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A b s t r a c t  
Pain is commonly associated with depression. Both pain and depression share common biological 
pathways and neurotransmitters, which has implications for the treatment of both disorders. A drug 
that could ameliorate both pain and depression could be beneficial in the development of new 
therapeutics in the management of disorders associated with pain/depression dyad. Alterations in 
the neurotransmitters namely, serotonin and norepinephrine in the central nervous system (CNS) 
have been implicated in the pathophysiology of pain and depression. Serotonin and norepinephrine 
reuptake inhibitors (SNRIs) have been implicated as a novel therapeutic target for a wide range of 
biological functions, including pain, anxiety and depression. 2-benzoxazolinone (2-BOA) from the 
mangrove Acanthus ilicifolius and its derivatives have been reported for its analgesic and 
antidepressant activities. In the present work, docking studies were done on the crystal structure of 
human transporters of serotonin (hSERT) and on homology modeled human transporters of 
norepinephrine (hNET) as therapeutic targets of depression and pain related disorders using 2-BOA 
and its derivatives as potential candidates. A homology model for hNET was constructed using 
MODELLER and validated. Further docking studies were done on hSERT and hNET using 2-BOA 
and its structural analogs. The result of the study proposes the possible potential candidate among 
2-BOA derivatives that may be further developed as a therapeutic lead compound for use in 
disorders associated with depression and pain. 
Keywords: 2-Benzoxazolinone, Serotonin transporter, Norepinephrine transporter, Acanthus 
ilicifolius, Genetic Optimization for Ligand Docking, hNET/hSERT.

Introduction 
Norepinephrine and Serotonin are strongly associated with 
depression [1-6] and also modulate pain sensitivity via the 
descending pain pathway [7-10]. Serotonergic and noradrenergic 
neurons are localized in the Pons and medulla (raphe nuclei), and 
their axons project to brain regions such as the limbic system, the 
cerebral cortex and hypothalamus [11]. Norepinephrine transporter 
(NET) and Serotonin transporter (SERT) are integral membrane 
proteins belong to the large neurotransmitter: sodium symporter 
(NSS) family of transporters and they regulate monoamine 
concentrations at neuronal synapses by carrying monoamines 
across neuronal membranes into presynaptic nerve cells, using an 
inwardly directed sodium gradient as an energy source  [4, 11-12]. 
Selective serotonin and norepinephrine reuptake transporter 
inhibitors (SNRIs) are the pharmacological targets in clinical 
conditions associated with pain/depression dyad [12]. A number of 
antidepressant medications have demonstrated efficacy in treating 

chronic pain disorders [13-14]. Recent studies reported that 
compounds with dual activity at both NET and SERT are effective 
analgesics [15]. SNRIs such as duloxetine [16] and milnacipran [3, 
17] are approved for the treatment of chronic pain syndromes such 
as painful diabetic peripheral neuropathy, chronic musculoskeletal 
pain and/or fibromyalgia [17-20]. According to various medical 
literatures, several adverse reactions are known to be associated 
with these conventional SNRIs, thereby limiting the widespread 
application of these agents.  
2-Benzoxazolinone (2-BOA) is a bioactive compound isolated from 
a mangrove plant Acanthus ilicifolius [21]. 2-BOA and its structural 
analogs have been investigated widely for their analgesic, 
anticonvulsant, hypnotic, skeletal muscle relaxant and CNS 
depressant activities [22-24]. The present study investigated the 
interactions of 2-BOA and its structural analogs with active site 
residues of human serotonin transporter (hSERT) and 
norepinephrine transporter (hNET) proteins. Molecular docking is 
basically a conformational sampling procedure in which hundreds 
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of molecules can be screened to identify plausible binder by 
docking them into the predicted binding pocket on the target 
protein. This paper reports the docking studies and the binding 
properties of BOA and its analogs towards hSERT and hNET 
membrane receptor proteins. 

Materials and Methods  

Homology modeling and structure validation 

The protein crystal structure of hNET was unavailable and 
therefore homology modeling is the alternative choice to construct 
a reasonable three dimensional (3D) model of the target. The 
protein sequence of hNET was obtained from the Uniprot database 
[25] [Accession no: P23975] using the Gapped-BLAST [26]. 
Through PDB BLAST the crystal structure of dopamine transporter 
(PDB code: 4M48) with 2.95Å resolution with 60% sequence 
identity with hNET was identified as a template. Thus, Dopamine 
transporter chosen as a suitable template to construct a 3D model 
of the target protein hNET using MODELLER 9.11 [27]. 
Based on the template structure and target sequence alignment, 
10 structural models were constructed using MODELLER. The 
initial models were assessed using Z-DOPE, a normalized atomic 
distance-dependent statistical potential based on known protein 
structures [28].  The constructed 3D model of hNET was refined 
and the model quality was validated using PROCHECK server [29]. 
PROCHECK analysis, which includes checks on chirality, dihedral 
angles, planarity, disulphide bonds, covalent geometry, non-
bonded interactions, stereo chemical parameters, main-chain 
hydrogen bonds, parameter comparisons, and residue-by-residue 
analysis. The backbone conformation of Phi and Psi angles for 
polypeptide was predicted using Ramachandran plot.  

Molecular docking protocol  

Ligand Preparation 

The 3D structure of 2-BOA, 6-Methyl-2-BOA, 6-hydroxy- 2-BOA, 6-
chloro-2-BOA, and 6-Bromo-2-BOA were obtained from NCBI 
PubChem compound [30]. Further the 3D structural conformations 
were optimized using Marvin Sketch (MarvinSketch V 5.2.6, 
ChemAxon Ltd, copyright 1998-2009.) Energy minimization of 
ligands was done using chimera software [31].   

Docking studies with hSERT and hNET 

The hSERT and hNET proteins were selected as depression and 
pain modulation drug target in the present study. The hSERT 
protein structure was obtained from the Research Collaboratory for 
Structural Bioinformatics (RCSB) protein data bank (PDB code: 
4IB4) with 2.7Å resolution [28, 32]. The crystallographic water 
molecules and co-crystallized ligands were identified and removed 
from the 3-dimensional (3D) atomic coordinate file and hydrogen 
atoms were added, and partial charges were assigned. 
Similarly, the optimized homology model of the human 
norepinephrine transporter (hNET) was considered for docking 

studies. Molecular docking studies were done using GOLD 
(Genetic Optimization for Ligand Docking) program version 5.1. 
GOLD is an automated docking program that employs a genetic 
algorithm to search the ligand conformational flexibility and partial 
proteinÊs active site flexibility [33]. Four different scoring functions, 
namely ChemPLP, GoldScore, ChemScore, and ASP (the Astex 
Statistical Potential) were employed, but among them GoldScore 
was identified as the suitable scoring function for both hSERT and 
hNET. In the case of hSERT, the ergotamine binding site was 
defined as the active site with 12 Å radius for docking, while in the 
case of docking the hNET homology model, the nortriptyline 
binding site as in the template structure (PDB code: 4M48) was 
considered as the active site within 12 Å for docking all the five 
BOA derivatives with 100% genetic algorithm (GA) using the 
Goldscore fitness function.  
The ranking of the compounds was based on the firstly ranked 
solution as well as the lowest energy conformation of the most 
populated cluster of the docking procedure. During the analysis, it 
was prioritized that the binding mode of BOA derivatives was 
compared with the binding mode of Ergotamine as reference for 
hSERT inhibitor. While in the case of hNET the binding of the 
inhibitor were based on the binding mode of nortriptyline as 
reference. As a validation step to determine the plausibility binding 
mode of the five BOA derivatives, docking study was also 
performed in AutoDock [34-35]. The automated molecular docking 
simulations were performed by Genetic Algorithm- Local Search 
(GA-LS) [33] with standard parameters. The compounds were 
ranked based on the docking energy. The compound with the 
highest affinity for the target proteins active site pattern with lowest 
docking energy was selected. Here, we examined the performance 
of this docking software to select the best compound without any 
bias. The interaction energy includes Vander Waals energy, 
electrostatic energy, as well as intermolecular hydrogen bonding 
was also considered for each binding mode and visualized and 
analyzed using PyMol software [36]. Finally, the five BOA 
derivatives top ranked binding modes in agreement with GOLD 
upon superimposition were considered as the reliable binding 
mode.  

Results and Discussion 
Homology based model of hNET was accomplished by 
MODELLER 9.11 [34] using the dopamine transporter homolog 
(PDB code: 4M48), with a resolution of 2.95 Å as a template. The 
sequence identity between the hNET and the template dopamine 
transporter was about 60%. The 3D structural model of hNET 
generated by homology modeling has been examined by their 
stereo-chemical quality using PROCHECK shows that in the 
Ramachandran plot phi/psi angles of 95.2% residues were in the 
most favored regions, 4.2% residues were in the additional allowed 
regions and 0.6% fell in the generously allowed regions; only 0.0% 
of residues were in the disallowed conformations (Figure 1a). This 
analysis confirmed that the quality of the modeled hNET (Figure 
1b) was almost in good state and reliable. 
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Figure 1 - Ramachandran plot and homology model of hNET 

 (a) Ramachandran plot of hNET model depicts the red, yellow, pale yellow and white color shaded regions correspond to residues in most favored regions, 
residues in additional allowed regions, residues in generously allowed regions and residues in disallowed regions. (b) Shows the homology modeled structure of 
hNET in green and gray color cartoon. 
 

Binding mode of BOA derivatives in hSERT  
The BOA derivatives 1-5 were docked on the GOLD to reveal their 
inhibitory potential on hSERT. Further the docked binding mode of 
GOLD was validated through AutoDock (Figure 2a). The binding 
mode of BOA shows that the oxygen in the ring forms hydrogen 

bond with the NH of the Asn153 side chain, while the benzene ring 
forms hydrophobic interaction with Val148, Met424 and Ala145 
(Figure 2b). Likewise, in the binding mode of 6-Methyl-2-BOA the 
oxygen attached to the ring forms hydrogen bond with NH of 
Asn153. 
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Figure 2 - The 2-BOA derivatives binding mode in hSERT 

Binding mode a. Comparison of GOLD and AutoDock in yellow and magenta color respectively.  b. 2-BOA (magenta color) c. 6-Methoxy-2-BOA (green color), d. 
6-hydroxy-2-BOA (blue color), e. 6-chloro-2-BOA (orange color), f. 6-Bromo-2-BOA (yellow color). Key residues are only shown and the hydrogen bond 
interactions are represented by yellow dashed lines. The BOA derivatives are shown as sticks and key amino acids as lines.  
 
While the NH on the ring of the compound forms hydrogen bond 
with Ser420, while the benzene ring and the methyl group form 
hydrophobic interaction with Val148, Met424 and Ala145 as in 
Figure 2c. The plausible binding mode of 6-hydroxy- 2-BOA shows 
that the hydroxyl oxygen forms hydrogen bond with NH of Asn153, 
while rings forms hydrophobic interaction with Tyr152,Val148, 
Met424 and Ala145 (Figure 2d). While in 6-chloro-2-BOA the ring 
oxygen and oxygen group forms hydrogen bond with Asn153 NH 
and the compound ring forms hydrophobic interaction with Ala145, 

Val148 and Met424 as in Figure 2e. In the case of 6-Bromo-2-
BOA,  
the Val148, Met424 and Ala145 forms hydrophobic interaction with 
the hydrophobic part of the ring system, while the oxygen at the 
ring forms hydrogen bond with Asn153 (Figure 2f). 

Binding mode of BOA derivatives in hNET  

Docking study of the BOA derivatives with the hNET are reported 
below. The binding mode agreement between GOLD and 
AutoDock binding mode is shown in Figure 3a. 
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Figure 3 - The 2-BOA derivatives binding mode in hNET 

 Binding mode a. Comparison of GOLD and AutoDock in brown and blue color respectively.  b. 2-BOA (brown color) c. 6-Hydroxy-2-BOA (violet 
color). Key residues are only shown and the hydrogen bond interactions are represented by yellow dashed lines. The BOA derivatives are shown 
as sticks and key amino acids as lines.  
 
Among the five derivatives of BOA and 6-Hydroxy-2-BOA forms 
stable binding mode while 6-Methoxy-2-BOA, 6-Bromo-2-BOA and 
6-chloro-2-BOA were not able to produce stable binding 
conformation in both GOLD and AutoDock docking studies. 
Therefore the later derivatives were not considered as potential 
binders of hNET. The binding mode of benzoxazolinone shows that 
the NH group form hydrogen bond interaction with Thr140 and the 
aromatic part of the ring forms hydrophobic interaction with 
hydrophobic residues such as Val136, Phe217, Met218, Ala225, 
Phe340 and Phe341(Figure 3b). While in the case of 6-Hydroxy-2-
BOA the hydroxyl group forms hydrogen bond with Val136 main 
chain oxygen and with OH group of Thr140 side chain. While the 
compound ring is also stabilized by hydrophobic interaction with 
Val136, Phe217, Met218, Ala225, Phe340 and Phe341 (Figure 3c).  
The putative binding orientation of the most potent BOA derivatives 
in the active sites of hSERT and hNET has been demonstrated. 
The analysis of docking results allowed us to postulate their 
theoretical capability of being potential compounds. 

Conclusion 
Finally, the molecular docking strategy reveals the binding mode of 
the 2-BOA derivatives and the key moieties responsible for the 
activity. Both active and inactive compounds adopt a diverse 

interaction pattern. The binding pose is clearly demonstrated that 
both the hydrophilic moieties and hydrophobic groups of the 
derivatives were crucial for the interaction which may determine the 
biological activity profile. These results suggest that 2-BOA 
derivatives have great potential to be further developed as a 
therapeutic lead molecule for use in disorders associated with 
depression and pain. Finally, we expect that these results will 
contribute to the development of newer analgesic with fewer 
adverse side effects. 
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