Solid line indicates 

mean (± S.E.M.) concentration per group. *p ≤ 0.05 vs. placebo at month 12; unpaired one-tailed 
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t-test with Welch’s correction. (B) Serum levels of Vitamin D3 was measured at months 0, 6 and 

12 via ELISA. Each point in the scatter plot represents the concentration for a single subject at a 

specific time point, in placebo (open circle, red) and MSDK (closed circle, blue); (n=11 per group). 

Solid line indicates mean (± S.E.M.) concentration per group. *p ≤ 0.05 vs. placebo at similar time 

point; Longitudinal analysis for repeated measures using generalized linear mixed model (GLMM) 

approach, considering groups and times as fixed effects and subjects nested within the groups as 

random. 

2.2.5. MSDK had possible declination effect on serum C-reactive protein (CRP) 

The inflammatory marker, C-reactive protein (CRP), was measured in serum at months 0, 

6 and 12 via ELISA. CRP levels varied widely within and between groups ranging from 124 to 

1422 ng/mL (mean 573.1 ± 154.7) in MSDK and from 124.1 to 6023 ng/mL (mean 1513 ± 581.2) 

in placebo at month 12. Mean changes in serum CRP levels over the course of the study per group 

are shown in Table 3. As shown in Figure 18, serum CRP levels did not differ significantly within 

or between groups; however, levels were lower in women taking MSDK at month 12— an effect 

not seen in placebo. These findings may indicate a favorable effect of MSDK on inflammatory 

status. 
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Figure 18. Treatment effects on serum C-reactive protein (CRP) in placebo and MSDK groups. 

Serum CRP levels were measured at months 0, 6 and 12 via ELISA. Each point in the scatter plot 

represents the concentration for a single subject at a specific time point, in placebo (open circle, 

red) and MSDK (closed circle, blue); n=11 per group. Solid line indicates mean (± S.E.M.) 

concentration per group. *p ≤ 0.05 vs. placebo at similar time point; Longitudinal analysis for 

repeated measures using generalized linear mixed model (GLMM) approach, considering groups 

and times as fixed effects and subjects nested within the groups as random. 

2.2.6. MSDK did not affect morphometric parameters and blood pressure, favoring bone 

health in postmenopausal women 

Morphometric changes from baseline (month 0) to month 12, as illustrated in Figure 19 

and Table 3, revealed that MSDK treatment did not improve or worsen any of the parameters of 

body composition. However, average height (cm) losses in the MSDK group were low (0.08) 

compared to placebo (0.35 cm) (p= 0.38). Moreover, variance analysis via F-test showed that 

participants in the MSDK group had less fluctuation in their weight change (F=4.248, DFn=10; 

p= 0.032), BMI change (F=4.112, DFn=10; p= 0.036), BMR change (F=4.936, DFn=10; p= 0.019) 
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and fat mass change (F=6.409, DFn=10; p= 0.007) from baseline to month 12 compared to placebo. 

The lack of weight variation over time in women taking MSDK may produce favorable effects on 

their bone mass (Labouesse, Gertz et al. 2014). An increase in lean body mass and total body water 

may have occurred in response to MSDK, whereas an opposite trend was observed for placebo. 

Mean changes in lean body mass in MSDK and placebo groups were 0.02 and -0.07, respectively. 

Similarly, mean changes in total body water in MSDK and placebo groups were 0.02 and -0.07, 

respectively.  
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Figure 19. Treatment effects on body composition in placebo and MSDK groups. Body 

compositions were measured at months 0 and 12 using TANITA body composition analyzer. 

Each point in the scatter plot represents an individual’s change in a specific morphometric 
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parameter; placebo (open circle, red) and MSDK (closed circle, blue); n=11 per group. Solid line 

indicates mean (± S.E.M.) change per group from month 0 to month 12. *p ≤ 0.05, **p ≤ 0.01 and 

***p ≤ 0.001 vs. placebo, unpaired two tailed t-test with Welch’s correction.  

Bimonthly assessments of blood pressure, as shown in Figure 20, demonstrated that both 

systolic and diastolic levels remained in the normal range throughout the study even though 

baseline diastolic BP in the MSDK group was significantly higher compared to placebo. Mean (± 

S.E.M) changes in blood pressure following one-year treatment can be found in Table 3.  

 

Figure 20. Treatment effects on blood pressure in placebo and MSDK groups. Blood pressure 

was measured bi-monthly. Each point in the line graph represents the mean (± S.E.M.) blood 

pressure at a specific time point for placebo and MSDK (n=11 per group). (Systolic BP: solid line 

graph; placebo= open circle, red; MSDK= closed circle, blue. Diastolic BP: break line graph; 

placebo= open box, red; MSDK= close box, blue). *p ≤ 0.05 vs. placebo at similar time points. 

Longitudinal analysis for repeated measures using a generalized linear mixed model (GLMM) 
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approach, considering groups and times as fixed effects and subjects nested within the groups as 

random. 

2.2.7. MSDK had no worsening effect on psychometric parameters in postmenopausal 

women 

To determine if MSDK treatment impacted on our cohort’s menopausal quality of life, the 

validated MENQOL-Intervention questionnaire was administered at baseline, month 6 and month 

12. As illustrated in Figure 21(A-D), MSDK treatment showed no change in the vasomotor, 

physical, psychosocial and sexual domain scores compared to placebo. However, MENQOL 

scores in all domains were lower in both groups throughout the study suggesting that participation 

in the MOTS produced positive effects. Interestingly, after six months of treatment, sexual domain 

scores began to move in opposite directions for each group where a trend towards an improvement 

was observed in women taking MSDK and a trend towards a worsening was observed in placebo 

(Figure 21D). Participants’ serum vitamin D3 levels were found to positively correlate with their 

MENQOL vasomotor domain scores (p=0.033; correlation co-efficient, r= 0.479; R2= 0.23; 95% 

CI= 0.0459 to 0.7602). In addition, a negative correlation was observed between participants’ age 

and annual changes in MENQOL psychosocial domain scores (p=0.014; correlation co-efficient, 

r= -0.516; R2= 0.27; 95% CI= -0.7704 to -0.1213).  

To determine if MSDK impacted on our cohort’s anxiety levels, the validated Spielberger’s 

State-Trait Anxiety Inventory (STAI) questionnaire was administered at baseline, month 6 and 

month 12. Analysis showed no significant difference in the state and trait anxiety levels between 

MSDK and placebo (Figure 21E and F). At month 12, the average scores for state anxiety in 

MSDK and placebo groups were 27.4 and 28.4, respectively; whereas the average scores for trait 

anxiety was 31.3 in MSDK and 30.1 in placebo, respectively. These scores represented low state 
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and trait anxiety levels (range: 20-39) in almost all participants.  

To determine if MSDK impacted on our cohort’s perceived stress and depression status, 

the validated Perceived Stress Scale (PSS) and Center of the Epidemiological Study of Depression 

(CES-D) questionnaires were administered, respectively, at baseline, month 6 and month 12 and 

revealed no significant difference between groups (Figure 21G and H). Average PSS scores at 

month 12 were 10.7 in MSDK and 7.6 in placebo at month 12, reflecting a low stress level (score 

< 20) in study population. Similarly, the average CES-D scores in MSDK and placebo groups were 

5 and 5.2, respectively, suggesting the absence of depressive symptomatology (score <16) in the 

study population.  
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Figure 21. Treatment effects on the menopause quality of life, anxiety, stress and depression in 

placebo and MSDK groups. Psychological assessments were carried out at months 0, 6 and 12 

using validated questionnaires. Each point in the line graph represents the mean (± S.E.M.) score 

for (A) MENQOL vasomotor, (B) MENQOL physical, (C) MENQOL psychosocial, (D) 

MENQOL sexual, (E) STAI: State anxiety, (F) STAI: Trait anxiety, (G) PSS: Perceived stress 

scores and (H) CES-Depression at specific time point, respectively for placebo (open circle, red) 

and MSDK (close circle, blue); n=11 per group. *p ≤ 0.05 vs. placebo at similar time point. 

Longitudinal analysis for repeated measures using generalized linear mixed model (GLMM) 

approach, considering groups and times as fixed effects and subjects nested within the groups as 

random.  

In summary, MSDK treatment did not significantly improve or worsen the symptoms 

associated with menopause, anxiety, stress, and depression. All participants remained in the 

normal range for all psychological domains throughout the study. Corresponding mean (± S.E.M) 

change per year of psychometric parameters are shown in Table 3. 
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Table 3:Treatment effects on bone density (T-scores), fracture risk probability (FRAX), bone 

marker, body composition and psychometric parameters. Mean (± S.E.M.). P1NP= total 

procollagen type 1 amino-terminal propeptide; OC= osteocalcin; CTx= collagen type I c-

telopeptide; CRP= c-reactive protein; BP= blood pressure; BMI= body mass index; BMR= basal 

metabolic rate; MENQOL= menopause specific quality of life; STAI= state and trait anxiety 

inventory; PSS= perceived stress scale; CES-D= center for epidemiologic studies depression. *p 

< 0.05, **p < 0.01 and ***p < 0.001 vs. placebo (n=11 per group). 
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2.2.8. MSDK improved general well-being and compliance in postmenopausal women 

Diary comments were analyzed to assess if MSDK treatment affected our cohort’s general 

well-being. As illustrated in Figure 22A, a total of 752 comments were written by women taking 

MSDK, whereas women on placebo made 793 comments. Analysis of these comments revealed 

an improvement in sleep quality in women taking MSDK, as indicated by 29% more 

positive/neutral comments made in the MSDK group vs. placebo (p< .0001). The relative risk ratio 

of a positive sleep statement for women taking MSDK was 2.5 (95% CI= 1.44 to 4.35), suggesting 

that the likelihood of a positive sleep statement is 150% higher in MSDK group compared to 

placebo. Regarding mood, the percentage of both positive and negative comments were high in 

MSDK group as compared to placebo. However, analysis showed no correlation between MSDK 

intake and mood change in this cohort. Interestingly, all (100%) comments made about GI 

symptoms in the placebo group were negative whereas 87% were negative in the MSDK group—

a reduction of 13%. Women in the MSDK group made some positive comments perhaps indicating 

improvements in GI upset. Regarding general aches and pains, the percentage of negative 

comments made in the MSDK group was 79% compared to 84% comments recorded for placebo. 

Statistical analyses revealed no significant impact of MSDK on GI symptoms and general 

aches/pains. Most of what was reported, positive or negative, had to do with their overall general 

well-being reported in their daily diaries. Although the women in MSDK group experienced an 

improvement in sleep quality, their sleep duration remained similar to that of placebo (p= 0.55), 

as determined from their diary log (Figure 22B and Table 4). The average sleep time (in hours) 

for those taking MSDK or placebo was 6.85h and 7.06h, respectively. As shown in Figure 22C 

and Table 4, analysis of exercise intensity showed no significant differences between groups 

(p=0.23); however, most participants in the placebo group were involved with high intensity 
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exercises whereas almost all MSDK group participants were exercised with light to moderate 

intensity. Both groups had an equal intake of multivitamins/herbal supplements/OTC products 

(81.82%). Analysis of confounders revealed no significant differences between groups (Table 4). 
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Figure 22. Treatment effects on participants’ (A) sleep quality, mood, GI upset and general 

aches/pains; (B) sleep duration and (C) exercise intensity in placebo and MSDK groups. (A) To 

assess the effect of MSDK on the general well-being of the MOTS cohort, total diary comments 

made by the participants in each group throughout the study were stratified into four categories: 

sleep, mood, GI upset and general aches/pains, as illustrated by the four segments in the pie 

diagram. Each category was sub-stratified as positive (pink), neutral (yellow) and negative (green) 

comments. Each portion represents the percent of total comments made under each category. *p ≤ 

0.05 vs. placebo; two-tailed Fishers exact test for two categorical outcomes. (B, C) Sleep duration 

and exercise intensity was assessed from the diary log. Each point in the scatter plot represents the 

scores of (B) sleep duration (in hour) and (C) exercise intensity for each participant in placebo and 

MSDK respectively (n=11 per group); where the solid line indicates the mean (± S.E.M.) score 

per group. *p ≤ 0.05 vs. placebo; unpaired one tailed t-test with Welch’s correction. 

Compliance was measured from the daily diary logs as well as from bimonthly pill 

counting and health assessments. No incidence of adverse effects was reported from participants 

in either group during their bimonthly general health checkups at the Center of Pharmacy Care at 

Duquesne University or through their diary logs. The fact that MSDK treatment did not worsen 

any of the subjective measures assessed may have impacted positively on compliance, which was 

high in the MOTS (Placebo=90.03% and MSDK = 92.4%; Table 4).  
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Table 4: Sleep duration, exercise intensity and pill intake in placebo and MSDK groups. Mean 

(± S.E.M.) for sleep duration and exercise intensity (n=11 per group). 

2.3. Discussion 

Our study is one of the firsts addressing the need for starting earlier intervention therapy to 

reverse bone loss and normalize bone density in postmenopausal women with osteopenia. This is 

important because studies have shown that osteopenia is the primary accountable factor for the 

population burden of fracture as earliest fractures predominantly arise in the osteopenic population 

(Siris, Chen et al. 2004, Pasco, Seeman et al. 2006). Therefore, this shift to earlier intervention 

starting with osteopenia rather than osteoporosis may lead to the prevention of most fractures 

observed worldwide. To the best of our knowledge, this is also the first randomized, double-blind, 

placebo-controlled study focusing on the efficacy of a timed combination therapy consisting of 

melatonin and micronutrients (strontium citrate, vitamin D3 and vitamin K2) intended to reverse 

osteopenia while improving compliance in postmenopausal women. The choice of supplements 

were all natural and over-the-counter remedies known to benefit bone. 

The inclusion and exclusion criteria of this study aimed to minimize the presence of any 

additional positive and/or negative effects on bone, rather than the treatment effects. Avoiding 

alcohol intake while taking the medication was one inclusion criterion, since alcohol consumption 

in the evening may suppress salivary melatonin levels (Rupp, Acebo et al. 2007). Women taking 
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bisphosphonates were excluded even though many of them were ready to discontinue before 

joining the study. This is because it takes at least 6 months to 2 years after stopping 

bisphosphonates to clear out of the system so not to blunt strontium’s effects (Middleton, Steel et 

al. 2010). Selective serotonin reuptake inhibitors (SSRIs) increase osteoporosis and fracture risk, 

which could affect one of the primary outcome measures (Chau, Atkinson et al. 2012) and 

therefore was one of the reasons for being an exclusion criterion. In addition, MSDK effects on 

depression status was a secondary outcome measure and SSRIs could have influenced that as well. 

Finally, concomitant use of melatonin and Zoloft (an SSRI antidepressant also known as 

Sertraline) has been shown to produce an adverse drug interaction exhibiting as toxic optic 

neuropathy due to a melatonin/dopamine imbalance in the retina (Lehman and Johnson 1999). 

Gastrointestinal (GI) diseases such as inflammatory bowel disease (IBS) and celiac disease could 

trigger osteoporosis in many ways primarily by affecting the absorption and metabolism of calcium 

and vitamin D3 (Katz and Weinerman 2010). Women with ulcerative colitis and other severe GI 

disorders were not included in the study. Even though strontium ranelate is known to occasionally 

cause diarrhea (Reginster, Seeman et al. 2005), which may worsen IBS flare-ups in ulcerative 

colitis, no such data was reported for the strontium citrate at the time of the study. Women taking 

proton pump inhibitors (PPIs) regularly were excluded because use of PPIs is modestly associated 

with fractures of the spine, forearm or wrist and increased the risk of total fractures with a hazard 

ratio of 1.47, 1.26 and 1.25, respectively (Gray, LaCroix et al. 2010). Another study found a 

potential impact of PPIs on increasing the risk of hip fractures among patients already at-risk 

possibly by decreasing calcium absorption (Corley, Kubo et al. 2010). Participants in the MOTS 

were told to restrain from using PPIs while in the study. Current smokers were excluded because 

smoking is associated with a decrease in BMD and a prolonged history of smoking significantly 
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increases the risk of fractures (Kanis, Johnell et al. 2005). Hyperparathyroidism accelerates bone 

loss in postmenopausal women and significantly affects bone turnover by increasing bone 

resorption (Guo, Thomas et al. 1996). Multiple myeloma and other cancers that metastasize to 

bone could also adversely affect bone metabolism and bone turnover (Simko and Paulis 2007); 

and sleep apnea that disturbs one’s circadian rhythm can trigger bone loss in women via various 

mechanisms including altered glucocorticoid regulation (Chakhtoura, Nasrallah et al. 2015, Maria 

and Witt-Enderby 2017). Therefore, women with any of these diseases were excluded from the 

MOTS. Furthermore, COPD-related systemic inflammation, vitamin D deficiency as well as use 

of systemic corticosteroids can significantly contribute to bone loss (Lehouck, Boonen et al. 2011). 

Women having hepatic and renal impairment were excluded because these conditions could 

interfere with the bioavailability of orally administered components of MSDK. The total amount 

of calcium and vitamin D3 allowed in the MOTS including calcium and vitamin D3 coming from 

supplements and multivitamins was up to 600 mg of calcium and 1000 IU of vitamin D3 per day; 

since these amounts were found to not interfere with strontium effects (Reginster, Seeman et al. 

2005). 

The primary endpoints in this study were the assessments of bone health in response to 

nightly MSDK supplementation compared to placebo. Bone health was examined by measuring 

bone density changes before and after one-year of treatment, and bone marker status every six 

months over one year. The one-year timeline for bone density assessment was chosen based on 

former bone density studies demonstrating the requirement of at least one year to observe any 

changes in bone density. Osteopenic women taking MSDK for one year had significant 

improvements in their left femoral neck and lumbar spine BMD with a trend (p= .069) towards an 

increase in the total left hip BMD compared to women taking placebo. Both MSDK and placebo 
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group showed an improvement in their hip BMD, perhaps due to the kinetics of bone remodeling 

in long vs. flat bones. Vertebral and femoral neck contain mostly the trabecular bones, which goes 

more readily into bone remodeling and endure more wear and tear as compared to cortical bones. 

Therefore, changes in bone density in these areas are more pronounced (Clarke 2008). In contrast 

to osteoporosis, an osteopenic population is expected to demonstrate a longer change in BMD 

improvement in response to treatment because their BMD status was better (or denser) than the 

BMD status in an osteoporotic population. In keeping, our findings are consistent with respect to 

the magnitude of the BMD change and the tissues being most affected (i.e. spine> femoral neck> 

total hip) to the previous postmenopausal health studies. In these studies, it is shown that the most 

significant increase in BMD following one treatment with strontium citrate, vitamin D3 and 

vitamin K2 and other micronutrients occurs in the spine (6 to 8%) followed by femoral neck (4%) 

and total hip (3%) BMD (Genuis and Bouchard 2012) or in spine BMD following treatment with 

vitamin D3 and vitamin K2 (Ushiroyama, Ikeda et al. 2002, Kanellakis, Moschonis et al. 2012). 

Another study with strontium ranelate demonstrates similar increases in spine bone density in 

26.4% postmenopausal osteopenic women after one year, while the number increases up to 58.2% 

after three years. The percentage of patients with renormalized hip bone density increases up to 

5.4% after one year and 19.6% after three years of treatment (Malaise, Bruyere et al. 2007). A 

recent randomized control trial by Amstrup et al demonstrates a similar outcome where 3 mg/day 

melatonin supplementation for one year results in a 1.4% increase in femoral neck BMD in 

postmenopausal osteopenic women, whereas no significant improvement occurs at other areas 

(Amstrup, Sikjaer et al. 2015).  

Consistent with the BMD data, women taking MSDK had a lower risk for a major 

osteoporotic fracture with no significant effect on hip fracture, as revealed by FRAX®. Little is 



 

90 

known about the effect of melatonin and other micronutrients in preventing osteoporotic fractures. 

Strontium ranelate is found to be effective against fractures in postmenopausal population. In the 

Spinal Osteoporosis Therapeutic Intervention (SOTI) trial, strontium ranelate (2 g/day) shows a 

49% reduction in new vertebral fractures after one year and a 41% reduction in vertebral fracture 

risk after three years in postmenopausal women with mean age 70, (Meunier, Roux et al. 2004). 

The Treatment of Peripheral Osteoporosis (TROPOS) trial demonstrates similar results with a 16% 

reduction in overall non-vertebral fractures after three years treatment with strontium ranelate (2 

gm/day), and a 36% reduction in hip fractures for high risk subgroups (Reginster, Seeman et al. 

2005). Extensive studies reveal that vitamin D3 (minimum 800 IU per day), when taken with 

calcium, effectively reduces the risk of hip fracture in both high and low risk populations while 

showing inconsistent effects against vertebral fracture. These studies also demonstrate that even 

though vitamin D3 deficiency increases fracture risk, supplementation with vitamin D alone is 

ineffective in fracture prevention (Avenell, Mak et al. 2014). As shown in the MOTS, vitamin D 

combined with other bone-tropic agents aids in reversing bone loss in an osteopenic population of 

women who have gone through menopause.  

Bone markers are independent fracture risk predictors, mainly used to monitor treatment 

efficacy. The bone formation marker, P1NP, and the bone resorption marker, CTx, were assessed 

in this study based on the recommendations of the Bone Marker Standards Working Group, the 

International Osteoporosis Foundation (IOF) and the National Bone Health Alliance (NBHA) as 

being the gold standard reference analytes in clinical studies. Even though intact P1NP is the 

preferred analyte to be measured, total serum P1NP level was measured because all our 

participants had normal renal function (Wheater, Elshahaly et al. 2013). Serum P1NP levels 

significantly increased with MSDK treatment vs. placebo throughout the course of the study. Two 
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randomized controlled trials with strontium ranelate found a link between short term (3-month) 

changes in the bone formation markers (bone-specific alkaline phosphatase, BSAP and C-terminal 

propeptide of type I procollagen, PICP) with a prospective 3-year change in BMD (Bruyère, 

Collette et al. 2010). These findings suggest that an increase in the bone formation marker, P1NP, 

may underlie the increases in BMD in the MOTS. Another bone formation marker, OC, was 

measured but its level did not increase significantly with MSDK treatment. Rather, a steady level 

was maintained throughout the study as compared to placebo. This is consistent with the MOPS 

and MelaOst demonstrating that melatonin alone (3mg) did not induce serum OC or P1NP levels 

in perimenopausal or postmenopausal women (Kotlarczyk, Lassila et al. 2012, Amstrup, Sikjaer 

et al. 2015).  

To our knowledge, no data is yet available on the effect of strontium citrate, vitamin D3 

and vitamin K2 on the bone marker, P1NP. However, strontium ranelate, is shown to enhance other 

bone formation markers (e.g. bone-specific alkaline phosphatase, BSAP; Procollagen I 

carboxyterminal propeptide, PICP) (Meunier, Roux et al. 2004, Bruyère, Collette et al. 2010). With 

respect to vitamins K2 and D3, vitamin K2 shows enhancing effects on serum OC (Tsukamoto, 

Ichise et al. 2000) whereas low levels of vitamin D3 (<20ng/mL) produce a suppressive effect on 

P1NP (Bacon, Gamble et al. 2009). Although these compounds alone have little or variable effects 

on bone formation markers, their combination in MSDK produced a significant inductive effect 

on P1NP in the present study, which is consistent with MSDK’s inductive effect on BMD.  

In our study, even though MSDK group had a higher CTx level at baseline, MSDK was 

without effect on serum CTx levels at each time point tested. It was not clear what the effect of 

MSDK would have on CTx levels because the studies are mixed. For example, increases in bone 

resorption occur in response to low vitamin D3 levels (Napoli, Strollo et al. 2014) or after removal 
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of the melatonin source via pinealectomy as reviewed (Maria and Witt‐Enderby 2014). Strontium, 

in the form of ranelate, produces a reducing effect on CTx (Meunier, Roux et al. 2004); however, 

no effect was evaluated with citrate form. Melatonin alone (Amstrup, Sikjaer et al. 2015), vitamin 

D3 alone (Kuchuk, van Schoor et al. 2009), or vitamin K2 (MK4) alone (Kim, Na et al. 2013) 

produces little or no effect on serum CTx levels. These mixed effects on serum OC and CTx levels 

may be explained by the fact that, unlike P1NP, both OC and CTx display a circadian rhythm and, 

particularly for CTx, it is best to use a morning fasting sample for an accurate reading (Wheater, 

Elshahaly et al. 2013), which was not followed in the MOTS due to technical limitations. However, 

in our study, circadian variation was minimized by collecting serum samples at regular time 

intervals (between 4pm-5:30pm) for each participant throughout the study. Interestingly, when 

ratios of bone resorption to bone formation (i.e., CTx:P1NP or CTx:OC) were calculated per 

person and then compared within and between groups, time-dependent decreases in both occurred 

even though the decreases for CTx:OC were less pronounced compared to CTx:P1NP.  

The effect of MSDK on decreasing the ratio of CTx:P1NP or CTx:OC was primarily 

mediated via increasing the bone formation marker (i.e. P1NP) or keeping them at a steady level 

(i.e. OC), rather than by decreasing the bone resorption marker, CTx. This mechanism of MSDK 

to regulate bone turnover differs from the mechanisms of most current antiresorptive therapies 

where both formation and resorption markers decrease proportionally. The pattern of MSDK 

matches, in part, with what was seen for strontium ranelate or teriparatide, particularly with respect 

to the bone formation marker, P1NP. Strontium ranelate regulates bone marker changes in a way 

that would support more balanced bone remodeling, with an approximate 8% increase in bone 

formation and 12% decrease in bone resorption. Teriparatide, on the other hand, induces both bone 

formation and resorption markers (Meunier, Roux et al. 2004). (Bruyère, Collette et al. 2010). The 
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changes in serum P1NP is most likely due to the strontium citrate component of MSDK since 

strontium ranelate increases bone-specific alkaline phosphatase (BSAP) by 8.1% (Meunier, Roux 

et al. 2004) and in the MOPS or MelaOst RCTs, melatonin alone did not affect individual bone 

marker levels (Kotlarczyk, Lassila et al. 2012, Amstrup, Sikjaer et al. 2015). In the MOTS, 

decreases in the ratio of bone resorption to bone formation (i.e., CTx:P1NP) occur suggesting 

that MSDK may be renormalizing bone marker turnover towards equilibrium resulting in an 

increase in BMD and, if taken for extended periods of time, may continue to reverse bone loss 

through the aging process. These data also suggest that MSDK may be superior to melatonin alone 

since the findings from the MelaOst study suggest that the mechanism for melatonin-induced 

increases in BMD may be through calcium-mediated bone mineralization, which may produce a 

ceiling effect of melatonin alone on improving bone health if taken for long periods of time 

(Amstrup, Sikjaer et al. 2015).  

In addition to this, the major increase in serum P1NP levels occurred during the first six 

months of treatment in the MOTS (graph shown in Appendix VI) which may indicate that MSDK 

is initiating bone formation in the first six months of treatment resulting in increases in BMD; and 

once bone mass is achieved to homeostatic levels, MSDK then begins to regulate bone remodeling 

to maintain equilibrium. This is important because too much bone growth may lead to osteopetrosis 

or an overgrowth of bone. MSDK-mediated increases in bone density and P1NP along with 

decreases in CTx indicate a dual anabolic and possibly antiresorptive effect of MSDK, making it 

unique with respect to current osteoporosis therapies.  

Currently, no data exist with respect to therapeutic levels of melatonin on bone. Because 

of this, nocturnal urinary melatonin levels were assessed in both groups. Women taking MSDK 

(which contained 5mg melatonin) at night had ~140 times more nocturnal melatonin than women 
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taking placebo. In fact, women in the placebo group had very low endogenous nocturnal urinary 

melatonin-sulfate levels consistent with reports showing low melatonin levels in aged and 

menopausal population (Bellipanni, Bianchi et al. 2001, Witt‐Enderby, Radio et al. 2006). Even 

though women in the MSDK group took supplements for a year, their melatonin levels varied 

widely possibly due to bioavailability differences between women similar to what is seen in males 

(range: 10%-56% in men; mean 33%) (Di, Kadva et al. 1997). In the MOTS, a direct relationship 

between melatonin levels and lumbar spine BMD was observed and is consistent with the findings 

of Amstrup et al. that demonstrates a dose-dependent effect of melatonin on femoral neck BMD 

(Amstrup, Sikjaer et al. 2015). Therefore, exogenous melatonin supplementation alone or in 

combination with other bone-tropic agents like SDK may play an important role in maintaining 

bone density in postmenopausal osteopenic women.  

Even though all MOTS participants could take up to 1000 IU of vitamin D3 daily, serum 

vitamin D3 levels were assessed to ascertain if the MSDK-mediated increases in BMD and P1NP 

were due to differences in vitamin D3 levels between the groups. Surprisingly, serum vitamin D3 

levels in women taking MSDK did not differ significantly when compared to placebo, despite the 

fact that women taking MSDK would have a higher intake of vitamin D3 over the course of one 

year. In fact, many of our MOTS participants still remained below the sufficient level (30-

100ng/mL) according to the Endocrine Society Clinical Practice Guidelines (Holick, Binkley et 

al. 2011). This, perhaps, is due to variable bioavailability in women with respect to vitamin D3. 

Because it has been shown that low vitamin D3 status is associated with high serum CTx levels 

(Napoli, Strollo et al. 2014), we wanted to determine if this same negative correlation occurred in 

our study. Consistent with (Napoli, Strollo et al. 2014), a negative correlation between vitamin D3 

and CTx was also observed in our cohort. Perhaps the wide variations in vitamin D3 levels in our 
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study contributed, in part, to the lack of MSDK’s effect on CTx levels. 

C-reactive protein (CRP) levels were measured to assess if MSDK could lower CRP levels 

as another mechanism to explain its inducing effects on BMD. Levels of CRP are inversely 

correlated with vitamin D levels (De Vita, Lauretani et al. 2014) and BMD (de Pablo, Cooper et 

al. 2012). Human serum CRP (hsCRP) levels are significantly higher in lumbar spine osteoporotic 

women than in normal women (Lee, Kim et al. 2011); high circulating hsCRP levels (>1.8mg/L) 

are associated with postmenopausal osteopenia and/or osteoporosis (Koh, Khang et al. 2005); and 

fracture risk has been shown to occur in perimenopausal women who have CRP levels ≥ 3mg/L 

(Ishii, Cauley et al. 2013). After one year of MSDK treatment, CRP levels of the MOTS 

participants dropped below 1.4mg/L with a mean group value of 0.57mg/L compared to the 

placebo mean value of 1.5mg/L. A reduction in CRP levels by MSDK could imply a possible anti-

inflammatory role of MSDK, aiding in the bone health and other diseases such as cardiovascular 

and metabolic disorders.  

Morphometric analyses were conducted to determine if any changes in body morphometry 

occurred in response to MSDK. No significant changes occurred in response to MSDK treatment 

when compared to placebo; however, there were two interesting observations regarding height and 

weight. Historical height loss greater than 6 cm is associated with the likelihood of vertebral 

fracture (Siminoski, Warshawski et al. 2006). In keeping with this, both MSDK and placebo 

groups experienced height loss (albeit at a much lower extent than 6cm) where women in the 

MSDK group lost 0.05% of their height while those in the placebo group had a height loss of 

0.21%. Perhaps the gain in lumbar BMD in the MSDK group prevented loss of height and, if taken 

for longer periods of time, may lead to a decrease in vertebral fractures. Dramatic changes in 

weight could also contribute to increases in bone turnover and decreases in bone mass (Labouesse, 
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Gertz et al. 2014). Also, mature women with a BMI lower than 18kg/m2 are estimated to have 

more than 30% bone loss than normal women of same age (Emaus, Wilsgaard et al. 2014). In our 

study, we observed no significant changes in mean weight within and between groups over the 

course of one year; however, there was more variance of weight change within the placebo group 

compared to the MSDK group (p= 0.032). Perhaps MSDK, most likely through melatonin, 

stabilized weight fluctuation and provided some bone protection. Melatonin’s effects on body 

weight has been reported in the MelaOst study where postmenopausal osteopenic women taking 

melatonin have a decrease in total fat mass and trended towards an increase in lean body mass 

(Amstrup, Sikjaer et al. 2015). Also, in Maria et al 2017, melatonin modulates the metabolic 

proteins, PPARγ and GLUT4, in a manner that would result in a lowering of fat production in the 

body (including bone marrow) while inducing osteoblast differentiation (Maria, Samsonraj et al. 

2017). This shifting away from adipogenesis (i.e., decreased PPARγ and GLUT4 levels) towards 

osteogenesis may explain, in part, MSDK’s actions on bone, which is supported in the co-culture 

studies (to be discussed in the next chapter) using human mesenchymal stem cells and peripheral 

blood monocytes and also in monocultures of mesenchymal stem cells derived from human 

adipocytes. Similar to melatonin, MSDK, in combination with osteogenic medium, significantly 

reduced PPARγ and GLUT4 expression consistent with MSDK’s stimulatory effect on 

osteoblastogenesis and inhibitory effect on adipogenesis. These mechanisms and more are 

discussed later in the in vitro chapter. 

Cardiovascular parameters, specifically blood pressure, was monitored during the 

recruitment process but also throughout the MOTS because the individual components of MSDK 

have been shown to produce differential effects on cardiovascular health. For example, strontium 

ranelate is associated with a risk of myocardial infarction (relative risk 1.6 vs. placebo) (Bolland 
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and Grey 2013). For the sake of comparison, this risk is lower than that of calcium (HR= 1.86 for 

dietary calcium and 2.39 for calcium only supplements (Li, Kaaks et al. 2012). Also, compared to 

bisphosphonates, strontium is not significantly associated with risk of acute coronary syndrome 

(rate per 1000 person-years 5.7 for strontium vs. 6.3 for alendronate/risedronate; adjusted HR 0.89, 

95% CI 0.52 to 1.55) or any-cause mortality (adjusted HR 0.96, 95% CI 0.76 to 1.21) (Svanström, 

Pasternak et al. 2014). Melatonin and vitamin K2 also have cardioprotective roles in the body 

(Geleijnse, Vermeer et al. 2004, Paradies, Paradies et al. 2015). Besides, osteopenic patients tend 

to have less cardiovascular risk than osteoporotic patients, as observed in a study with Japanese 

postmenopausal women, where osteoporotic women have impaired endothelial function in their 

forearm resistance arteries compared to osteopenic women (Sanada, Taguchi et al. 2004, Farhat 

and Cauley 2008). However, because of the lack of adverse reporting studies using strontium 

citrate, we could not exclude the possibility of having cardiovascular events with strontium citrate 

and therefore only recruited those women in the study who had normal blood pressure (BP). In 

addition to excluding women with elevated blood pressure level during the screening process, 

bimonthly BP assessments were performed in our study participants to detect any change in their 

BP while taking this therapy. No worsening effect of MSDK on blood pressure was observed 

throughout the study. Even though the baseline diastolic BP in the MSDK group was higher 

compared to placebo, their BP level remained steady and within the normal range throughout the 

study. MSDK did not affect systolic and diastolic BPs in our study throughout the treatment, 

making it potentially safe for use in the elderly population.  

The second endpoint in this study was to assess MSDK’s effects on the health-related QOL 

using validated questionnaires measuring menopausal symptoms, anxiety, stress and depression; 

and daily diaries. These parameters were measured because health related QOL becomes greatly 
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hampered in women transitioning through menopause. Studies showed that more than 60% 

postmenopausal women suffer from three or more menopausal symptoms, among which sleep 

disturbance, vaginal dryness and anxiety have the highest impact on their QOL. (Greenblum, Rowe 

et al. 2013). Unlike the MOPS (Kotlarczyk, Lassila et al. 2012), which shows an improved 

MENQOL physical domain score in perimenopausal women following 3 mg melatonin nightly for 

6 months, a one-year MSDK supplementation did not significantly improve the physical symptoms 

associated with menopause and did not improve any of the other menopausal domains: 

psychosocial, vasomotor or sexual. These differences could be attributed to the fact that the study 

populations between the MOPS (perimenopausal) and the MOTS (postmenopausal) were quite 

disparate with respect to the menopausal transition. The prevalence of menopausal symptoms as 

well as physiologic distress associated with menopause is reportedly higher in perimenopause than 

postmenopause (McKinlay, Brambilla et al. 1992, Bromberger, Meyer et al. 2001). This was also 

supported in our study where an improvement in participants’ MENQOL psychosocial symptoms 

were significantly associated with an increase in their ages, indicating the women who are in 

postmenopausal state for a longer period compared to those who just entered postmenopause. This 

could possibly explain why we did not see significant QOL changes in these aspects in our 

postmenopausal cohort. Also, as discussed previously, vitamin D3 supplementation may have 

prevented any vasomotor symptoms from surfacing since a negative correlation exists between 

vitamin D3 and vasomotor symptoms. Though not significant, the sexual domain is the only 

domain that showed a splitting off into opposite directions for placebo (positive direction) and 

MSDK (negative direction); a more negative number indicates improvement. Items included in the 

sexual domain include: decrease in sexual desire, vaginal dryness, and avoiding intimacy. 

Participants in both groups maintained normal and/or healthy psychological states throughout the 
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study indicating that one-year MSDK treatment did not worsen their health-related QOL.  

Daily dairy information revealed additional treatment effects of MSDK on general well-

being, which were not possible to capture from the specific questionnaires. A positive relationship 

between MSDK treatment and sleep quality occurred. This is an important finding considering that 

poor sleep quality, specifically going to bed at a later bedtime, sleeping late into the morning and 

frequent daytime napping is associated with low BMD in postmenopausal women (Chen, Chen et 

al. 2014). Also, disrupted sleep rhythms, as seen in shift workers, has also been shown to decrease 

BMD and increase one’s risk of hip and wrist fracture (Feskanich, Hankinson et al. 2009, Quevedo 

and Zuniga 2010, Kim, Choi et al. 2013, Wang, Wu et al. 2015). Another study shows an 

independent association between nighttime sleep problems with an increase in fall risk in an 

elderly population (aged 64-99 years) (Brassington, King et al. 2000). Therefore, an improvement 

in their sleep quality by MSDK may also contribute to the positive effects of MSDK on their bone 

health and fracture risk.  

The melatonin component in MSDK is an efficacious agent for entraining sleep rhythms 

and this important fact may be improving bone health by regulating sleep quality and bone rhythms 

but also by improving compliance (Maria and Witt-Enderby 2017). Melatonin contained within 

MSDK may improve compliance due to its positive reinforcing effects on sleep quality and mood 

(Maria, Samsonraj et al. 2017). Because bone resorption (N-terminal peptide) follows a circadian 

rhythm that parallels melatonin’s endogenous rhythm, as shown in premenopausal women (St 

Hilaire, Rahman et al. 2018), the preservation of the circadian rhythm by nocturnal exogenous 

melatonin supplementation may prevent the disruption of bone marker rhythms due to lifestyle 

(i.e., light at night, shift work, stress) and maintain balanced bone remodeling; this would keep 

one’s sleep rhythms entrained to the light/dark cycle and produce benefits to bone and overall well-
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being. This is supported in the MOTS and MelaOst trials where 29% more positive/neutral 

comments about sleep and 14% more positive comments about mood were made by women taking 

MSDK compared to placebo (MOTS) and a borderline significant improvement in sleep quality 

occurs after 1 year of melatonin treatment in a subgroup of postmenopausal osteopenic women 

with poor sleep quality (Amstrup, Sikjaer et al. 2015). Like melatonin, the strontium citrate 

component in MSDK may be contributing to improvements in QOL as well. In the SOTI trial, 

QOL was measured using the Quality of Life questionnaire in Osteoporosis (QualiOst), which is 

a validated disease-specific 23 items questionnaire measuring the effect of osteoporosis on the 

health-related QOL. Strontium ranelate treatment slightly improves the QOL in their 

postmenopausal osteoporotic cohort, which persisted for up to 4 years as reviewed (Roux 2008). 

Improvements in sleep duration cannot be factored into the improvement in QOL because both 

groups averaged ~7h of sleep per night throughout the study. This could be because almost all our 

participants were working women with a scheduled lifestyle and used alarm clocks to wake up in 

the morning.  

Besides sleep, there were a high number of comments (both positive and negative) made 

about mood in both groups making it difficult to provide a satisfactory conclusion about MSDK’s 

effect on general mood in this cohort. What is interesting to note, though, was that more positive 

comments were made in the MSDK group compared to placebo when neutral comments were 

excluded. Perhaps the improvement in sleep quality observed in the MSDK group translated to 

improvements in mood. In another study, melatonin shows general improvements in mood and 

depressive states in postmenopausal women (Bellipanni, Bianchi et al. 2001). Treatment effects 

on the GI tract were also evaluated because GI disorders, particularly nausea and diarrhea, are 

found to be associated with strontium ranelate usage in postmenopausal women (Reginster, 
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Seeman et al. 2005). In the MOTS, no effect of MSDK on GI symptoms occurred and, in fact, 

women taking MSDK, to some extent, demonstrated an improvement in GI-related matters. This 

was revealed by the number of positive comments made by women taking MSDK compared to all 

of the negative comments made by placebo group. A similar trend towards an improvement was 

observed in the general aches/pain category where MSDK produced minimal, if any, effects. These 

findings underscore the fact that MSDK is safe to use with respect to these aspects in 

postmenopausal women with osteopenia. 

Treatment compliance has a great influence on the overall QOL. Bone loss therapies often 

fail to produce their desired effect because of the poor compliance and limited adherence to the 

treatments. One study shows that the compliance rate for taking osteoporosis medications is <80% 

as measured by the medication possession ratio (MPR) and this is associated with a 17% increase 

in fracture rate (Silverman and Gold 2010). Women taking MSDK were highly compliant 

throughout the study (92.4%) with no reported adverse events. Two of the participants dropped 

out from the study—one from placebo group due to having a problem with the pill size and another 

from the MSDK group due to general illness unrelated to the study supplement. Improved 

treatment compliance is expected to improve bone health outcomes in postmenopausal women 

with osteopenia.  
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Chapter 3: Assessment of mechanisms underlying the effect of melatonin, strontium 

citrate, vitamin D3 and vitamin K2 (MSDK) on human adult mesenchymal stem cells 

and human peripheral blood monocytes grown as co-cultures 

3.1. Materials and Methods 

3.1.1. In vitro treatment preparation  

In vitro MSDK treatment concentrations were calculated based on the doses used in the 

MOTS clinical trial. Hence, 50 nM melatonin (M), 191.5 μM strontium citrate (S), 26 nM vitamin 

D3 (D) and 18.5 nM vitamin K2 (K) were prepared and dissolved into 100% pure ethanol to achieve 

the final concentration of MSDK per well. All study drugs were generously provided by Pure 

Encapsulations, Inc. (Sudbury, MA, USA).  

3.1.2. Osteoblast/Osteoclast co-cultures and hMSC mono-cultures 

Two bone cell co-culture model systems (transwell and layered) were developed using 

undifferentiated forms of osteoblasts and osteoclasts—multipotent human adult mesenchymal 

stem cells were used to study osteoblastogenesis and human peripheral blood monocytes, isolated 

from freshly drawn human blood, were used to study osteoclastogenesis.  

Initiation of hMSCs culture. Human adult mesenchymal stem cells (hMSCs) (CAT# PT-2501, 

Lonza, MD, USA) were grown in 75 cm2 cell culture flasks using mesenchymal stem basal cell 

growth medium (Os-) (CAT# PT-3001, Lonza, USA) and cells were maintained at 37°C, 5% CO2 

and 90% humidity. When 80% confluence was achieved, cells were passaged following 

detachment from the flask surface by trypsinization and transfer into other tissue culture plates or 

flasks. Cells were then seeded (at passage 3-5) at an initial density of 3 × 103 cells/cm2 at the 

bottom chamber of CorningTM transwell permeable support 6 well plates (Cat# 07-200-165; pore 
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size 0.4µm, 24.5mm Diameter, 4.7cm2 Growth Area; Corning, USA) or on typical 6-well cell 

culture plates (Corning, NY, USA). On day 1 of the 21-day co-culture period, cells were treated 

with either basal growth media (Os-) or osteogenic media (Os+) (CAT# PT-3002, Lonza, USA) 

and then with 0.01% ethanol as vehicle (Veh) or melatonin (Mel), strontium citrate (Sr), vitamin 

D3 (D3) and vitamin K2 (K2) alone or in combination with MSDK. Ascorbate, dexamethasone and 

β-glycerophosphate were added to basal growth medium, referred to as osteogenic media (Os+), 

to induce the differentiation of hMSCs into osteoblasts (Langenbach and Handschel 2013). Full 

media exchanges occurred every four days.  

Isolation of hPBMCs from blood sample. On day 13, a blood sample (approx. 2mL) was taken 

from a young consenting healthy volunteer unrelated to the MOTS clinical trial via venous 

puncture using BD Vacutainer® Safety-Lok blood collection set with a 23-gauge needle (BD, 

USA) and collected in 8.5 mL BD Vacutainer® SSTTM Plus blood collection tubes with 

anticoagulant (BD, USA). To isolate peripheral mononuclear cells, anticoagulant-treated blood 

was mixed with an equal volume of balanced salt solution (e.g. PBS). The blood/PBS solution 

(1:1) was then carefully layered on top of the Ficoll-PaqueTM Plus solution (Amersham Pharmacia 

Biotech, Sweden) without disturbing that layer. After two repeated centrifugations at 400g for 30-

40 min at 18-200C without brake, mononuclear cells were visible as a yellowish layer in the middle. 

They were then isolated from the multiple layers of centrifuged blood using a long sterile pipette 

tip and re-suspended in RobosepTM buffer (CAT# 20104, Stemcell technologies, USA). Magnetic 

separation of pure peripheral blood monocytes (hPBMCs) from the fresh mononuclear cells 

mixture was performed using the EasySep™ negative selection human monocyte enrichment kit 

without CD16 depletion (CAT# 19058, Stemcell technologies, USA) and purple EasySep™ 

magnet (CAT# 18000, Stemcell technologies, USA), following manufacturer’s instructions. 
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Briefly, mononuclear cell suspensions (~5 x 107 cells/mL) in 2mL RoboSep buffer media were 

placed in a 5mL polystyrene tube (CAT# 352058, BD Bioscience, USA). Next, the tube was 

inserted into a magnet and the suspension was treated with EasySepTM human monocytes 

enrichment antibody cocktail without CD16 Depletion (50uL/mL cells) and incubated at 2-80C for 

10 min. Following antibody treatment, the mixture was treated with the magnetic particles 

(50uL/mL cells) and incubated for another 5 min at 2-80C. The antibody cocktail provided with 

the kit bound to all mononuclear cells except CD16-specific monocytes. This complex also 

recognized dextran-coated magnetic particles provided with the kit. When the tube was placed 

inside the EasySepTM magnet and set aside for 2.5 min at room temperature, the magnetically 

labeled unwanted mononuclear cells remained bound to the inside wall of the tube, leaving only 

pure monocytes into the solution. Human peripheral blood monocytes (hPBMCs) in solution were 

then carefully poured into another tube. To avoid contamination of other cells, the tubes were not 

allowed to shake and the top of two tubes were not to touch each other. A schematic representation 

of this procedure is shown in Figure 23. 
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Figure 23. Isolation of monocytes (hPBMCs) from blood sample 

Initiation of hMSCs/hPBMCs co-culture. Human PBMCs were added to osteoblastic cultures on 

day 13 because past studies using osteogenic medium have shown that hMSCs start to differentiate 

into mature osteoblasts between 14 to 21 days (Sethi, Radio et al. 2010) and begin producing 

substantial amounts of RANKL, M-CSF and/or OPG (Atkins, Kostakis et al. 2003) to modulate 

osteoclastogenesis (Atkins, Kostakis et al. 2003, Boyce and Xing 2008). Monocytes were seeded 

(5 × 103 cells/cm2) in the top chamber of the transwell plate to initiate the “transwell” co-culture 

or layered directly on top of the hMSC culture to initiate “layered” co-culture. The permeable 

polycarbonate membrane present between the two chambers of the transwell allowed for the 

MSCs/osteoblasts and PBMCs/osteoclasts to communicate via passage of factors released into the 

media and not through contact whereas in the layered co-culture, MSCs/osteoblasts and 

PBMCs/osteoclasts could communicate via both means. Full media exchange was continued for 

once every four days until day 21.  
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Initiation of hMSCs mono-culture. The hMSC mono-cultures were cultured exactly as the co-

cultures except that the hMSCs were grown in the absence of hPBMCs to determine how 

hPBMCs/osteoclasts influence MSDK-mediated osteoblast differentiation. The development and 

treatment paradigm of co-culture is shown in Figure 24. 

 

Figure 24. Development of hMSCs/hPBMCs transwell (indirect) and layered (direct) co-

cultures. DIV=Day in vitro.  
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3.1.3. Osteoblast differentiation and mineralization 

On day 21, calcium mineralization by matured, differentiated osteoblasts was measured via 

alizarin red staining assay— this time period was chosen based on past published studies using 

melatonin to induce differentiation of hMSCs into osteoblasts (Sethi, Radio et al. 2010). Alizarin 

red staining was performed on the bottom chamber (hMSCs portion) of transwell co-culture and 

directly on 6-well plates (both hMSCs and hPBMCs) of the layered co-culture using the 

commercially available osteogenesis quantification kit (CAT# ECM815, EMD Millipore, MA, 

USA) as per manufacturer’s instructions. Briefly, the bottom chamber cells were washed with PBS 

and fixed with 10% formaldehyde and 15 min incubation at room temperature. Then alizarin red 

stain was applied to each well (0.5-1mL/well). Following 20 min incubation at room temperature 

and extensive washing (three times, 5 min, gentle rocking) with deionized water, differentiated 

osteoblasts containing mineral deposits were visualized using Vistavision microscope (VWR 

international) with progress C3 camera (Zenoptik).  

Osteogenesis was also quantified by extracting the mineral deposits released by osteoblasts 

using the Osteogenesis Assay Kit (CAT# ECM815, EMD Millipore, MA, USA). 

Spectrophotometric quantification was performed at 405 nm using the Perkin Elmer Victor 1420 

Multilabel plate reader (Waltham, MA, USA). A standard curve was generated from the 

absorbance (OD) readings of standards. Concentrations of alizarin red of the samples were 

calculated from the generated standard curve using Workout 2.0 software (Waltham, MA, USA), 

normalized against Os-/Veh and compared between groups. Osteoblastic mineralization activity 

was proportional to the concentration of alizarin red in this assay.  

3.1.4. Osteoclast differentiation and resorption pit formation 

On day 21, tartrate resistant acid phosphatase (TRAP) assays were carried out on the top 
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chamber of transwell co-culture or directly on the 6-well plate (layered co-culture) to measure 

osteoclastic differentiation and TRAP releasing activity. Qualitative analysis was performed using 

the commercially available Acid Phosphatase Leukocyte assay kit (CAT# 387A, Sigma, USA) per 

manufacturer’s instructions. Briefly, recommended reagents supplied in the assay kit were added 

to the cells (1mL/well) per kit instructions and incubated for 1h in a water bath at 37ºC in the 

absence of light. The cells were then counterstained with hematoxylin for 2 min and rinsed 

thoroughly in alkaline tap water, resulting in the visualization of blue nuclei of osteoclasts. 

Microscopic assessment of the stained osteoclasts was performed using Vistavision microscope 

(VWR international) with progress C3 camera (Zenoptik) under grey setting. Purple staining 

indicated TRAP deposition by osteoclasts where the amount of TRAP deposition was proportional 

to the differentiation of osteoclasts.  

Quantitative analysis of the total TRAP was performed according to the protocol 

previously explained by Janckila et al., with modifications (Janckila, Takahashi et al. 2001). 

Briefly, Naphthol-ASBI phosphate (N-ASBI-P) was used as a substrate for TRAP. TRAP buffer 

was prepared by dissolving N-ASBI-P (2.5mM) in a solution containing 1% ethylene glycol 

monomethyl ether (EGME), 2% NP40, Na-acetate (100mM) and Na-tartrate (50mM) with pH 

adjusted at 5.5-6.1. Cells were lysed with 50mM TRIS and treated with TRAP buffer (1mL/well). 

Cells were also treated with a blank solution containing100 µL TRIS and 1 mL TRAP buffer only. 

Cells were then scraped and then placed in a 5mL tube along with the buffer and incubated at 37°C 

for 30 min. Reactions were stopped upon the addition of 2.5 mL 0.1 M NaOH containing 0.05% 

NP-40. Fluorescence readings were taken at 405nm excitation and 515nm emission wavelength 

using a Perkin Elmer Victor 1420 Multilabel plate reader. Data were normalized against Os-/Veh 

and compared between groups. All reagents were bought from Sigma, USA. Osteoclastic 
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resorption pit formation activity was also performed by manually counting the number of 

resorption pits formed by the differentiated osteoclasts in the layered co-culture using a Vistavision 

microscope.  

3.1.5. Western blot 

Western blotting was performed to measure protein expression of osteoprotegerin (OPG), 

receptor activator of nuclear factor kappa-B ligand (RANKL), extracellular signal-regulated 

protein kinases 1 and 2 (ERK1/MAPK3 and MAPK1/ERK2), extracellular signal-regulated 

protein kinase 5 (ERK5/MAPK7), runt-related transcription factor 2 (RUNX2), integrin β1 

(ITGB1), nuclear factor kappa B (NFκB), peroxisome proliferator-activated receptors gamma 

(PPARγ), glucose transporter type 4 (GLUT4/SLC2A4) and beta subunit of insulin receptor (IRβ); 

using the Odyssey® Western Blotting Kit IV RD (CAT# 926-31084, Licor bioscience, USA). 

Primary antibodies included rabbit anti-OPG/TNFRSF11B (ab73400, Abcam, USA), rabbit anti-

RANKL/TNFSF11 (ab9957, Abcam, USA), rabbit anti-phospho ERK1/2 (9101, Cell Signaling, 

USA), rabbit anti-total ERK1/2 (9102, Cell Signaling, USA), rabbit anti-phospho ERK5 (3371, 

Cell Signaling, USA), rabbit anti-total ERK5 (3372, Cell Signaling, USA), rabbit anti-RUNX2 

(sc10758, Santa Cruz Biotech, USA), rabbit anti-Integrin β1 (sc8978, Santa Cruz Biotech, USA), 

rabbit anti-NFκB (sc298, Santa Cruz Biotech, USA), rabbit anti-PPARγ (sc7196, Santa Cruz 

Biotech, USA), rabbit anti-GLUT4 (sc7938, Santa Cruz Biotech, USA), rabbit anti-IRβ (sc711, 

Santa Cruz Biotech, USA) and mouse anti-β-actin (926-42212, Licor, USA). Secondary antibodies 

against appropriate IgG included goat anti-rabbit (800nm) and goat anti-mouse (680nm), which 

were supplied with the Licor western blotting kit.  

Cell lysate preparation. On day 21, osteoblast and osteoclast cell lysates each were prepared from 

the bottom and top chambers of the transwell co-culture, respectively. Whole cell lysates 
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containing both osteoblasts and osteoclasts were prepared from the layered co-culture. Following 

aspiration of culture media, cell lysates were prepared by adding 2X Laemmli sample buffer 

(CAT# 161-0737, BioRad, USA) and β-mercaptoethanol (CAT# 161-0710, BioRad, USA) at a 

ratio of 19:1 onto each well and then gently scraping the cells. Cell lysates were then heated for 5 

min at 95oC, cooled down and stored at -20oC until use.  

SDS-PAGE. Thirty microliters of cell lysates and 10 µL of the molecular weight marker (Precision 

Plus ProteinTM, CAT# 161-0373, BioRad, USA) were added to wells and then separated using 

10% SDS-polyacrylamide gel electrophoresis. Proteins were then transferred to nitrocellulose 

membranes and placed in blocking buffer for 1h with gentle rocking to reduce non-specific 

staining. Membranes were then incubated with the respective primary antibodies and anti-β-actin 

antibodies to visualize the proteins of interest and to normalize protein load overnight at 4°C with 

gentle rocking. Following incubation with the antibodies, blots were washed with PBS-tween and 

incubated with two different secondary antibodies with different infrared spectra (800nm and 

680nm) for 45min to 1 hour at room temperature. Protein bands were then visualized in Odyssey 

Infrared Imager and quantified using Odyssey software (Licor bioscience, USA). Proteins were 

normalized against β-actin to control for variations in protein loading between treatment groups. 

Protein levels were then normalized against Os-/Veh or Os-/MSDK and compared between groups. 

3.1.6. Measurement of secreted OPG and RANKL 

Concentrations of osteoblast-secreted osteoprotegerin (sOPG) and receptor activator of 

nuclear factor kappa-B ligand (sRANKL) in culture media were measured via Sandwich enzyme-

linked immunosorbent assay (ELISA using Osteoprotegerin Human ELISA kit (CAT# ab100617, 

Abcam, USA) and total sRANKL (human) ELISA kit (CAT# ALX-850-019, Enzo Life Science, 

USA), respectively, following manufacturer’s instructions. Culture media was collected before 
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preparing the cell lysates from the bottom chamber of the transwell plate (contains hMSCs) or 

from the layered or hMSC mono-cultures and stored at -20oC until use. Absorbance readings of 

standards, controls and samples were measured at 450 nm using the Perkin Elmer Victor 1420 

Multilabel plate reader (Waltham, MA, USA). A standard curve was generated for each assay 

using the four-parameter logistic curve fit function and concentrations of sOPG and sRANKL were 

calculated using Workout 2.0 software (Waltham, MA, USA). Mean concentration changes of 

sOPG (in pg/mL) and sRANKL (in pg/mL) were calculated, normalized against Os-/MSDK 

groups and compared between groups. Ratios of sOPG to sRANKL were calculated, normalized 

against Os-/MSDK and then compared between groups.  

3.1.7. Statistical interpretation 

For in vitro assays, all data were normalized against either Os-/Veh or Os-/MSDK and 

analyzed by one-way ANOVA followed by Bonferroni’s post-hoc multiple comparison t-test, 

where significance was defined as p < 0.05. 

3.2. Results  

3.2.1. MSDK increased osteoblastogenesis and decreased osteoclastogenesis in co-cultures of 

hMSCs and hPBMCs  

Both alizarin red staining and TRAP assays indicated successful differentiation of hMSCs 

into osteoblasts and hPBMCs into osteoclasts when grown together as co-cultures in the presence 

of osteogenic (Os+) media. Figure 25A represents calcium mineralization activity of mature, 

differentiated osteoblasts grown in a transwell co-culture as measured after 21 days of exposure to 

MSDK and other treatments. Human adult MSCs grown in growth media alone (Os-/Veh) or in 

presence of MSDK (Os-/MSDK) did not differentiate into osteoblasts as revealed by the absence 
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of alizarin red staining. As expected, hMSCs exposed to osteogenic media alone (Os+/Veh) 

differentiated into osteoblasts (p< .01 vs. Os-/Veh). The addition of MSDK to osteogenic media 

(Os+/MSDK) enhanced osteoblast mineralization to the greatest extent (p< .0001 vs. all groups). 

We next investigated if the individual components of MSDK were capable of inducing osteoblast 

differentiation beyond that of Os+ alone. Therefore, melatonin (Mel), strontium citrate (SC), 

vitamin D3 (D3) or vitamin K2 (K2) each were added to Os+ media. Melatonin was the only 

component that increased transwell osteoblast differentiation vs. Os+/Veh (Figure 24A inset). 

Similar treatment effects on osteoblast differentiation were observed in the layered co-

culture except that the extent of MSDK-mediated osteoblast differentiation was less compared to 

the transwell osteoblasts (Figure 25B). However, both melatonin and strontium citrate induced 

osteoblast differentiation alone when compared to Os+/Veh in this co-culture system (Figure 25B 

inset). Qualitative alizarin red staining analyses showing the extent of calcium deposition further 

demonstrated the effects of MSDK and other treatments on transwell co-culture (Figure 25C) and 

layered co-culture (Figure 25D). 
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Figure 25. Effect of MSDK on osteoblast-mediated calcium mineralization. Following 21 days 

of exposure to MSDK and other treatments, calcium deposition by differentiated, matured 

osteoblasts was evaluated by alizarin red staining on (A) bottom chamber cells of the transwell co-

culture or (B) in the layered co-culture. Each bar represents the mean (± S.E.M.) concentration of 

alizarin red (M) for the respective group normalized against Os-/Veh. Inset graph represents 

similar analysis in the absence of Os+/MSDK. One-way ANOVA followed by Bonferroni’s post-

hoc multiple comparison t-test (n=3 per group). Transwell co-culture: ****=p<.0001 vs. all 

groups, a=p<.01 vs. Os-/Veh, b=p<.05 vs. Os-/MSDK, c=p<.05 vs. Os+/Veh. Layered co-culture: 

****=p<.0001 vs. all groups, a=p<.01 vs. Os-/Veh, b=p<.01 vs. Os-/MSDK, c=p<.01 vs. Os-

/Veh). Representative images obtained from the qualitative assessment of osteoblast 

mineralization performed on the (C) bottom chamber cells of transwell co-culture and (D) layered 
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co-culture via qualitative alizarin red staining. Red color indicates calcium deposition by 

osteoblasts. Os- =basal media, Os+ =osteogenic media, Veh= vehicle, Mel= melatonin, SC= 

strontium citrate, D3= vitamin D3 (Cholecalciferol), K2= vitamin K2 (MK7).  

The effect of MSDK on TRAP levels was measured since TRAP is an well-known marker 

for terminally differentiated osteoclasts and their bone resorption activity (Angel, Walsh et al. 

2000, Halleen, Tiitinen et al. 2006). Figure 26A demonstrates treatment effects of MSDK and its 

individual components on TRAP releasing activity of the osteoclasts grown as transwell co-

cultures. Although osteogenic media (Os+) favored transwell osteoblast formation, it did not have 

any effect on transwell osteoclast activity. However, the addition of MSDK to osteogenic media 

(Os+/MSDK) significantly inhibited TRAP expression, suggesting an inhibitory role of MSDK on 

osteoclast differentiation and activity. The individual components did not inhibit TRAP expression 

in this co-culture. Figure 26B illustrated treatment effects on TRAP expression in layered co-

cultures. Os+ was the only culture condition that inhibited TRAP expression. The addition of 

melatonin, strontium citrate, vitamin D3 and vitamin K2 to Os+ media either alone or in 

combination as MSDK did not have any enhancing or inhibitory effects on TRAP expression. 

Qualitative TRAP expression by differentiated osteoclasts, as performed via Acid Phosphatase, 

Leukocyte assay (TRAP staining assay) in transwell and layered co-cultures are shown in Figure 

26C and D, respectively. Qualitative illustrations matched to what was obtained from the 

quantitative analysis. Resorption pit number, as measured in the layered co-culture, significantly 

decreased in Os+ culture treated with MSDK (Figure 26E), indicating an inhibitory effect of 

MSDK on osteoclastic pit forming activity. 
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Figure 26. Effect of MSDK on osteoclast differentiation and resorption pit formation. Following 

21 days of exposure to MSDK and other treatments, TRAP releasing activity by differentiated, 

mature osteoclasts were evaluated by quantitative TRAP assays on (A) the top chamber of cells 

from the transwell co-cultures or (B) in the layered co-cultures. Each bar represents the mean (± 
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S.E.M.) fluorescence reading of TRAP (at 405nm ex, 515nm em) for the respective group 

normalized against Os-/Veh. One-way ANOVA followed by Bonferroni’s post-hoc multiple 

comparison t-test (n=3 per group). Transwell co-culture: **=p<.01 vs. Os-/Veh. Layered co-

culture: *=p<.05 vs. Os-/Veh). Representative images obtained from the qualitative assessment of 

osteoclast differentiation performed on the (C) top chamber cells of transwell co-culture and (D) 

layered co-culture via qualitative Acid Phosphatase, Leukocyte assay (TRAP staining assay). The 

purple color indicates TRAP deposition by matured osteoclast which was further observed by blue 

nuclei of osteoclasts. Os- =basal media, Os+ =osteogenic media, Veh= vehicle, Mel= melatonin, 

SC= strontium citrate, D3= vitamin D3 (Cholecalciferol), K2= vitamin K2 (MK7). (E) Resorption 

pit number counted in layered co-cultures as a measure of osteoclast-mediated resorption pit 

formation activity. Each bar represents the number of resorption pit in the respective group. One-

way ANOVA followed by Bonferroni’s post-hoc multiple comparison t-test (n=3; *=p<.05 vs. Os-

/MSDK). 

In summary, 21 days of MSDK treatment significantly enhanced osteoblast differentiation 

and mineralization in both transwell and layered co-cultures. MSDK treatment showed a parallel 

decrease in osteoclast differentiation and TRAP releasing activity in the transwell co-cultures. No 

additional inhibitory effect of MSDK on osteoclast differentiation was observed in layered co-

cultures because Os+ alone produced substantial inhibition. Nonetheless, the manner in which 

osteoblasts and osteoclasts are cultured influences mostly the magnitude of osteoblast or osteoclast 

differentiation.  
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3.2.2. MSDK modulates OPG and RANKL levels in co-cultures of hMSCs and hPBMCs 

dependent upon the type of culturing condition—layered or transwell  

Figure 27 illustrates the effect of MSDK on osteoprotegerin (OPG) and receptor activator 

of nuclear factor kappa-B ligand (RANKL)—signaling proteins known to modulate osteoclast 

activity and differentiation. As shown in Figure 27Ai, Os+ media alone significantly increased 

OPG and decreased RANKL expression in transwell osteoblasts, which also resulted in an increase 

in the OPG: RANKL ratio, as compared to growth media (Os-). The presence of MSDK in Os+ 

media (Os+/MSDK) further enhanced the ratio of OPG: RANKL (p< .001 vs. Os-/MSDK and p< 

.05 vs. Os+/Veh), by increasing OPG (Figure 27Aii) and concomitantly decreasing RANKL 

(Figure 27Aiii) expression of transwell osteoblasts. Similar effects were observed when hMSCs 

were grown as mono-cultures (Figure 27Ci and Cii) in the absence of hPBMCs except that 

RANKL remained unchanged (Figure 27Ciii) at levels similar to control. Interestingly, when 

hMSCs were cultured in direct contact with hPBMCs (layered co-culture), no further enhancement 

of OPG (Figure 27Bii) or decrease in RANKL (Figure 27Biii) occurred with MSDK treatment 

vs. Os+/Veh, resulting in no MSDK-mediated increases in the ratio of OPG:RANKL (Figure 

27Bi).  

Figure 27D illustrates the effect of MSDK on OPG and RANKL secreted from transwell 

osteoblasts into the culture media, as measured via ELISA. The ratio of sOPG: sRANKL decreased 

in both Os+/Veh and Os+/MSDK treated co-cultures as compared to Os-/MSDK mostly due to 

significant increases in sRANKL. Similar patterns in sOPG: sRANKL levels were also observed 

in hMSC mono-cultures (Figure 27E) due to increases in sRANKL levels and decreases in sOPG 

levels. High levels of sRANKL (Figure 27Diii and Eiii) was expected to increase 

osteoclastogenesis, but this did not occur as shown in Figure 26. In fact, osteoclastogenesis was 
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inhibited in both co-cultures in the presence of osteogenic (Os+) medium and, even more so, in 

transwell co-cultures containing MSDK. The fact that OPG was the only protein modulated by 

MSDK and that its level correlated with osteoclastogenesis suggests that sOPG and not sRANKL 

was modulating osteoclastogenesis. Therefore, the attenuation of osteoclastogenesis in transwell 

co-cultures vs. layered may be due to the secretory pattern of OPG (sOPG) from the osteoblast 

rather than sRANKL (Figure 27D and E). Moreover, the decreased sOPG level in hMSC mono-

cultures and the unchanged sOPG level in transwell co-cultures in response to MSDK suggest that 

the presence of osteoclast in the transwell co-culture is probably modulating sOPG release from 

the osteoblast. The inhibition of osteoclastogenesis observed in transwell co-cultures was possibly 

due to OPG-mediated decreases in free RANKL; this would decrease RANK activation on 

osteoclasts resulting in the decreases in osteoclastogenesis and activity. Another possibility is that 

differential processing of RANKL by proteinases located on the osteoblasts created soluble 

RANKL products, which were less capable of generating osteoclasts (Nakashima, Kobayashi et 

al. 2000). This was supported in Figure 27F and G, which demonstrated that MSDK uniquely 

modulated the expression of different RANKL peptide fragments in transwell and layered 

osteoblasts. The RANKL fragments, 25kDa (Figure 27Fi and G) and 24kDa fragments (Figure 

27Fii), also referred to as “shredded fragments” indicate ectodomain shedding by A disintegrin 

and metalloproteinase domain-containing protein (ADAM) 10 or Matrix metalloproteinase 

(MMP) 14 (Hikita, Yana et al. 2006).  
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Figure 27. Effect of MSDK on OPG and RANKL expression of osteoblasts in transwell co-

cultures, layered co-cultures and hMSCs mono-cultures. Following 21 days of MSDK exposure, 

(A-C) treatment effects on the OPG and RANKL expression of osteoblasts was measured via 

western blot in (A) transwell co-cultures, (B) layered co-cultures and (C) hMSC mono-cultures. 

Cell lysates were prepared on day 21 from the bottom (osteoblasts) chamber in the transwell co-

culture or from the whole plate (both osteoblasts and osteoclasts) in the layered co-culture. Protein 

levels were normalized against β-actin and then to Os-/MSDK. Each bar represents the mean (± 

S.E.M.) expression of (i) OPG: RANKL, (ii) OPG and (iii) RANKL for respective cultures. (D, 

E) Treatment effects on osteoblast-mediated secretion of OPG (sOPG) and RANKL (sRANKL) 

were measured by ELISA in (D) transwell osteoblasts and (E) hMSC mono-cultures. Following 

21 days of MSDK exposure, protein concentrations (in pg/mL) were analyzed in culture media 

and then normalized against Os-/MSDK. Each bar represents the mean (± S.E.M.) concentrations 

of (i) sOPG: sRANKL, (ii) sOPG and (iii) sRANKL for respective cultures. (F, G) Treatment 

effects on the extracellular portion of RANKL in osteoblasts were detected via western blot by 

measuring mean osteoblastic expression of the (i) 25 KDa and (ii) 24 KDa RANKL fragments in 

(F) transwell co-cultures; and (G) the 24 KDa RANKL fragment in layered co-cultures. *=p< .05, 

**=p< .01 and ***=p< .001; One-way ANOVA followed by Bonferroni’s post-hoc multiple 

comparison t-test (n=6 per group).  
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3.2.3. MSDK modulates pERK1/2 and pERK5 levels in co-cultures of hMSCs and hPBMCs 

dependent upon the type of culturing condition—layered or transwell  

Studies done in our lab and others (Radio, Doctor et al. 2006, Ge, Xiao et al. 2007, Ge, 

Xiao et al. 2009, Matsushita, Chan et al. 2009, Maria, Samsonraj et al. 2017), reveal that melatonin 

induces osteoblast differentiation through MEK1/2. In hMSC mono-cultures, melatonin enhances 

their differentiation into osteoblasts by activating the ERK1/2 pathway because inhibition of 

MEK1/2 by PD98059 during the melatonin exposure period blocks these effects (Radio, Doctor et 

al. 2006, Sethi, Radio et al. 2010). Since melatonin is one of the four components of MSDK, we 

examined whether ERK1/2 was regulated by MSDK in a manner like that of melatonin to make 

an association between ERK1/2 activity and expression to MSDK-mediated increases in 

osteoblastogenesis. Figure 28A represents the effect of MSDK on ERK1/2 activity and expression 

in osteoblasts grown as transwell co-cultures. The presence of MSDK in the Os+ medium primarily 

enhanced ERK1/2 activity (phospho ERK1/2) and down-regulated total ERK1/2 (tERK1/2) in 

osteoblasts. This is consistent with previous data showing that ERK1/2 is associated with an 

increase in cellular differentiation (Ge, Xiao et al. 2007, Ge, Xiao et al. 2009, Matsushita, Chan et 

al. 2009), or, in this case, mesenchymal stem cell differentiation into osteoblasts. As shown in 

Figure 28B, MSDK produced a similar increase in ERK1/2 activity by both increasing phospho-

ERK1/2 and decreasing total ERK1/2 expression which could be due to increases in phospho- 

ERK1/2 activity in osteoblasts, osteoclasts or both. In another study, ERK1/2 is also expressed in 

osteoclasts and plays a significant role in osteoclast differentiation (Matsushita, Chan et al. 2009). 

Therefore, it was not possible to conclude that MSDK was mediating ERK1/2 expression solely 

in osteoblasts in this co-culture. This could explain the difference in ERK1/2 expression between 

co-cultures with respect to MSDK. 
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Previous studies have shown that ERK5 also plays a role in both osteoblast and osteoclast 

function and, possibly, differentiation (Li, Ma et al. 2012, Kaneshiro, Otsuki et al. 2015, Bo, Bin 

et al. 2016). However, a recent study has shown that PD98059 and U0126, purported selective 

inhibitors of MEK1/2, also can inhibit MEK5 (Drew, Burow et al. 2012). These findings suggest 

that use of PD98059 or U0126 to assess the role of ERK1/2 in osteoblast proliferation and 

differentiation may have inadvertently inhibited both ERK1/2 and ERK5. Therefore, MSDK 

effects on ERK5 in all three-cell culture models—transwell, layered and monolayers—were 

assessed. Figure 28C illustrates the effect of MSDK on ERK5 expression in osteoblasts grown as 

transwell co-cultures. As shown, hMSCs exposed to Os+ media alone decreased ERK5 activity 

(pERK5) (p< .001 vs. Os-/MSDK), which was not due to decreases in total ERK5 (tERK5) levels. 

The addition of MSDK to the Os+ media produced an increase in pERK5 relative to Os+/Veh (p< 

.05 vs. Os+/Veh); however, this may be due to decreases in tERK5 since levels decreased when 

compared to Os-/MSDK (p< .01 vs. Os-/MSDK). This finding is consistent with the role of ERK5 

in osteoblasts (Li, Ma et al. 2012, Kaneshiro, Otsuki et al. 2015, Bo, Bin et al. 2016). Because 

ERK5 is a prosurvival kinase, decreases in its expression following Os+/Veh or Os+/MSDK 

exposure occurs to possibly allow for hMSCs to switch from a proliferative state towards a 

differentiation state as shown in Figure 25. Interestingly, when hMSCs were cultured in direct 

contact with hPBMCs (layered), no changes in pERK5 or tERK5 occurred (Figure 28E). Perhaps, 

MSDK exerted variable effects on pERK5 expression in hPBMCs and hMSCs resulting in a net 

zero effect because layered co-cultures contain both osteoblasts and osteoclasts. This idea is 

supported in Figure 28D demonstrating a trend (p= 0.19) towards an increase in transwell 

osteoclastic pERK5 in response to MSDK. Another alternative could be that that the presence of 

osteoclasts exert an inhibitory influence over osteoblastic pERK5 because when hMSCs were 
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grown in the absence of osteoclasts or as mono-cultures, MSDK increased both pERK5 and tERK5 

(Figure 28F). 
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Figure 28. Effect of MSDK on MAPK (ERK1/2 and ERK5). After 21 days of MSDK exposure, 

western blot was performed to determine (A) ERK1/2 expression of osteoblasts grown as a 

transwell co-culture, (B) ERK1/2 expression of osteoblasts and osteoclasts grown as a layered co-

culture, (C) ERK5 expression of osteoblasts grown as a transwell co-culture, (D) phospho-ERK5 

expression of osteoclasts grown as a transwell co-culture, (E) ERK5 expression of osteoblasts and 

osteoclasts grown as a layered co-culture, and (F) ERK5 expression of osteoblasts grown as hMSC 

mono-cultures. Cell lysates were prepared on day 21 from the bottom (osteoblasts) or top 

(osteoclasts) chambers of transwells and from the whole plate (both osteoblasts and osteoclasts) in 

the layered co-culture. Protein levels were normalized against β-actin and against Os-/MSDK. 

Each bar represents the mean (± S.E.M.) expression of (i) phospho-ERK: total-ERK, (ii) phospho-

ERK and (iii) total-ERK for ERK1/2 and ERK5 in each respective co-culture. *=p<.05, **=p<.01 

and ***=p<.001; One-way ANOVA followed by Bonferroni’s post-hoc multiple comparison t-

test (n=6 per group).  
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In summary, MSDK treatment for 21 days significantly enhanced ERK1/2 activation in 

osteoblasts grown as transwell co-cultures primarily by decreasing total ERK1/2. Although a 

similar pattern of ERK1/2 expression was observed in layered co-cultures, no such conclusion 

could be drawn as both osteoblasts and osteoclasts were present together in this co-culture. MSDK 

decreased total ERK5 expression in transwell osteoblasts and was without effect in layered co-

cultures. Human MSCs grown as monolayers demonstrated increases in pERK5 and tERK5 in 

response to MSDK suggesting possible inhibitory influence of osteoclasts on osteoblastic ERK5 

expression.  

3.2.4. MSDK modulates RUNX2 level in co-cultures of hMSCs and hPBMCs dependent upon 

the type of culturing condition—layered or transwell 

MSDK effects on runt-related transcription factor 2 (RUNX2) was examined because 

RUNX2 is a master regulator of osteogenesis (Ge, Xiao et al. 2007, Ge, Xiao et al. 2009) and it is 

regulated by MAPKs (Ge, Xiao et al. 2007, Ge, Xiao et al. 2009). Melatonin induces RUNX2 

expression in osteoblasts differentiated from hMSCs (Sethi, Radio et al. 2010) and in bone 

(Koyama, Nakade et al. 2002, Witt‐Enderby, Slater et al. 2012). Like many of the other proteins 

studied, the type of co-culture dictated their response to MSDK. For example, MSDK enhanced 

RUNX2 expression in transwell osteoblasts beyond that induced by Os+/Veh (p< .05) (Figure 

29A). However, in layered osteoblasts, MSDK did not further enhance RUNX2 expression 

induced by Os+/Veh (Figure 29B). The latter may be due to the possibility that maximal levels of 

RUNX2 expression may already have been attained. 
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Figure 29. Effect of MSDK on RUNX2. After 21 days of MSDK treatment, western blot was 

performed to determine RUNX2 expression of osteoblasts grown in (A) transwell co-cultures and 

(B) layered co-culture, respectively. Cell lysates were prepared on day 21 from the bottom chamber 

(osteoblasts) in the transwell co-culture and from the whole plate containing both osteoblasts and 

osteoclasts (layered co-culture). Protein levels in each co-culture was analyzed, normalized against 

β-actin followed by normalization against Os-/MSDK and represented as mean (± S.E.M.). 

*=p<.05, **=p<.01 and ***=p<.001; One-way ANOVA followed by Bonferroni’s post-hoc 

multiple comparison t-test (n=6 per group). 

3.2.5. MSDK did not modulate INTEGRIN β1 level in co-cultures of hMSCs and hPBMCs 

Integrins regulate the interaction between bone cells and the extracellular matrix and thus 

control different aspects of bone cell growth and activity (Mizuno, Fujisawa et al. 2000). The use 

of these two different co-culture models permitted exploration of the roles of MSDK on this 

important class of cell matrix proteins, especially in the layered co-culture where osteoblasts and 

osteoclasts are in direct contact with each other during their differentiation. As shown in Figure 

30C and D, the effect of Os+ media alone on INTEGRIN β1 expression was opposite in effect 

depending on the type of co-culture; Os+/Veh decreased INTEGRIN β1 level in transwell 
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osteoblasts (Figure 30A) but increased in layer co-culture where both cells are present. (Figure 

30B). The addition of MSDK to Os+ did not further decrease or increase INTEGRIN β1 levels in 

either co-culture.  

 

Figure 30. Effect of MSDK on INTEGRIN β1. After 21 days of MSDK treatment, western blot 

was performed to determine INTEGRIN β1 expression of osteoblasts grown in (A) transwell co-

cultures and (B) layered co-cultures, respectively. Cell lysates were prepared on day 21 from the 

bottom chamber (osteoblasts) in the transwell co-culture and from the whole plate of the layered 

co-culture. Protein levels in each co-culture was analyzed, normalized against β-actin followed by 

normalization against Os-/MSDK and represented as mean (± S.E.M.). *=p<.05, **=p<.01 and 

***=p<.001; One-way ANOVA followed by Bonferroni’s post-hoc multiple comparison t-test 

(n=6 per group). 

3.2.6. MSDK modulates NFκB level in co-cultures of hMSCs and hPBMCs dependent upon 

the type of culturing condition—layered or transwell 

Nuclear factor kappa-B (NFκB) plays a vital role in RANK-mediated osteoclastogenesis 

(Jimi, Aoki et al. 2004, Wada, Nakashima et al. 2006, Boyce and Xing 2008). Similarly, novel 

roles for NFκB in osteoblasts are also emerging (Chang, Wang et al. 2009, Marie 2015). Therefore, 
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levels of NFκB in response to MSDK were assessed in transwell as well as in layered co-cultures. 

As shown in Figure 31A, hPBMCs grown as transwells with hMSCs and exposed to Os+ media 

containing MSDK demonstrated significant increases in NFκB vs. Os-/MSDK and Os+/Veh (p< 

.05 vs. Os+/Veh); no increases in NFκB occurred in the presence of osteogenic media (Os+/Veh) 

alone. In contrast, exposure to Os+/Veh increased NFκB levels in layered co-cultures and no 

further enhancement occurred in presence of MSDK (Figure 31B). The effects of Os+/MSDK on 

NFκB levels in transwell osteoclasts are not easily explained considering that this same culture 

condition (transwell and Os+/MSDK) decreased osteoclastogenesis (Figure 26A). 

 

Figure 31. Effect of MSDK on NFκB. After 21 days of MSDK treatment, western blot was 

performed to determine NFκB expression of osteoclasts grown in (A) transwell co-cultures, and 

(B) layered co-cultures, respectively. Cell lysates were prepared on day 21 from the top chamber 

(osteoclasts) in the transwell co-culture and from the whole plate containing both osteoblasts and 

osteoclasts (layered co-culture). Protein levels in each co-culture was analyzed, normalized against 

β-actin followed by normalization against Os-/MSDK and represented as mean (± S.E.M.). 

*=p<.05, **=p<.01 and ***=p<.001; One-way ANOVA followed by Bonferroni’s post-hoc 

multiple comparison t-test (n=6 per group). 
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3.2.7. MSDK modulates PPAR and GLUT4 levels in co-cultures of hMSCs and hPBMCs 

dependent upon the type of culturing condition—layered or transwell  

The effects of MSDK on different metabolic proteins such as peroxisome proliferator-

activated receptor gamma (PPAR), glucose transporter type 4 (GLUT4) and beta subunit of 

insulin receptor (IRβ) were evaluated due to their potential impact on bone cell differentiation and 

activity (Akune, Ohba et al. 2004, Takada, Suzawa et al. 2007, Ferron, Wei et al. 2010, Li, Leslie 

et al. 2013). It was in these proteins where the type of culturing condition played vital roles in their 

expression in osteoblasts exposed to MSDK. For example, the addition of MSDK did not affect 

PPARγ expression in osteoblasts grown as transwell co-cultures (Figure 32Ai). In contrast, 

Os+/MSDK significantly reduced total PPARγ expression in osteoblasts and osteoclasts vs. Os+ 

alone (p< .01) in layered co-cultures (Figure 32Bi). Similarly, MSDK inhibited Os+/Veh-

mediated GLUT4 levels in layered osteoblasts (Figure 32Bii), but not in transwell osteoblasts 

(Figure 32Aii). IRβ levels, though, were only modulated in transwell osteoblasts exposed to Os+ 

media alone (Figure 32Aiii). No effect on IRβ levels occurred in layered osteoblasts in response 

to any of the treatments (Figure 32Biii).  
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Figure 32. Effect of MSDK on metabolic proteins. After 21 days of MSDK treatment, expression 

of metabolic proteins such as (i) PPAR, (ii) GLUT4 and (iii) IRβ were measured in (A) osteoblasts 

grown in transwell co-cultures and (B) osteoblasts and osteoclasts grown in layered co-cultures. 

Cell lysates were prepared on day 21 from the bottom (osteoblasts) and top (osteoclasts) chambers 

in the transwell co-culture and from the whole plate (both osteoblast and osteoclast) in the layered 

co-culture. Protein levels were normalized against β-actin and then to Os-/MSDK. Mean protein 

levels were analyzed and compared between groups (Os-/MSDK, Os+/Veh, Os+/MSDK). 

*=p<.05, **=p<.01 and ***=p<.001; One-way ANOVA followed by Bonferroni’s post-hoc 

multiple comparison t-test (n=6 per group).  

3.3. Discussion 

The in vitro study was developed as part of the translational study to evaluate the 

mechanism(s) underlying the clinical effects of MSDK therapy on bone formation and bone 
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marker turnover in postmenopausal osteopenic women shown in the MOTS. These in vitro studies 

expanded upon the outcomes of the MOTS with a focus on identifying if and how osteoblasts 

modulate osteoclast activity using two novel co-culture systems consisting of human adult 

mesenchymal stem cells (hMSCs) as osteoblast precursors and human peripheral blood monocytes 

(hPBMCs) as osteoclast precursors—layered or transwell. This was intended to model the different 

ways osteoblasts and osteoclasts interact and communicate in vivo and to get information about 

how MSDK affects bone cells in their undifferentiated state rather than in already differentiated 

state. To the best of our knowledge, this is the first study assessing if and how combination of 

melatonin, strontium citrate, vitamin D3 and vitamin K2 regulate the formation and activity of 

osteoblasts and osteoclasts in a way that favors bone formation. This preliminary study focused 

only on the pathways that could potentially be regulated by MSDK, including the OPG/RANKL 

pathway, MAPK, RUNX2, NFB and INTEGRIN 1 as well as on certain metabolic parameters 

that affect bone function, including PPARγ and GLUT4. Deep exploration into these pathways is 

required to obtain a full picture of the underlying mechanism of MSDK’s modulatory activity on 

bone.  

The complex relationship between osteoblasts and osteoclasts and their regulation of each 

other’s activity during the bone remodeling process are still poorly understood. Bone remodeling 

intrinsically depends on multiple modes of communication that occur between osteoblastic and 

osteoclastic lineage cells at various stages of their differentiation. These include: direct cell-to-cell 

contact to allow for the interaction between membrane-bound ligands and the initiation of 

intracellular signaling; or via the release of diffusible paracrine factors such as growth factors, 

cytokines, chemokines and other small molecules from either cell type to control each other’s 

activity; or by forming gap junctions through which small molecules can pass between the two 
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cells (Matsuo and Irie 2008, Sims and Gooi 2008). In the present study, the layered co-culture 

allows for direct contact between osteoblasts and osteoclasts, whereas the transwell co-culture is 

based on indirect contact through the release of paracrine factors from either cell. By mimicking 

more closely the in vivo environment, these co-cultures systems were advantageous to evaluate 

how MSDK modulates the intercellular communication between bone cells throughout their 

transition from the immature to mature stage of life. 

Calcium deposition and bone mineralization by mature osteoblasts is an important marker 

of bone formation. The 21-day time period was chosen based on past studies, which showed that 

continuous melatonin treatment for 21 days is required to induce osteoblast differentiation and 

mineralization from hMSCs, as revealed by alkaline phosphatase (ALP) activity and calcium 

deposition (alizarin red staining) assay (Sethi, Radio et al. 2010). Multi-potent human bone 

marrow stromal cells are the primary osteoblast lineage cells, which were found to differentiate 

into pre-osteoblast in 10 days when exposed to 50nM melatonin daily, as revealed by ALP activity 

(Radio, Doctor et al. 2006). Osteogenic medium containing ascorbate, dexamethasone and β-

glycerophosphate was required to regulate hMSC differentiation into pre-osteoblasts and mature 

osteoblasts, as basal growth media only induces hMSC proliferation (Radio, Doctor et al. 2006, 

Sethi, Radio et al. 2010, Langenbach and Handschel 2013). Pre-osteoblasts proliferate and start to 

differentiate into mature osteoblasts, which then begin to deposit calcium in the bone matrix. 

Usually in vitro mineralization occurs between 14 to 12 days (Sethi, Radio et al. 2010) and so the 

same was expected to occur in the present study. Therefore, hMSCs were cultured for 13 days so 

that they would mature into pre-osteoblasts and begin secreting RANKL and M-CSF. This was to 

facilitate osteoclastogenesis after peripheral blood monocytes were added to the culture on day 13. 

By day 21, pre-osteoblasts differentiate into osteoblasts and stop osteoclastogenesis by producing 
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OPG (Atkins, Kostakis et al. 2003, Boyce and Xing 2008). Successful differentiation of osteoblasts 

from hMSCs and osteoclasts from hPBMCs in vehicle-treated culture (Os+/Veh) indicated that 

both co-cultures were developed successfully without the external addition of RANKL and M-

CSF.  

The 21 days of MSDK treatment greatly induced calcium deposition activity of the 

differentiated osteoblasts, as revealed by alizarin red staining. Our findings regarding the 

mineralization effect of melatonin in both cultures is consistent with previous in vitro studies, 

which show stimulatory roles of melatonin in osteoblast differentiation and mineralization from 

hMSCs and pre-osteoblasts (Radio, Doctor et al. 2006, Zaminy, Ragerdi Kashani et al. 2008, Sethi, 

Radio et al. 2010, Zhang, Su et al. 2010, Park, Kang et al. 2011, Maria and Witt‐Enderby 2014). 

In vitro bone-forming effects of melatonin are further supported by earlier preclinical and clinical 

studies (Clafshenkel, Rutkowski et al. 2012, Kotlarczyk, Lassila et al. 2012, Witt‐Enderby, Slater 

et al. 2012).  

Numerous in vitro studies show that strontium ranelate stimulates osteogenic 

differentiation of MSCs and pre-osteoblasts (Atkins, Welldon et al. 2009, Fromigué, Haÿ et al. 

2009, Peng, Zhou et al. 2009); rebalances bone marrow osteoblastogenesis and adipogenesis 

(Saidak, Haÿ et al. 2012); and increases osteoblast maturation, matrix mineralization and bone 

nodule numbers in osteoblast cultures (Bonnelye, Chabadel et al. 2008, Atkins, Welldon et al. 

2009, Querido and Farina 2013). Similar to published studies, strontium citrate alone in the MOTS 

enhanced osteoblast differentiation and mineralization from hMSCs after 21 days of exposure in 

the layered co-culture.  

Published studies show an in vitro stimulatory effect of vitamin K2 (MK7) on the post-

proliferative stages of osteoblast differentiation and bone formation (i.e., the osteoblast to 
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osteocyte transition) via a γ-carboxylation-dependent and independent mechanism (Yamaguchi, 

Sugimoto et al. 2001, Katsuyama, Otsuki et al. 2005, Atkins, Welldon et al. 2009, Yamaguchi and 

Weitzmann 2011). MK7 triggers osteocalcin protein expression (Yamaguchi and Weitzmann 

2011) and induces the expression of osteogenic genes [e.g., growth differentiation factor 10 

(GDF10), insulin- like growth factor 1 (IGF1), and vascular endothelial growth factors (VEGFA)] 

(Gigante, Brugè et al. 2015). However, in the present study, no effect of MK7 alone on osteoblast 

mineralization occurred in either co-culture. This could be due to the lower treatment concentration 

of MK7 used in present study (18.5 nM) as compared to the concentrations used in past-published 

studies (10-7 to 10-5 M) (Yamaguchi, Sugimoto et al. 2001, Atkins, Welldon et al. 2009, Yamaguchi 

and Weitzmann 2011, Gigante, Brugè et al. 2015) or that the treatment duration was not long 

enough to allow for the osteoblast-osteocyte transition.  

The stimulatory effect of vitamin D3 on active calcium and phosphate absorption and 

uptake into bone and overall homeostasis is well-established (Lips 2006) and past studies 

demonstrate a complex relationship between vitamin D and osteoblasts. In our study, no effect of 

vitamin D3 alone on osteoblast differentiation occurred in either co-culture, even though other 

studies demonstrate the presence of the vitamin D receptor (VDR) and the protein disulfide 

isomerase family A member 3 receptor (Pdia3R) (Chen, Dosier et al. 2013) in osteoblasts, which 

allows for the direct action of vitamin D3 on osteoblast differentiation, proliferation and 

mineralization (Anderson, Lam et al. 2013, Yang, Atkins et al. 2013). Vitamin D3 inhibits 

osteogenic genes such as COL1A1 and ALP expression in pre-osteoblasts and enhances their 

expression in the late differentiation stage in osteoblasts. The effect of vitamin D3 during the later 

stage of bone formation is also demonstrated by inducing the osteoblast to osteocyte transition and 

regulation of key genes such as FGF23 and DMP1 that stimulates osteocyte mineralization 



 

137 

(Anderson, Lam et al. 2013, Kogawa, Findlay et al. 2013). However, for vitamin D3, the magnitude 

of its osteogenic effect depends on the duration of exposure, dosage as well as the origin and 

maturation stage of osteoblasts (Anderson, Lam et al. 2013, Yang, Atkins et al. 2013). Perhaps, 

our study conditions were different than others’ in these aspects and explains why no increases in 

calcium deposition following exposure to vitamin D3 occurred in the MOTS. Another explanation 

could be that combination of vitamin D3 with other factors like MK7 (vitamin K2) may increase 

vitamin D3’s effects. This idea is supported by Gigante et al. who rationalized that co-

supplementation with MK7 enhances vitamin D3- regulated osteogenic gene expression and 

differentiation of human MSCs. MK7 also maintains an optimum balance between the induction 

and carboxylation of osteocalcin, required for its action on the extracellular matrix (ECM) 

(Gigante, Brugè et al. 2015). These data further support our findings where the individual 

compounds showed little or no significant mineralization effect; however, when combined, their 

effects maximized even when they were used at their lowest concentrations.  

The role of these compounds on osteoclast formation and activity is emerging. Little 

evidence is available on melatonin’s effect on osteoclasts; however, others have shown that 

melatonin produces an inhibitory effect on RANKL-mediated osteoclastogenesis perhaps due to 

increases in OPG mRNA and protein expression in osteoblasts (Koyama, Nakade et al. 2002, 

Maria and Witt‐Enderby 2014). These melatonin-mediated increases in OPG would block 

osteoclastogenesis by acting as a RANKL decoy receptor (Gasser and Kneissel 2017).  

Strontium ranelate prevents osteoclast differentiation via the OPG/RANKL/RANK 

pathway and resorption activity by disrupting the organization of the actin cytoskeleton (Bonnelye, 

Chabadel et al. 2008, Atkins, Welldon et al. 2009, Saidak and Marie 2012). Regarding strontium 

citrate, no such data are available regarding its effects on osteoclasts and MK7 negatively regulates 
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osteoclast survival and activity by inhibiting RANKL-mediated NFκB activation (Yamaguchi and 

Weitzmann 2011).  

Vitamin D3, in contrast, stimulates osteoclast differentiation from monocytes (Bar-Shavit, 

Teitelbaum et al. 1983) and directly regulates bone resorption by activating human RANKL genes 

in osteoblasts through vitamin D responsive elements (VDREs) (Kitazawa, Kajimoto et al. 2003). 

These effects of vitamin D occur by increasing RANKL and decreasing OPG expression on 

osteoblasts and stromal cells (Kogawa, Findlay et al. 2010). Circulating levels of vitamin D3 

precursors [25(OH)D3] and its metabolism to 1,25(OH)2D3 by osteoclast precursors are important 

regulators that optimize osteoclast differentiation via effects on gene expression and by promoting 

the coupling of bone resorption to formation (Kogawa, Findlay et al. 2010, Anderson, Lam et al. 

2013).  

The effect of MSDK on osteoclast differentiation and function was measured by TRAP 

because TRAP is an well-known marker of terminally differentiated osteoclasts (Angel, Walsh et 

al. 2000, Halleen, Tiitinen et al. 2006). Osteoclast differentiation was inhibited following treatment 

with MSDK-supplemented osteogenic media in transwell co-cultures, but not in layered co-

cultures even though MSDK inhibited resorption pit formation activity in layered co-cultures. 

Osteoclasts, grown as layered co-cultures, were strongly inhibited in the presence of osteogenic 

(Os+) medium alone and in combination with MSDK. This could be due to the direct cell-to-cell 

contact or by release of paracrine factors between differentiating osteoblasts and osteoclasts 

leading to co-regulation of each other’s state of differentiation and activity in these two co-culture 

systems.  

The discrepancy in the robustness of MSDK’s effects on osteoblast and osteoclast 

differentiation, as observed between the culturing conditions (i.e., greater increase in transwell 
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osteoblast differentiation vs. layered; greater decrease in layered osteoclast differentiation vs. 

transwell), could be explained by the types of signaling pathways activated in both bone cells. For 

example, osteoblast formation may be favored in both co-cultures; however, the mechanisms may 

be very different especially in how osteoclasts modulate osteoblast differentiation. In transwell co-

cultures, paracrine factors (e.g., IGF I and II, FGF, TGF 1 and 2, BMPs 2, 3, 4, 6 and 7 and PDGF) 

released by osteoclasts may favor osteoblast formation through these distinct signaling cascades 

whereas in the layered co-culture model, with both cells in direct contact, osteoclasts may mediate 

osteoblast differentiation through the contact-dependent ephrin signaling pathway. The contact-

dependent ephrin signaling pathway can, in turn, negatively regulate osteoclastogenesis 

irrespective of their resorbing activity. As ephrin signaling requires close contact between 

osteoclasts and osteoblasts, this inhibition was not observed in the transwell co-culture. Another 

mechanism to explain these differences could be due to osteoblast-derived osteoclast inhibitory 

lectin (OCIL), which is a type II transmembrane C- type lectin, that can suppress both osteoclast 

differentiation (Kartsogiannis, Sims et al. 2008, Matsuo and Irie 2008) and osteoblast 

differentiation and function in vitro (Nakamura, Ly et al. 2007, Matsuo and Irie 2008); this 

pathway helps to maintain normal bone physiology. In our layered co-culture model, the cell-to-

cell contact between osteoblasts and osteoclasts may stimulate OCIL to inhibit the differentiation 

of osteoblasts, osteoclasts or both resulting in an overall diminished state of differentiation.  

Another possibility could be explained by the presence of vitamin D3, which can stimulate 

osteoclastogenesis from monocytes (Bar-Shavit, Teitelbaum et al. 1983). Therefore, even if the 

other components of MSDK (i.e., melatonin, strontium citrate and MK7) are inhibiting 

osteoclastogenesis, some of these effects may be masked by vitamin D3’s stimulatory effects on 

osteoclast differentiation. These data suggest that MSDK neither completely inhibited bone 
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resorption like other conventional therapies, nor only assisted bone formation. Rather, it may be 

working to switch the balance between bone-forming osteoblasts and bone-resorbing osteoclasts 

towards equilibrium to maintain healthy bone remodeling. These data are consistent with the 

findings of our MOTS clinical trial where postmenopausal osteopenic women taking MSDK 

supplementation over one year had rebalanced serum bone marker (CTx:P1NP) turnover where 

increases in serum P1NP was observed in the MSDK group, while steady levels of CTx were 

maintained to keep bone remodeling (i.e. osteoblast:osteoclast ratios) balanced.  

MSDK triggered osteoblasts to produce more OPG and less RANKL in the transwell co-

cultures even though the individual components (i.e., melatonin, strontium citrate, vitamin D3 and 

K2) produced variable effects on OPG and RANKL. Melatonin and strontium ranelate positively 

regulate OPG and negatively regulate RANKL in osteoblasts (Koyama, Nakade et al. 2002, Atkins, 

Welldon et al. 2009, Saidak and Marie 2012) while vitamin K2 increases the expression of both 

OPG and RANKL in osteoblastic MC3T3E1 cells (Katsuyama, Otsuki et al. 2005). The relative 

expression of OPG and RANKL in osteoblasts is a critical transition point for balancing bone 

mineralization (Boyce and Xing 2008). MSDK was more likely balancing osteoblast and osteoclast 

activities initially through its differentiating effects on osteoblasts; these mature osteoblasts then 

begin to express OPG to modulate RANKL-mediated osteoclastogenesis to maintain appropriate 

bone remodeling. This concept is corroborated in the MOTS demonstrating a steady level of CTx 

throughout MSDK treatment. This is also consistent with what was observed for RANKL 

expression in osteoblasts in response to MSDK, that is, levels were significantly decreased in 

response to the osteogenic media (Os+) and remained low even in the presence of MSDK. Because 

RANKL production is largely regulated by immature osteoblasts (Atkins, Kostakis et al. 2003), 
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maturation of osteoblasts in response to MSDK would result in less RANKL production as 

observed in our study.  

Besides being reduced as osteoblasts mature, RANKL can go through various stages of 

processing to promote osteoclast activation which is generated from the ectodomain shedding of 

membrane-bound RANKL via the action of matrix metalloproteases 3, 7 and 14 and ADAM 10, 

17 (or TACE) and 19 (Nakashima, Kobayashi et al. 2000, Wada, Nakashima et al. 2006). In our 

study, the addition of MSDK in osteogenic (Os+) medium decreased the 25kDa RANKL peptide 

fragment in transwell co-culture but not in layered co-culture; this transwell effect of MSDK is 

indicative of a facilitation of ADAM 10’s catalytic activity (Hikita, Yana et al. 2006). In the 

transwell co-cultures, formation of the 24kDa RANKL peptide was inhibited in presence of 

osteogenic (Os+) medium alone; no further decrease was observed with MSDK. The modulation 

of the 24KDa fragment by Os+ in transwell osteoblasts indicates that MMP 14 may be playing 

some type of role in osteoblastogenesis and osteoclastogenesis (Hikita, Yana et al. 2006).  

The addition of MSDK did not further affect the levels of secreted OPG and RANKL as 

measured in the cell culture media. In fact, osteoblastic differentiation and maturation correlated 

more with an increase in secreted RANKL than with secreted OPG. Similar effects were observed 

with parathyroid hormone (PTH)—the only bone anabolic agent currently available—which 

increases sRANKL secretion from MC3T3-E1 cells, while not affecting sOPG, resulting in 

reduced sOPG: sRANKL ratios (Coetzee, Haag et al. 2007).  

The role of membrane-bound and secreted RANKL in osteoclastogenesis has not been fully 

characterized. Nevertheless, studies show that the membrane-bound form of RANKL is more 

efficient at inducing osteoclastogenesis than the soluble form (Nakashima, Kobayashi et al. 2000). 

Therefore, the inhibitory effect of MSDK on osteoclastogenesis could possibly be attributed by 
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the regulation of membrane bound OPG and RANKL, rather than secreted OPG and RANKL. 

This, however, does not explain MSDK’s effects on osteoclastogenesis in the layered co-cultures. 

Other variables like direct interference of osteoclasts on osteoblast functionality may play a role 

because a less robust increase in osteoblast differentiation by MSDK in layered co-culture may 

produce a less robust change in membrane-bound OPG and RANKL. This is supported in the 

mono-culture studies where hMSCs grown in the absence of osteoclasts had robust increases in 

both OPG and RANKL. 

Osteoblast differentiation and proliferation involve multiple signaling pathways (Raucci, 

Bellosta et al. 2008, Maria and Witt‐Enderby 2014). The present study focused on the effect of 

MSDK on MAPKs, particularly ERK1/2 and ERK5, in modulating bone cell physiology. ERK1/2 

are one of the key regulatory proteins involved in osteoblast differentiation (Ge, Xiao et al. 2007, 

Ge, Xiao et al. 2009, Matsushita, Chan et al. 2009, Greenblatt, Shim et al. 2013) and thus play 

essential roles in bone remodeling. Increased ERK1/2 signaling switches mesenchymal cell 

differentiation towards osteoblasts from chondrocytes and vice-versa. Furthermore, specific 

deletion of ERK1 and ERK2 in mouse limb mesenchyme results in low bone mineralization 

(Matsushita, Chan et al. 2009). ERK also regulates ATF4, which is a late stage mediator of 

osteoblast differentiation (Greenblatt, Shim et al. 2013). In the present study, MSDK treatment 

enhanced ERK1/2 activation by downregulating total ERK1/2 levels in both co-culture models—

transwell and layered. ERK1/2 is also expressed in osteoclasts and plays a vital role in osteoclast 

differentiation where high ERK1/2 is associated with increases in osteoclast activity (Matsushita, 

Chan et al. 2009). In layered co-cultures, which contain both osteoblastic and osteoclastic ERK1/2, 

MSDK may have increased pERK1/2 levels in both cells resulting in an increase in 

osteoblastogenesis and a decrease in osteoclastogenesis. It is more likely that MSDK increased 
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osteoblastic pERK1/2 because MSDK under these conditions inhibited osteoclasts. Previous in 

vitro studies in our lab (Radio, Doctor et al. 2006, Sethi, Radio et al. 2010) and others’ (Zhang, Su 

et al. 2010, Park, Kang et al. 2011) show that melatonin, through the activation of MT2 melatonin 

receptors on hMSC monolayers, triggers ERK1/2 signaling (Radio, Doctor et al. 2006); this leads 

to increases in osteogenic gene expression such as RUNX2, BMP2 and OC resulting in 

osteoblastogenesis (Radio, Doctor et al. 2006, Sethi, Radio et al. 2010). Ge et al showed that 

Runx2+/− mice expressing constitutively active and dominant-negative mutants of MAPK in their 

osteoblasts exhibit low clavicular and calvarial bone mass and hypomineralization (Ge, Xiao et al. 

2007). The bone mass is restored by breeding Runx2+/− mice with a constitutively active mutant 

of the MEK1 transgene bearing mice (Ge, Xiao et al. 2009). These data demonstrate a direct 

relationship between the ERK1/2 pathway and RUNX2 (Ge, Xiao et al. 2007, Ge, Xiao et al. 

2009). Strontium ranelate also enhances Runx2 expression in murine osteoblasts via the RAS/ERK 

1/2 MAPK signaling pathway (Peng, Zhou et al. 2009). Vitamin K2, at a 10 μM dose, induces 

RUNX2/Runx2 and OSTERIX/Osterix expressions in primary bone marrow stromal cells and 

MC3T3, respectively (Yamaguchi and Weitzmann 2011). The role of vitamin D3 on osteogenic 

genes expression is species specific, as it increases BGLAP, SPP1, RUNX2 gene expression in 

human primary osteoblasts while producing inhibitory effects on murine osteoblasts (Kogawa, 

Findlay et al. 2010).  

In our study, MSDK exposure induced transwell osteoblast RUNX2 expression beyond 

that induced by Os+ alone; however, in layered co-cultures, MSDK produced no additional 

increases in RUNX2 expression. Based on previous studies (Radio, Doctor et al. 2006, Sethi, Radio 

et al. 2010) and the present study, we propose that the MSDK-mediated increases in RUNX2 

expression and osteoblast differentiation from hMSCs in these co-cultures is occurring, in part, via 
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the ERK1/2 pathway. Because other pathways, such as p38, JNK, BMPs, canonical Wnt, also 

regulate RUNX2 transcriptional activity (Franceschi and Xiao 2003, Gaur, Lengner et al. 2005, 

Rodríguez-Carballo, Gámez et al. 2016), these pathways cannot be ruled out and require further 

investigation.  

Even though the role of ERK1/2 in osteoblastic differentiation has been extensively 

studied, little is known about the role of ERK5 in osteoblast physiology. ERK5 is well known for 

regulating various cellular processes including proliferation, differentiation, transformation and 

survival in certain cells types under certain conditions; however, most studies focused on its role 

in cardiovascular development and neuronal differentiation (Nishimoto and Nishida 2006, Drew, 

Burow et al. 2012). Some studies have shown an involvement of ERK5 in fluid shear stress-

mediated cell proliferation in osteoblasts (Li, Ma et al. 2012, Bo, Bin et al. 2016). Kaneshiro et al 

recently demonstrated that the MEK5/ERK5 suppresses osteoblast differentiation, but promotes 

osteoblastic cell proliferation in pre-osteoblastic MC3T3-E1 and bone marrow stromal cells 

(Kaneshiro, Otsuki et al. 2015). This is consistent with what was seen in our hMSC mono-culture 

studies where both total and phospho-ERK5 levels increased. However, in contrast to the 

osteoblast mono-cultures, both total and phospho-ERK5 levels decreased in transwell osteoblasts 

following exposure to Os+ alone and in the presence of MSDK possibly to allow for osteoblast 

differentiation. This is consistent with the process of osteoblast differentiation where stages of 

rapid cell proliferation are followed by stages of low proliferation and high differentiation. The 

presence of osteoclasts in this co-culture may also be playing a role on osteoblast differentiation. 

MSDK, added in combination with osteogenic (Os+) medium, slightly but significantly increased 

phospho-ERK5 levels in transwell osteoblasts perhaps to increase the number of osteoblasts before 

they enter a stage of differentiation.  
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Even though ERK5 inhibits osteoblast differentiation, it is shown to produce a stimulatory 

effect on osteoclast differentiation mediated via M-CSF and c-Fos induction (Amano, Chang et al. 

2015). In the present study, MSDK exposure did not affect transwell osteoclast ERK5 expression 

even though osteoclast differentiation was decreased. Failure to inhibit the ERK5 pathway in 

osteoclasts supports the fact that ERK5 in transwell osteoclasts may not be involved in MSDK-

mediated inhibition of osteoclastogenesis; however, this can only be verified by use of MEK5-

specific inhibitors. The lack of an MSDK effect on ERK5 expression in layered co-cultures may 

be attributed to the fact that both osteoblasts and osteoclasts express ERK5; MSDK may be 

producing variable effects on ERK5 in osteoblasts and osteoclasts masking any increases or 

decreases that may have occurred individually in the cells. Further downstream pathways as well 

as related transcription factors are needed to be evaluated to get a clearer idea about the 

involvement of ERK1/2 and ERK5 pathways in MSDK-mediated modulation of bone cell activity. 

Integrin-mediated cell–cell and cell–matrix interactions (via cytoskeletal organization and 

signal transduction) are key requirements for bone cell proliferation, differentiation, migration and 

apoptosis as well as skeletal development and homeostasis (Clover, Dodds et al. 1992, Gronthos, 

Stewart et al. 1997, Horton and Helfrich 2000). Osteoblasts primarily express β1 and β5 integrins, 

depending on the type of osteoblast lineage, stage of differentiation, and culture conditions 

employed. Usually, differentiated osteoblasts have increased expression of fibronectin receptor 

α5β1 followed by collagen binding integrin α2β1 expression but at a much lower level (Horton 

and Helfrich 2000). In the present study, INTEGRIN β1 expression in transwell osteoblasts was 

decreased in response to osteogenic (Os+) medium, which remained low even in the presence of 

MSDK. In layered co-cultures, however, exposure to Os+ medium increased INTEGRIN β1 levels, 

which remained high when MSDK was added. These differences between co-cultures could be 
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explained by the fact that unlike transwell co-cultures, layered co-cultures offer a direct cell-to-

cell communication for which integrin expression is required. Secondly, in the layered co-culture, 

levels may be higher because INTEGRIN β1 levels were being measured in both the osteoblast 

and osteoclast; osteoclasts and their precursors express different subunits of INTEGRIN β1 in 

order to regulate actin ring reorganization and bone resorption (Clover, Dodds et al. 1992, Helfrich, 

Nesbitt et al. 1996, Rao, Lu et al. 2006). Even though INTEGRIN β1 plays an important role in 

osteoblast differentiation (Horton and Helfrich 2000, Mizuno, Fujisawa et al. 2000), MSDK 

treatment showed no effect on INTEGRIN β1 expression in either co-culture, suggesting that either 

MSDK’s activity occurs via a non-integrin dependent mechanism or that the peaks and troughs 

observed following Os+ exposure for the layered and transwell co-cultures, respectively, reached 

their maximums and no further effects by MSDK could be achieved.  

RANKL-RANK mediated activation of the NFκB signaling pathway in osteoclasts plays a 

crucial role in osteoclast differentiation and bone resorption (Jimi, Aoki et al. 2004, Wada, 

Nakashima et al. 2006, Boyce and Xing 2008). In osteoblasts, high NFκB is associated with low 

bone mass and an inhibition of osteoblast differentiation (Chang, Wang et al. 2009, Marie 2015). 

Strontium ranelate and vitamin K2 produce suppressive effects on NFκB resulting in an increase 

in osteoblastogenesis and an inhibition of osteoclastogenesis (Yamaguchi and Weitzmann 2011, 

Yamaguchi and Weitzmann 2012). Melatonin is found to inhibit NFκB as part of its anti-

inflammatory effect on renal cells (Li, Nickkholgh et al. 2009). These findings prompted us to 

determine if MSDK’s inhibitory effect on osteoclastogenesis was mediated via NFκB. In both 

transwell and layered osteoblasts, levels of NFκB increased in the presence of osteogenic (Os+) 

medium, which was not further enhanced by MSDK. These data suggest that MSDK did not induce 

osteoblastogenesis or inhibit osteoclastogenesis via NFκB signaling.  
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From here, we shifted our focus towards the effect of MSDK on the regulators of energy 

metabolism. Metabolic regulators such as peroxisome proliferator-activated receptor gamma 

(PPARγ), glucose transporter 4 (GLUT4) and insulin receptor beta (IRβ) expressed in osteoblasts 

not only regulate glucose metabolism but each play an important role in osteoblast and osteoclast 

function (Akune, Ohba et al. 2004, Lecka-Czernik and Suva 2006, Takada, Suzawa et al. 2007, 

Ferron, Wei et al. 2010, Li, Leslie et al. 2013). Insulin receptor signaling in osteoblasts has been 

shown to play a vital role in osteoblast-mediated effects on osteoclastic bone resorption (Ferron, 

Wei et al. 2010). In our study, IRβ was assessed in both co-cultures—transwell and layered—and 

only in transwell osteoblasts was IRβ modulated. Specifically, both Os+ alone or in combination 

with MSDK decreased IRβ in transwell osteoblasts, which was not further decreased in the 

presence of MSDK probably due to a bottoming effect. The decreases in IRβ in transwell 

osteoblasts correlate with high OPG, which is consistent with insulin’s function in osteoblasts, that 

is, to modulate bone resorption through OPG. In osteoblasts with normal insulin signaling, bone 

resorption is high due to a lack of OPG expressed in the osteoblast, thus increasing RANKL-

mediated osteoclast activity (Ferron, Wei et al. 2010). In our study, MSDK decreased transwell 

osteoblast IRβ, increased OPG, and decreased TRAP; this would explain the decrease in 

osteoclastogenesis in response to MSDK.  

PPARγ is a key regulator in adipogenesis, energy expenditure, and lipid, glucose, and 

insulin metabolism. In bone, high levels of PPARγ may cause bone loss by switching the fate of 

mesenchymal stem cells towards adipogenesis at the expense of osteoblastogenesis (Akune, Ohba 

et al. 2004); this results in an increase in bone marrow fat content. A PPARγ insufficiency increases 

bone mass by enhancing osteoblastogenesis (Akune, Ohba et al. 2004, Lecka-Czernik and Suva 

2006, Takada, Suzawa et al. 2007). PPARγ also supports osteoclastogenesis by stimulating 
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RANKL production (Akune, Ohba et al. 2004, Lecka-Czernik 2010), which may further contribute 

to bone loss by activating osteoclasts. Melatonin and strontium ranelate directly inhibit adipogenic 

differentiation of hMSCs and murine MSCs, respectively, by suppressing PPARγ expression in 

favor of osteoblastogenesis (Zhang, Su et al. 2010, Saidak, Haÿ et al. 2012). PPARγ signaling is 

mainly involved in the earlier stages of osteogenesis and adipogenesis and does not affect cell 

function (Akune, Ohba et al. 2004). Therefore, the stimulatory effect of Os+ medium on PPARγ 

expression in either co-culture could be explained by the fact that when the stem cell progenitors 

are differentiated into osteoblasts, the osteogenic media is enhancing PPARγ expression to support 

energy metabolism. Even though MSDK addition did not affect PPARγ levels in the transwell co-

cultures, it significantly decreased Os+-induced PPARγ levels in layered co-cultures. Because 

osteoclasts were in direct contact with osteoblasts in this culture, reduced PPARγ expression by 

MSDK could reduce the energy capabilities of osteoclasts preventing their differentiation and 

reducing their activity. MSDK also decreased Os+-induced GLUT4 expression in layered 

osteoblasts, but not in transwell osteoblasts, similar to its effect on PPARγ. A positive correlation 

between PPARγ and GLUT4 exists. Specifically, the PPARγ agonists, rosiglitazone and 

pioglitazone, enhance GLUT4 mRNA in diabetes mellitus type 2 (DM2) muscle tissue and a loss 

of PPARγ results in a decrease in GLUT1 and GLUT4 function in adipocytes (Armoni, Harel et 

al. 2007, Liao, Nguyen et al. 2007). GLUT4 mRNA levels increase during osteoblast 

differentiation (Li, Leslie et al. 2013). In addition to GLUT4, GLUT1 also plays an important role 

in bone formation and is 100 fold more abundant than other glucose transporters in bone cells 

(Wei, Shimazu et al. 2014). Therefore, no effect of MSDK on GLUT4 could imply that a potential 

role of insulin independent GLUT1 pathway in MSDK’s action. However, further analysis with 

GLUT1 is required to reach to a plausible conclusion. Osteoblastogenesis requires a significant 
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amount of energy, which could explain why both PPARγ and GLUT4 expression increased when 

exposed to Os+ alone. Even more importantly, though, were the findings that MSDK, in 

combination with Os+, significantly reduced their expression consistent with MSDK’s stimulatory 

effect on osteoblastogenesis and inhibitory effect on osteoclastogenesis.  

These findings also provide a potential mechanism for the increase in bone formation and 

stabilization of weight in postmenopausal osteopenic women taking MSDK as shown in the 

MOTS; and for the improvement in femoral bone mineral density (Amstrup, Sikjaer et al. 2015) 

and decreases total fat mass (Amstrup, Sikjaer et al. 2015) observed in postmenopausal osteopenic 

women taking melatonin in the MelaOst trial. These findings were underscored by another study 

showing that melatonin induces osteoblast differentiation from human adipose-derived 

mesenchymal stem cells (Maria, Swanson et al. 2017).  
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Chapter 4: Strength and limitations 

Limitations to this study include low number of subjects (n=22) and lack of a diverse 

cohort, which made it difficult to generalize the MOTS to a larger heterogeneous population of 

osteopenic women. Low number of subject could be a potential reason for not getting some 

possible significant differences between groups, for example, a definite effect of MSDK on hip 

BMD could be revealed with high “n”. Besides, ethnic variation may play a role in MSDK’s effects 

on bone. For example, MOTS cohort only contained Caucasian women, all of which were well-

educated, affluent and health conscious. Therefore, the study outcome does not necessary depict 

the bone loss scenario and MSDK’s effect on the women from another ethnicity or following a 

different lifestyle. Potential seasonal/diurnal effects may have occurred due, in part, to a revolving 

recruitment paradigm. This was minimized by having the participants come to the Center for 

Pharmacy Care at the same time of day throughout the entire year. Also, when stratified by season, 

no significant differences in bone marker turnover was observed in MOTS participants enrolled in 

the fall vs. the spring (see Appendix VII). Due to limited resources, we could not assess the 

exclusive effect of each micronutrient alone on primary and secondary endpoints. For a similar 

reason, bone histomorphometric analysis was not performed and so the effect of this therapy on 

bone microarchitecture and quality could not be assessed.  

There are several strengths to this study. The translational approach allows this study to 

not only assess the clinical effect of MSDK in postmenopausal osteopenia, but also evaluated the 

underlying mechanisms governing those effects enhancing the relevance and lending support to 

the clinical findings. Although small, the clinical component of the MOTS was effectively 

designed as a double-blinded, randomized and placebo-controlled trial to avoid statistical bias. 

Allocation concealment was strictly followed throughout the study. Extensive inclusion and 
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exclusion criteria ensured a homogeneous group of study population with no competing conditions 

that could interfere with the outcomes. Unique to this study is that health-related QOL was assessed 

alongside bone health measures in this postmenopausal cohort to provide a well-balanced study 

assessing objective and subjective measures. The in vitro component of the MOTS was also 

constructive to assess MSDK effects at a mechanistic level and supported the clinical findings.  
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Chapter 5: Conclusions  

In the Melatonin-micronutrients Osteopenia Treatment Study (MOTS; NCT01870115), we 

investigated whether a novel combination of melatonin and three other natural bone-protective 

micronutrients: strontium citrate, vitamins D3 and K2 could improve bone health without affecting 

or even improving health related QOL in postmenopausal osteopenic women. The MOTS is among 

the first randomized clinical trials to utilize melatonin to prevent bone loss in a postmenopausal 

cohort by intervening at a critical time during a woman’s life, where susceptibility to bone loss is 

high. This study utilizes a safe, complementary combination therapy MSDK based on the 

hypothesis of chronosynergy—a novel treatment approach using several condition-targeted bone 

restorative agents with melatonin to reverse bone loss hopefully reducing the need for osteoporosis 

medications later. With continued study and validation, MSDK could become an early treatment 

option in the time-course for managing postmenopausal and age-related bone loss; and could 

potentially play a great role in changing the course of global epidemic of osteoporosis by reducing 

its rising incidence, tremendous health and medical system burden and high costs of the current 

status-quo of osteopenia treatment management.  

While melatonin therapy alone was protective to bone in a similar cohort (i.e. 

postmenopausal women with osteopenia) in MelaOst (Amstrup, Sikjaer et al. 2015) or in healthy 

perimenopausal cohort in MOPS (Kotlarczyk, Lassila et al. 2012), there were differences between 

the MOPS and MelaOst studies and the MOTS. For example, in the MelaOst trial, one-year 

supplementation with melatonin (1 to 3mg/day) dose-dependently increases femoral neck BMD 

by 1.4% sites in postmenopausal osteopenic cohort (n=81), but does not affect BMD at other sites 

(Amstrup, Sikjaer et al. 2015). In the MOTS, melatonin (5mg) in combination with other three 

micronutrients: strontium citrate (450mg), vitamin D3 (2000IU) and vitamin K2 (60mcg) per day 
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(MSDK) significantly increases lumbar spine BMD by 4.3% and left femoral neck BMD by 2.2%, 

with a trend (p=0.069) towards an increase in hip BMD from baseline after one year in a similar 

postmenopausal osteopenic cohort (n=22). Consequently, the 10-year vertebral fracture risk 

probability is decreased by 6.48% with MSDK, as compared to 10.8% increase in placebo. MSDK 

also reduces bone marker turnover (CTx:P1NP ratios) in postmenopausal osteopenic women 

primarily by increasing the bone formation marker P1NP, and maintaining the bone resorption 

marker CTx at a steady level. Although melatonin treatment for 6 months renormalizes bone 

marker turnover (NTx:OC) in the healthy perimenopausal women in the MOPS (Kotlarczyk, 

Lassila et al. 2012), no such effects on bone maker turnover occur in postmenopausal osteopenic 

women in the MelOst (Amstrup, Sikjaer et al. 2015). Melatonin treatment decreases total fat mass 

and increases lean body mass by 2.6% compared to placebo in the MelaOst trial (Amstrup, Sikjaer 

et al. 2015); this did not occur with MSDK treatment. Although a significant decrease in the 

variation of weight change over the course of the MOTS occurred in women taking MSDK but 

not in women taking placebo, suggesting that there was some effect of MSDK on metabolic 

parameters in a similar cohort as the MelaOst. Quality of life in both the MOPS and MOTS 

improved; however, what was improved was unique to each trial. For example, melatonin 

improves QOL in healthy perimenopausal women in the MOPS by improving their physical 

symptoms of menopause (Kotlarczyk, Lassila et al. 2012), and by improving mood and reducing 

sleep interruption (Maria, Samsonraj et al. 2017). In the MelaOst trial, melatonin improves sleep 

quality in an insomniac subgroup of participants but is without effect on overall QOL or sleep in 

this cohort (Amstrup, Sikjaer et al. 2015). Whereas, in the MOTS, MSDK supplementation 

exhibited beneficial effects on the QOL in postmenopausal osteopenic women, by apparently 

lessening the sexual symptoms of menopause (not significant vs. placebo) and by showing 
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improvements with respect to sleep. All these findings propose that that melatonin may be a better 

choice for bone loss prevention in healthy middle-aged women transitioning through menopause 

and MSDK for the early stage bone loss treatment in postmenopausal women.  

In vitro studies showed that MSDK may be modulating osteoblast and osteoclast function 

via the release of the paracrine factors, OPG and RANKL, from osteoblasts. MSDK showed an 

increase in osteoblast differentiation and mineralization in favor of bone formation which was 

associated with an increase in RUNX2 expression. Increased pERK1/2:tERK1/2 and decreased 

total ERK5 levels may be contributing to MSDK-mediated osteoblastogenesis; however, future 

research is warranted to confirm their role by use of inhibitors selective for MEK1/2 and MEK5. 

Increased osteoblast differentiation by MSDK led to an increase in the ratio OPG:RANKL 

production in osteoblasts by increasing OPG and decreasing RANKL expression; these changes 

in OPG and RANKL would result in an increase in osteoblast differentiation and in the inhibition 

in osteoclast differentiation, Because MSDK treatment did not completely inhibit 

osteoclastogenesis, we conclude that MSDK is favoring bone remodeling to proceed towards 

equilibrium by allowing osteoclastogenesis to some extent since balanced bone remodeling is 

essential to making and maintaining healthy bone.  

The in vitro part of this translational study also describes novel signaling cascades (Figure 

33) underlying MSDK’s effects on osteoblastogenesis and osteoclastogenesis that include 

pERK1/2, pERK5, RUNX2, PPARγ and GLUT4. By comparison and noted in Figure 33, 

melatonin shows similar effects on osteoblastogenesis and osteoclastogenesis to MSDK by 

decreasing RANKL leading to an increase in the ratio of OPG:RANKL, by increasing pERK1/2 

and RUNX2, and by decreasing NFκB, PPARγ and GLUT4–all of these effects were dependent 

upon the type of co-culture (Maria, Samsonraj et al. 2017). The differences in the clinical outcomes 
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using melatonin alone (MOPS, MelaOst) versus a combination therapy (MSDK in the MOTS) 

suggests that their unique mechanistic actions, especially on osteoclasts, may direct use of 

melatonin for prevention of bone loss in men and women at risk and at the beginning stages of 

osteopenia (T-scores close to -1) and use of MSDK in later stages of osteopenia (T-scores < -1.5). 

 

Figure 33. Potential mechanism underlying MSDK effects on bone formation. 

Overall, these in vitro studies support our MOTS clinical trial findings demonstrating that 

MSDK reduces bone turnover rate by increasing P1NP expression, while maintaining steady levels 

of CTx. MSDK’s effects on osteoblastogenesis was consistent with the increase in bone mineral 

density that was observed in MOTS clinical study. Results from this study underscore the 

complexity but therapeutically relevant effects of MSDK on bone cell development and activity 

making MSDK a viable and potential alternative therapy for managing and/or treating osteopenia 

in postmenopausal women. However, a large-scale, multicenter RCTs testing the efficacy of 

MSDK to treat osteopenia are warranted to further clarify the effectiveness of MSDK in the overall 
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osteopenic population.  
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Chapter 7: Appendix  

I. The study information in ClinicalTrials.gov  
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II. Materials used for study advertisements 

A. Flyer 
 

 

  

The early stage of 

osteoporosis is called 

osteopenia

If  left untreated, 

osteopenia can lead to 

brittle bone disease called 

osteoporosis

The	study	will	be	conducted	at	Duquesne	University	by	qualified	
health	care	professionals

Duquesne University
IRB – Protocol #13-59
Approval date: May 23,2013
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B. Newspaper and DU daily articles 

 

Article URL: http://www.post-gazette.com/news/health/2014/03/04/Bone-loss-study-seeks-20-
women-volunteers/stories/201403040055 
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Article URL: http://triblive.com/news/allegheny/4448150-74/bone-duquesne-loss 
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Article URL: 
https://www.naturopathic.org/article_content.asp?edition=101&section=154&article=826 
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Article published at Senior Living of Pittsburgh Catholic on Friday, August 16, 2011 
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Article URL: http://www.duq.edu/news/clinical-trial-at-duquesne-university-to-examine-natural-

bone-treatment 
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III. Initial visit form 
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IV. Study medication label 
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V. Bone density T-scores at baseline and at the end of the treatment 

 

Figure V. Bone mineral density in the left femoral neck, total left hip and lumbar spine area was 

measured via DXA and Achilles (n=11 per group). Each dot in scatter pot represents the bone 

mineral density t-score of individual participant at baseline and at month 12, in the (A) left femoral 

neck, (B) total left hip, (C) lumbar spine (L1-L4) and (D) heel area, respectively for placebo (open 

bar) and MSDK (closed bars). *p ≤ 0.05 and ***p ≤ 0.001 vs. placebo for changes in T-scores 

from baseline to month 12. 
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VI. Treatment effects on bone marker changes in every six months 
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Figure VI. Bone formation marker, (A) total procollagen type 1 amino-terminal propeptide (P1NP) 

and (B) osteocalcin (OC; both intact and N-terminal mid-fragments); and (C) bone resorption 

marker Collagen Type I C-Telopeptide (CTx) were measured at months 0, 6, and 12, respectively 

via ELISA (n=11 per group). Each dot in scatter pot represents the mean (± S.E.M.) change in 

bone marker of a participant from baseline to month 12 and then in every six months (baseline to 

month 6, month 6 to month 12), respectively for placebo (open dots) and MSDK (closed dots). *p 

≤ 0.05 and **p ≤ 0.01 vs. placebo, one-way ANOVA followed by Bonferroni post hoc t-test. 

 

 

 

 

 

 



 

187 

VII. Bone markers (P1NP, OC and CTx) of participants enrolled in fall and spring  

 

Figure VII. Bone markers, (A) total procollagen type 1 amino-terminal propeptide (P1NP) and (B) 

osteocalcin (OC; both intact and N-terminal mid-fragments); and (C) bone resorption marker 

Collagen Type I C-Telopeptide (CTx) of participants enrolled in fall (n=14, closed dots) and spring 

(n=8, open dots), respectively. *p ≤ 0.05 vs. placebo, unpaired two tailed t-test with Welch’s 

correction.  
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