
Saiana P. O. N. / Int. Journal of Information Technology and Business, Vol. 1, No. 1 (2018), pp. 10-15

 10

Parallel Counting Sort: A Modified of Counting Sort Algorithm

Pratyaksa Ocsa Nugraha Saiana

a Fakultas Teknologi Informasi, Universitas Kristen Satya Wacana

 Corresponding authors

e-mail addresses : pratyaksa.ocsa@uksw.edu

1. Introduction
Sorting is one of many classic problems in a

computer engineering. Although sorting usually

being used in computer engineer, but sorting used in

another field of study too. For example, sorting can

be implemented in education [1][2], in biology [3], or

even in economy [4][5] field of study. In computer

engineering itself, sorting process can be used in

many ways, such as network engineering [6][7], big

data process [8][9], or in database process [10].

An algorithm is an object which created with

a purpose to solve any problem in given

circumstances [11]. Basically, a sorting algorithm is

an algorithm to do the sorting process. Sorting

algorithms had been created by many researchers. As

for now, there are many algorithms already presented

by them, such as Bubble Sort [12], Quick Sort,

Merge Sort [13] and many more. Like two sides of a

coin, that algorithms always have an advantage and a

disadvantage for each one of them.

While many algorithms already presented,

deciding which algorithm to be used is not that easy

[14]. There are many consequences when choosing

the wrong one. It can affect memory usage and

increase the execution time of the application. Not

only that, choosing which hardware to do the sorting

process is something crucial too. Research [15] tells

there is a significant difference between using

high-end Central Processing Unit (CPU) and Graphic

Processing Unit (GPU). GPU able to run 20 times

faster than high-end CPU, but usually GPU is more

expensive than high-end CPU.

In 2009, Cormen et al. present a new sorting

algorithm in their book. The algorithm didn’t use

comparing method to get the sorted list. Instead, the

algorithm will count the appearance of the value in

the list. Therefore, the algorithm called Counting

Sort algorithm [16]. Like any sorting algorithm,

Counting Sort will have a list (usually an array) of

integer number or character and the algorithm will

try to arrange it in any given order (ascending or

descending). Counting Sort assumes every element in

the array contain a number from zero to n where n is

a positive integer number. It makes counting sort

algorithm can’t sort both negative and positive

number in one array. In another research [17], it can

be solved by dividing the negative, zero, and positive

number into different arrays and then the arrays will

be sorted one by one. Then, these arrays will merge

into one big array which will have a sorted number.

Later in this paper, this algorithm called Modified

Counting Sort algorithm.

This paper tells another modification of the

Modified Counting Sort algorithm. The main idea of

the algorithm coming from Idrizi et al.’s algorithm

[17]. Based on that algorithm, this experiment trying

to enhance and optimize it more. Instead of sorting

the array one-by-one, this algorithm will sort all of

them simultaneously using more than one threads.

This algorithm should reduce the execution time of

Abstract : Sorting is one of a classic problem in computer engineer. One

well-known sorting algorithm is a Counting Sort algorithm. Counting Sort had one

problem, it can’t sort a positive and negative number in the same input list. Then,

Modified Counting Sort created to solve that’s problem. The algorithm will split the

numbers before the sorting process begin. This paper will tell another modification of

this algorithm. The algorithm called Parallel Counting Sort. Parallel Counting Sort

able to increase the execution time about 70% from Modified Counting Sort,

especially in a big dataset (around 1000 and 10.000 numbers).

International Journal of Information Technology and Business

http://ejournal.uksw.edu/ijiteb

Keywords :
Counting Sort,

Parallel,

A Modified Algorithm

IJITEB
Vol. 1
No. 1
2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portal Jurnal Elektronik Universitas Kristen Satya Wacana (UKSW)

https://core.ac.uk/display/234029475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ejournal.uksw.edu/ijiteb

Saiana P. O. N. / Int. Journal of Information Technology and Business, Vol. 1, No. 1 (2018), pp. 10-15

 11

the sorting process because there are at least two

process runs at the same time.

The rest of the paper is structured as follows:

Section 2 tells about several theories and previous

work which related with this paper, Section 3 tells

about the modified algorithm, and Section 4 tells

about the conclusion and future works related to this

paper.

2. The Material and Method
Before discussing more the modified

algorithm, there are some theory or material which

important and need to be discussed. All of them are

have high relevance with this paper.

Research conducted by Muhammad Ezar Al

Rivan tells about how good a combination of several

sorting algorithms is. This research use five different

algorithms, which is Quick Sort, Merge Sort,

Insertion Sort, Bubble Sort, and Selection Sort. From

five algorithms, the researchers divided them into

two group of sorting algorithm. Quick Sort and

Merge Sort is in group A and Insertion Sort, Bubble

Sort, Selection Sort is in group B. Researcher choose

one algorithm from group A and combined it with

one algorithm from Group B. To check how well that

combination, researcher will measure the execution

time of it. After doing it to every possibility of

combination, it appears the combination of

Merge-Insertion Sort and Merge-Selection Sort have

the best execution time of all [18].

Another research conducted by Dwi M J

Purnomo, et al. tells about an implementing a Bubble

Sort in Field Programmable Gate Array (FPGA). The

Bubble Sort itself implemented in both serial and

parallel programming. They measure the memory

usage and execution time. It appears that serial

Bubble Sort have better memory usage than parallel

Bubble Sort, but parallel Bubble Sort have better

execution time than serial Bubble Sort [19].

Another research conducted by Ivan

Kamarov, et al. tells about implementation of brute

force algorithm to create k-Nearest Neighbor Graph

(k-NNG). Then, this algorithm implemented into

Graphics Processing Unit (GPU) combined with a

quicksort algorithm. The result of this experiment is

a combination of a brute force algorithm and

quicksort algorithm in GPU able to process larger

data in a better time execution [20].

To give a better understanding of what is this

paper about, it is important to know about some

theory. This paper will explain more about the

sorting algorithm, counting sort algorithm, and

parallel counting sort algorithm.

2.1. Sorting Algorithm

In computer science, a sorting algorithm is an

algorithm to rearrange some list in a specific order.

The list can be an array, a vector, or any data type

that can be stored more than one element at the same

place. Integer or Char data type is commonly used in

any sorting process. Sorting algorithm will always

produce an arranged list in ascending or descending

order. Ascending list is a list which its values are

come from “a small number” to “a big number”

while descending list is a list which its values come

from “a big number” to “a small number”.

5 2 3 4 1 7
Unsorted List

1 2 3 4 5 7
Sorted List (ascending)

7 5 4 3 2 1
Sorted List (descending)

Fig. 1 Example of an unsorted list, sorted list

(ascending and descending)

Fig. 1 is an example of an input and an output

of the sorting algorithm. The unsorted list contains

several elements of number (ex: 5, 2, 3, 4, 1, 7) and

that list has values in random order – not in

ascending or descending order. In some cases, that

list needs to be arranged properly to get a better

information. That is how any sorting algorithm

works. That list will be arranged by any sorting

algorithm, then the result will always in a good order.

It can be an ascending order (1, 2, 3, 4, 5, 7) or

descending order (7, 5, 4, 3, 2, 1).

Researcher tends to measure how good any

sorting algorithm is. They usually consider it from

several things, such as running time/execution time

or how much memory needed to do the sort process.

In this paper, only the running time/execution time is

chosen to be a benchmark for any algorithm to be

tested.

2.2. Counting Sort Algorithm

Counting Sort algorithm always starts with

one list of an unordered integer numbers (List A).

Then, it will create another list to save of how many

times the number appears in the List A (List B).

After both of lists successfully created, the algorithm

will do the counting process. It will go through in

each element of List A to count the appearance

number and save it in List B. Now, every element in

List B contains a number and that number is the

“correct position” of the number in List A. Finally,

the algorithm will create one last list (List C) to save

the “correct position” of the number in List A. The

algorithm will match each of numbers in List A with

its position in List B and save it in List C.

Implementation of the Counting Sort algorithm can

be seen in Fig. 2.

Saiana P. O. N. / Int. Journal of Information Technology and Business, Vol. 1, No. 1 (2018), pp. 10-15

 12

Fig. 2 Pseudocode of Counting Sort Algorithm

To measure how good this counting sort

algorithm, like any algorithm it will be used the time

complexity of the algorithm. The time complexity of

a Counting Sort algorithm is O(n + k) [16] where n is

the number of elements in an array and k is the range

of the input. The range of the input is the range

between the smallest number and the biggest number

in List A.

2.3. Parallel Counting Sort Algorithm

As explained in Section 1 before, the problem

of counting sort appears when there are a negative

integer value appears in the List A of Counting Sort.

This problem can be solved by split the list into a

negative list and a positive list. The flowchart of this

process can be seen in Fig. 3.

Fig. 3 Flowchart of Modified Counting Sort

Algorithm

From flowchart in Fig. 3 it tells that the

splitting process to distinguish between a positive

number and a negative number happen before the

sorting process. Every element in unordered list will

be checked if the number is greater than zero or not.

If the number is greater than zero, then it will be

stored in the “ArrPositive” list and if the number is

smaller than zero, then it will be stored in the

“ArrNegative” list. Both of this will sort separately

and the result of both will joined into one list again.

The implementation of this process can be seen in

Fig. 4.

Fig. 4 Pseudocode of Modified Counting Sort

This paper will tell another modification of

this algorithm. In the Modified Counting Sort before,

after the input list separated into “ArrPositive” and

“ArrNegative”, the sorting process run to both

separately too. This sorting process runs in

sequentially. Usually “ArrPositive” will be sorted

first and “ArrNegative” next. Instead of works in two

lists sequentially, this new algorithm will do the

counting sort simultaneously. The detailed process of

this algorithm can be seen in Fig. 5.

void ModifiedCountingSort() {

 int[] input =

InitializeArrayToBeSorted();

 List ArrPositive;

 List ArrNegative;

 foreach (int i in input) {

 if(i < 0) {

 ArrPositive.add(i);

 } else {

 ArrNegative.add(i);

 }

 }

 //counting sort process

 …

}

void CountingSort() {

 int[] input = InitializeArrayToBeSorted(); /* Generate a random number */

 int[] count = int[input.length]; /*To be used in counting process*/

 int[] output = int[input.length]; /*To be used as a sorted list */

 /*Count the appearance of the number*/

 for(int i=0;i<input.length;i++) { ++count[input[i]]; }

 /*Rearrange the list into a sorted list*/

 for(int i=0;i<input.length;i++) {

 output[count[input[i]]-1] = input[i];

 --count[input[i]];

 }

}

Saiana P. O. N. / Int. Journal of Information Technology and Business, Vol. 1, No. 1 (2018), pp. 10-15

 13

Fig. 5 Flowchart of Parallel Counting Sort Algorithm

Fig. 5 shows about the difference (marked

with dotted line) from Modified Counting Sort

Algorithm. Parallel Counting Sort will do the sorting

process simultaneously. By doing it, Parallel

Counting Sort should run faster than Modified

Counting Sort Algorithm. The implementation of

Parallel Counting Sort algorithm can be seen in Fig.

6.

Fig. 6 Pseudocode of Parallel Counting Sort

The main difference between Modified

Counting Sort and Parallel Counting Sort is in the

thread creation. This thread has never been created in

Modified Counting Sort, but in Parallel Counting

Sort, it will create two new threads. These two

threads used to enable the computer to do any

process simultaneously. One thread will handle the

sorting process for “ArrPositive” and another thread

will handle “ArrNegative”. The algorithm will wait

until both threads finished do the sorting process,

then the result will be merged into one list.

3. Result and Discussion
This section mainly talks about the testing

process and how to compare the result of how well

both algorithms to solve a sorting problem in many

test cases. The Modified Counting Sort Algorithm

and Parallel Counting Sort will be tested in a similar

condition. Testing process held in a computer with

hardware specification: Intel Core i5-3210M CPU

@2.50GHz and 4GB RAM. The computer uses an

operating system: Windows 10 Education 64-bit

(10.0, Build 17134).

The testing process proceeds in three steps:

(1) preparing test cases, (2) running the algorithm

with the prepared test cases, and (3) getting the

execution time.

3.1. Preparing Test Cases

There are some test cases prepared to measure

the execution time of each algorithm. Both will get

different input numbers, from ten, a hundred, a

thousand, a ten thousand, and a hundred thousand of

integer numbers. It contains positive numbers, more

than one zero, and negative numbers which all of

them will be generated randomly.

Fig. 7 C++ source code to generate random number

Error! Reference source not found. tells
about a source code of the implementation of
generating random numbers. It started with
preparing an array (or a list) to be used as input

numbers later. Then, by using C++ standard library

function (all of them included in “random” header),

the numbers generated one by one until all places in

input numbers filled. Then, this function needs a little

modification to gain control of “how random the

generated number”. The modification is by putting a

control variable (MAX_RANGE) so the random

int numbers[NUMBERS];

//Generate Random Number

std::random_device rd; //Will be used to

obtain a seed for the random number engine

std::mt19937 gen(rd()); //Standard

mersenne_twister_engine seeded with rd()

std::uniform_int_distribution<>

dis(-(MAX_RANGE - 1), MAX_RANGE-1);

for (int n = 0; n < NUMBERS; ++n) {

 numbers[n] = dis(gen);

}

void ParallelCountingSort() {

 int[] input =

InitializeArrayToBeSorted();

 //split the input array

 …

 Thread t[] = CreateThread();

 t[0] =

DoModifiedCountingSort(ArrPositive);

 t[1] =

DoModifiedCountingSort(ArrNegative);

 …

 output = ResultOf(t[0]) + ResultOf(t[1]);

 …

}

Saiana P. O. N. / Int. Journal of Information Technology and Business, Vol. 1, No. 1 (2018), pp. 10-15

 14

number will always be in the desired range, which is

–(MAX_RANGE-1) to (MAX_RANGE-1).

3.2. Running the Algorithm

Each set of randomly generated number from

the previous step will be used for each algorithm as

an input. To maintain the validity, both algorithm

will use the same set of randomly generated number.

3.3. Getting the Execution Time

The last step of the testing process is getting

the execution time of both algorithms. It will be used

to measure the difference between them and decide

which algorithm have a better execution time. In this

experiment, the C++ programming language is used

to get the execution time. The implementation of

how to get the execution time is shown in Fig. 8.

Fig. 7 C++ source code to take execution time

Fig. 7 shows to get the execution time, in C++

use clock() function. This function is a “prepared”

function and can be used by including “time.h”

header. Then, the timer will be started when the

algorithm about to started and finished when the

algorithm finished too. The exact execution time

obtained by finding the difference between start time

and finish time. By doing this, the execution time

will appear in milliseconds (ms).

3.4. Result

After doing the testing process in all test

cases, the result of this experiment can be found in

Table 1.

Table 1 Execution Time Result for Both Algorithm

Algorithm Execution Time from Each Case

10 100 1.000 10.000 100.000

Modified

Counting

Sort

1ms 2ms 4ms 84ms 671ms

Parallel

Counting

Sort

1ms 2ms 3ms 18ms 161ms

Table 1 shows the execution time of both

algorithms in each test cases. From test case 1: both

algorithms get the same results, they need 1ms to sort

10 different numbers. From test case 2: Modified

Counting Sort and Parallel Counting Sort run in 2ms.

From test case 3: there is a slight difference between

Modified Counting Sort and Parallel Counting Sort,

the difference only 1ms. From test case 4: there is a

significant gap between them. Parallel Counting Sort

only needs 18ms while Modified Counting Sort

needs 84ms to finish the sorting process. From test

case 5: the gap gets wider; Modified Counting Sort

need 671ms while Parallel Counting sort needs

161ms.

Fig. 8 Execution Time Chart

Fig. 8 showing the result of the experiment on

both algorithm. The results show that in a relatively

small set of randomly generated number (10, 100,

and 1000 numbers) the result doesn’t show a big

difference. The gap distance starting to get wider

after the algorithm get a big set of data (10.000 and

100.000 numbers) as an input. As described in the

chart, more data being used, the gap gets wider too.

4. Conclusion
Based on the result explained before, Parallel

Counting Sort able to have smaller execution time

than Modified Counting Sort, especially in a big set

of data. Parallel Counting Sort able to increase the

execution time around 78.57% time in test case

number 4 and around 76% in test case number 5. In a

small set of data, the result tends to be the same since

the execution time almost similar.

For the future works, Parallel Counting Sort

needs to be compared with another sorting algorithm.

To be more interesting, instead only comparing the

execution time, the algorithm also comparing

memory usages of each algorithm.

…

 clock_t tStart = clock();

 /* Parallel Counting Sort or Modified

Counting Sort algorithm */

 printf("Time taken: %.9fs\n",

(double)(clock() - tStart)/CLOCKS_PER_SEC);

 return 0;

…

Saiana P. O. N. / Int. Journal of Information Technology and Business, Vol. 1, No. 1 (2018), pp. 10-15

 15

5. References
[1] L. Végh and V. Stoffová, “Algorithm animations for teaching

and learning the main ideas of basic sortings,” Informatics
Educ., vol. 16, no. 1, pp. 121–140, 2017.

[2] Z. KATAI, L. TOTH, and A. K. ADORJANI, “Multi-Sensory
Informatics Education,” Informatics Educ., vol. 13, no. 2, pp.

225–240, Sep. 2014.

[3] G. Regalia, S. Coelli, E. Biffi, G. Ferrigno, and A. Pedrocchi,
“A Framework for the Comparative Assessment of Neuronal

Spike Sorting Algorithms towards More Accurate Off-Line
and On-Line Microelectrode Arrays Data Analysis,” Comput.

Intell. Neurosci., vol. 2016, pp. 1–19, 2016.

[4] X. Yang, Z. Zeng, R. Wang, and X. Sun, “Bi-objective
flexible job-shop scheduling problem considering energy

consumption under stochastic processing times,” PLoS One,
vol. 11, no. 12, pp. 1–14, 2016.

[5] M. Kessel and C. Atkinson, “Ranking software components

for reuse based on non-functional properties,” Inf. Syst.
Front., vol. 18, no. 5, pp. 825–853, 2016.

[6] M. Codish, L. Cruz-Filipe, T. Ehlers, M. Müller, and P.
Schneider-Kamp, “Sorting networks: To the end and back

again,” J. Comput. Syst. Sci., vol. 1, pp. 1–18, 2016.

[7] F. Frattolillo, “A deterministic algorithm for the deployment
of wireless sensor networks,” Int. J. Commun. Networks Inf.

Secur., vol. 8, no. 1, pp. 1–10, 2016.
[8] H. Mohammed, N. Clarke, and F. Li, “An Automated

Approach for Digital Forensic Analysis of Heterogeneous Big

Data,” J. Digit. Forensics, Secur. Law, 2016.
[9] D. H. S. Chung, P. A. Legg, M. L. Parry, R. Bown, I. W.

Griffiths, R. S. Laramee, and M. Chen, “Glyph sorting:
Interactive visualization for multi-dimensional data,” Inf. Vis.,

vol. 14, no. 1, pp. 76–90, 2013.

[10] Y. S. Chang, R. K. Sheu, S. M. Yuan, and J. J. Hsu, “Scaling
database performance on GPUs,” Inf. Syst. Front., vol. 14, no.

4, pp. 909–924, 2012.

[11] R. K. Hill, “What an Algorithm Is,” Philos. Technol., vol. 29,

no. 1, pp. 35–59, 2016.
[12] Reina and J. B. Gautama, “Perbandingan Bubble Sort dengan

Insertion Sort pada Bahasa Pemrograman C dan Fortran,”
ComTech, vol. 4, no. 2, pp. 1106–1115, 2013.

[13] Arief Hendra Saptadi and D. W. Sari, “Analisis algoritma

insertion sort, merge sort dan implementasinya dalam bahasa
pemrograman c++,” J. Infotel, vol. 4, no. 2, pp. 1–8, 2012.

[14] A. Taherkhani, A. Korhonen, and L. Malmi, “Categorizing
variations of student-implemented sorting algorithms,”

Comput. Sci. Educ., vol. 22, no. 2, pp. 109–138, Jun. 2012.

[15] E. Avramidis and O. E. Akman, “Optimisation of an exemplar
oculomotor model using multi-objective genetic algorithms

executed on a GPU-CPU combination,” BMC Syst. Biol., vol.
11, no. 1, pp. 1–24, 2017.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 3rd ed., no. 2. London: The MIT
Press Cambridge, Massachusetts, 2009.

[17] F. Idrizi, A. Rustemi, and F. Dalipi, “A new modified sorting
algorithm: A comparison with state of the art,” in 2017 6th

Mediterranean Conference on Embedded Computing, MECO

2017 - Including ECYPS 2017, Proceedings, 2017, no. June,
pp. 1–6.

[18] M. Ezar and A. Rivan, “Perbandingan Kecepatan Gabungan
Algoritma Utama Quick Sort dan Merge Sort dengan

Algoritma Tambahan Insertion Sort , Bubble Sort dan

Selection Sort,” J. Tek. Inform. dan Sist. Inf., vol. 3, no. 2, pp.
319–331, 2017.

[19] D. M. J. Purnomo, A. Arinaldi, D. T. Priyantini, A. Wibisono,
and A. Febrian, “Implementation of Serial and Parallel Bubble

Sort on FPGA,” J. Ilmu Komput. dan Inf., vol. 9, no. 2, p.

113, Jun. 2016.
[20] I. Komarov, A. Dashti, and R. M. D’Souza, “Fast k-NNG

construction with GPU-based quick multi-select,” PLoS One,
vol. 9, no. 5, 2014.

