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Abstract 

Over the past few years there has been a growing interest in the possible benefits of 

computer simulations in physics education. However, very little research has been 

conducted on how computer simulations can actually be integrated into a physics 

program (Zacharia & Anderson, 2003 . This research investigated the effects of 

computer simulations on the development of accurate mental models when used in 

conjunction with traditional laboratory-based experiments. Since laboratory 

experiments can often have results that are very difficult to observe, these results only 

become evident to the trained eye of an expert. Computer simulations are able to 

present phenomena free of the normal distractions that occur during traditional 

laboratory-based experiments. Through the analysis of posttests, questionnaires, and 

student interviews conducted in a high school physics class, it was shown that when 

computer simulations are used in conjunction with traditional laboratory activities 

students appear to make accurate revisions to their nai"ve mental models of motion. 

The results also indicate that the majority of the students believe that the computer 

simulations assisted in the clarification of the laboratory results and allowed them to 

more fully understand the theoretical concepts being presented in the laboratory 

investigation. 
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Chapter 1 : Introduction 

Problem Statement 

In physics education, students often have difficulties in developing accurate 

mental models of abstract concepts. It is the goal of this report to investigate the 

effects of computer simulations on the development of accurate mental models when 

the computer simulations are used in conjunction with traditional laboratory-based 

investigations. 

Significance of the Problem 

Over the past few years there has been a growing interest in the possible 

benefits of the use of computer simulations in physics education. However, very little 

research has been conducted on how computer simulations can actually be integrated 

into a physics program (Zacharia & Anderson, 2003). This report seeks to investigate 

the innovative role that computer simulations can play in physics education. 

Traditional physics education focuses on two main methods of instruction: 

direct classroom lecture and hands-on laboratory investigations. Classroom lecture is 

typically aimed at presenting the facts, laws, and beliefs of scientific theory. 

Laboratory investigations then attempt to find evidence to support these theories. It is 

well documented that hands-on laboratory investigations are an integral part of 

physics education; however, there often exists a gap between the truth according to 

theory and what is observed within a laboratory investigation. As a result, the 

laboratory investigation tends to reinforce the na'ive mental models of motion that the 

students previously obtained through interaction with a world dominated by the latent 
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effects of friction and gravity. Physics educators are faced with the difficult task of 

eliminating the gap between theory and perceived reality within students ' mental 

models of motion. 

Rationale 

Computer simulations are able to present phenomena free of the normal 

distractions that occur during traditional laboratory-based experiments. Ideal 

environments, such as frictionless surfaces, perfect vacuums, and gravity-free 

classrooms, are often used to simplify physics instruction so that students gain an 

understanding of theory. However, these ideal environments can never exist within a 

hands-on laboratory investigation. It is possible to create these ideal environments 

within a computer simulation. Due to this fact, a computer simulation may act as a 

bridge between scientific theory and perceived reality, when it is implemented in 

conjunction with a hands-on investigation. 

Figure 1. Computer simulations may act as a bridge between theory and 

perceived reality. 
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Definition ofTerms 

The definitions of the terms that are used in this report vary slightly 

throughout educational literature. To avoid misinterpretation the following definitions 

should be used throughout this report. A computer simulation refers to a computer 

program that attempts to simulate an abstract model of a particular system. A mental 

model is an explanation in one's thought process for how something works in the real 

world, a kind of internal symbol or representation of external reality. Traditional 

laboratory-based investigations are any classroom activity utilizing hands-on 

equipment for the purpose of learning. Truth according to reality is what an observer 

perceives to be true in accordance with his/her observations and interpretations of the 

world. Truth according to theory is a logically self-consistent model or framework for 

describing the behavior of a natural phenomenon, which originates from and/or is 

supported by experimental evidence. Regular classroom instruction is any 

pedagogical practices that do not involve the simultaneous use of computer 

simulations and hands-on laboratory equipment, examples include direct lecture and 

traditional laboratory investigations 

Summary 

Under the premise that computer simulations can act as a bridge between 

theory and perceived reality, this report investigates the following specific questions: 

Based on everyday experiences, do students develop accurate mental models of 

motion? Why are accurate mental models important in physics education? After 

regular classroom instruction, are students able to revise their nai"ve mental models of 
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motion? Do computer simulations aid in the revision of naive mental models of 

motion? If a computer simulation is used in conjunction with a laboratory experiment, 

will a student more effectively revise his/her naive mental models of motion? To 

provide an understanding of what has been studied previously, this report begins with 

a review of the literature pertinent to each question. 

4 



Chapter 2 :  Literature Review 

Mental Model Theory and Naive Theories of Motion 

"Reasoning is a process ofthought that yields a conclusion from percepts, 

thoughts, or assertions" (Johnson-Laird, 1999, p. 1 1 0). Johnson-Laird' s  mental model 

theory postulates that "reasoners use the meaning of assertions (their intentions) and 

general knowledge to construct models of the possibilities compatible with the 

assertions (their extensions)" (Goodwin & Johnson-Laird, 2005, p. 473). These 

models, developed from the extensions of the assertions, are then integrated to form a 

single mental model that can be used to formulate a prediction or a conclusion 

(Goodwin & Johnson-Laird, 2005). The accuracy of predictions or conclusions in 

physics is dependent upon the accuracy of the mental model, and in turn the accuracy 

of the mental model is dependent upon the degree of accuracy of the original 

percepts, thoughts, and assertions. 

Unfortunately, on the basis of their everyday experiences, people develop 

remarkably well-articulated naive theories of motion (McCloskey, 1984). These naive 

theories of motion are constructed through interaction with a world dominated by the 

effects of friction and gravity. The presence ofthese forces is so universal that their 

effects are considered to be a normal part of the behavior of an object in motion. As a 

consequence, the mental models that we develop when interacting with this world are 

inherently flawed. 

A team of researchers from John's Hopkins University investigated students ' 

use of what they called the naive impetus theories (McCloskey, 1984). These theories 
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provide an explanation for the behavior of moving objects by claiming that an object 

set into motion will continue in motion due to an internal force. Over a period of time 

this internal force is lost as a result of dissipation (McCloskey, 1984). This 

explanation, though functional for predicting the behavior of a ball rolling across a 

floor, will lead to drastically inaccurate predictions if applied generally to other 

situations. McCloskey found that 52% of his 48 subjects believed that a ball, upon 

leaving a curved tube, would continue along the same curved path (see Figure 2), a 

belief indicative of impetus theories. 

Figure 2. N alve theories of motion lead to inaccurate predictions of a ball s behavior 

upon exiting a curved tube. (McCloskey, 1984, p. 289) 

In their paper, "Using computer software in teaching mechanics," Graham and 

Rowlands (2000) discuss several examples ofhow the world appears contrary to the 

basic laws taught in physics. Due to this contrary appearance, students entering an 

introductory physics class have many well-substantiated misconceptions about these 

basics laws. For example, two balls of unequal mass do not hit the ground at the same 

time when dropped from a tower, and a hockey puck when slid across ice does not 

continue in constant motion forever. These apparent misconceptions are not 

misconceptions at all. They are easily proven facts about the behavior of objects in 
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our world. As discussed by Graham and Rowland (2000), the difficulty in teaching 

the basic laws of Newtonian physics is that they are "augmented by the experience of 

the physical world as behaving differently" (p. 48 1 ) . 

As discussed, the interaction with a world dominated by the effects of friction 

and gravity often results in one making inaccurate assumptions regarding the basic 

laws of Newtonian physics. If, in accordance with mental model theory, these 

inaccurate assumptions are used in the construction of a mental model, then it and all 

subsequent predictions and conclusions made from this mental model will be flawed. 

(Barrouillet & Lecas, 1999). It follows that the development of accurate mental 

models is a vital component in effective physics education. 

Mental Model Accuracy and Conceptual Understanding 

Greca and Moreira (2002) in their article, "Mental, Physical, and 

Mathematical Models in the Teaching and Learning of Physics," claimed that the first 

step in understanding a phenomenon or process in physics is to construct an accurate 

mental model of the theories that explain the phenomenon or process. In order to 

substantiate their claims, Greca and Moreira conducted research studies on mental 

models and physics education under the framework of Johnson-Laird's mental model 

theory. Their research, carried out with college students taking introductory physics 

courses at the Federal University of Rio Grande do Sul, Brazil, was designed to 

investigate the relationship between a student' s  development of accurate mental 

models and his/her ability to solve problems linked to concepts in classical 

mechanics. 
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Greca and Moriera (2002) identified several relevant findings in their research 

that linked the development of accurate mental models and effective physics 

education. According to their analysis, if a student was not able to construct a mental 

model for a theory, he/she would rely only on formulas and definitions as the 

arguments for a particular phenomenon. For these students, the solution to the 

problem often involved "arbitrary manipulation of formulae as there was not even a 

linkage between the laws and certain phenomena" (Greca & Moreira, 2002, p. 1 1 3) .  

Though this method temporarily supplied adequate answers to a problem, by the end 

of the term, any equation or definition that was not attached to a mental model had 

been forgotten. In addition, Greca and Moriera were able to establish that the 

formation of an accurate mental model lessoned a student's dependence on formulas 

in the description of a particular phenomenon. 

Effectiveness ofTraditional Instructional Techniques 

In their study, Greca and Moriera (2002) found that the majority of their 

students were not able to construct lasting mental models that would allow them to 

formulate scientifically accurate explanations for physical situations, despite their 

success on evaluations of the corresponding topic. When interviews were conducted 

at the end of the term, the majority of the students were not able to give accurate 

explanations for basic physical situations. The inaccurate explanations that were 

given by their students seemed to be connected to the mental models that the students 

possessed prior to entering the physics classes. As stated in their article, "one could 
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say that the physics description of the world remained indifferent to the [classroom] 

experience for the majority of the students" (Greca & Moreira, 2002, p. 1 12). 

Similar difficulties in providing physics instruction with lasting effects on a 

student's mental models was documented by a team of researchers from the 

Pennsylvania State University (Tasar, Dana, & Lunetta, 2000). Working under the 

same structural framework of Johnson-Laird's mental model theory, Tasar, Dana, and 

Lunetta's  research showed that a student would return to his/her initial conception 

although material that conflicted with this conception had been presented several 

times. This, in their opinion, suggested that the existing conceptions of an individual 

serve as a natural tendency or refuge for the individual, and being that it is the most 

stable form of thinking, they will most often return to it (Tasar, et.al., 2000). 

According to mental model theory there is a subtle distinction between 

encountering inconsistencies and encountering new information. When developing a 

mental model, we attempt, through reason, to construct a single mental model that 

satisfies a set of propositions (Girotto, Johnson-Laird, & Legrenzi, 2004). During the 

reasoning process, if we encounter inconsistencies we may use them to draw further 

conclusions, but these inconsistencies do not call for one to withdraw a previous 

conclusion (Girotto, et.al.). According to Girotto, Johnson-Laird, and Legrenzi, the 

retraction or revision of a conclusion will only occur if one is presented with new 

information. When new information is contradictory to a previous conclusion, one 

must retract the conclusion. However, if the original propositions validly imply this 

conclusion, one must revise, not retract, his/her conclusion. The task of revising this 
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conclusion, and in essence the mental model used to formulate the conclusion, 

involves attempting to resolve the contradiction. 

Both Greca and Moriera (2002) and Tasar, Dana, and Lunetta (2000) 

concluded that the majority of their students returned to their original mental models 

after a short period of time. In light of the previous discussions, this suggests that 

their students were presented with inconsistencies between their misconceptions and 

what is really true according to the laws of physics ;  however, the instructional 

methods carried out in those situations did not result in lasting changes to their 

student' s  mental models. As Girotto, Johnson-Laird, and Legrenzi (2004) concluded, 

the presentation of inconsistencies alone will not lead to revisions in mental models 

unless a student can resolve the conflict between the two opposing propositions. 

Educators are faced with the difficulty of presenting the laws ofphysics so that 

students can resolve the conflicts between their current mental models, models that 

are continually reinforced through the interaction with the world, and the mental 

models that formal physics instruction attempts to instill. 

Currently, there are two main methods of instruction in introductory physics 

courses, interactive engagement and traditional lecture. Courses that are classified as 

interactive engagement are designed at least in part to promote conceptual 

understanding through the interactive engagement of hands-on activities. Courses that 

are classified as traditional lecture make little to no use of hands-on activities and rely 

primarily on passive student lectures, recipe labs, and algorithmic-problem exams 

(Hake, 1998). 

10  



Richard Hake (1 998), a researcher from Indiana University, conducted a large 

scale study in which he examined 6,542 students enrolled in introductory physics 

courses across the country. In this investigation he examined whether the use of 

interactive engagement methods could increase the effectiveness of introductory 

mechanics courses beyond the results attained by traditional methods. Over a four 

year period, Hake completed a survey of pre/post-test results on the Halloun-Hastenes 

Mechanics Diagnostics test (MD), the Force Concept Inventory test (FCI), and the 

problem-solving Mechanics Baseline test (MB) which were given in 62 high schools, 

colleges, and universities on a yearly basis. When comparing courses that were 

classified as interactive engagement to courses classified as traditional lecture, he 

concluded that interactive engagement was much more effective at developing a 

conceptual understanding of introductory physics concepts, as measured by the MD, 

the FCI, and the MB tests (Hake, 1 998). Specifically, Hake found that courses 

classified as traditional lecture based courses achieved an average gain of 0.23, +/-

0.04. In sharp contrast, interactive engagement courses achieved an average gain of 

0.48 +/- 0. 14, almost two standard deviations above that of tradition courses (Hake, 

1 998). As stated by Hake, "the conceptual and problem-solving test results strongly 

suggest that the use of interactive engagement strategies can increase mechanics

course effectiveness well beyond that obtained with traditional methods" (Hake, 

1 998, p.74). 

Many studies, (e.g., Laws, 1 99 1 ;  Halloun & Hestenes, 1 985; Johnson, 200 1 ;  

Marshall and Dorward, 2000; Russell, Lucas, & McRobbie, 1 999; Hoellwarth, 

1 1  



Moelter, & Knight, 2005) designed to compare traditional lecture with interactive 

engagement methods have obtained results similar to those obtained Richard Hake 

( 1998). These studies clearly indicate that interactive engagement, such as a 

laboratory-based experiment, is a more effective instructional method than traditional 

lecture for development of a conceptual understanding of introductory physics 

concepts. 

Limitations to Interactive Laboratory-Based Engagement 

Although most educational researchers agree on the effectiveness of 

interactive laboratory-based activities, these activities have limitations. Graham and 

Rowlands (2000), explain that mechanics is based on what they call idealized 

abstractions. An idealized abstraction is a hypothetical situation whereby conditions 

are imposed in order to simplify a concept within mechanics. Frictionless surfaces, 

gravity-free environments, and a golf range with no air resistance are examples of 

idealized abstractions. Though these abstractions simplify the problems, they present 

an environment or situation that cannot be represented physically. Due to this fact, 

students appear to have tremendous difficulties in developing mental models that 

incorporate these abstractions (Graham & Rowland, 2000). 

Brown and Edelson ( 1999) also discuss several of the limitations encountered 

in laboratory-based experiments. Similar to the conclusions of Graham and Rowland 

(2000), Brown and Edelson claim that there is a wide range of concepts that involve 

abstract phenomenon that are difficult to replicate in a classroom setting. As a 

consequence, these concepts become difficult for students to comprehend. Brown and 

12 



Edelson go on to discuss that many classroom laboratory experiments simplify and 

de-contextualize scientific phenomenon to the point that novices fail to see their 

connections to real-world events outside the classroom. McCloskey (1 984), in his 

discussion of nai"ve impetus theory, also pointed out that students fail to apply 

scientific knowledge to everyday events. 

Computer Simulations- An Alternative Instructional Technique 

If laboratory investigations fail to provide adequate evidence to support the 

development of an accurate mental model of a scientific theory, another method of 

presentation must be called upon. Many researchers believe that computer-based 

simulations have the ability to compensate for the shortcomings of laboratory-based 

experiments. Over the past two decades, the excitement surrounding the possibility of 

computer simulations within physics education has steadily grown. Despite this 

excitement, a tremendous amount of debate also surrounds their use. This debate is in 

regards to the actual effectiveness of computer simulations at fostering long term 

changes to a student's mental models. 

Several studies have claimed that the use of computer simulations within a 

physics classroom is effective at fostering changes in mental models. Tao and 

Gunstone (1 999), in their article "Conceptual Changes in Science through 

Collaborative Learning at a Computer," investigated whether and how collaborative 

learning at a computer fosters conceptual change. In their investigation, a suite of 

computer programs were developed to confront students' alternative conceptions in 

mechanics by presenting them with discrepant events. These programs were 
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integrated into a high school introductory physics class. By collecting data in the form 

of pre-, post-, and delayed post-tests, they showed that computer-supported 

collaborative learning provided students with the opportunities to construct shared 

understanding which led to conceptual changes for many of the participating students. 

Tao and Gunstone's results also showed that at the tim� of the delayed post-test, 

many of the students had regressed to their previous conceptions. In support of the 

findings discussed earlier by Girotto, Johnson-Laird, and Legrenzi (2004), Tao and 

Guns tone suggested that a student needed to personally make sense of the new 

understanding, and when he/she did not, his/her conceptual change was short-lived. 

James M. Monaghan from California State University, and John Clement of 

the University of Massachusetts ( 1 999), conducted interviews with three high school 

post-physics students to determine if interaction with a relative motion computer 

simulation could improve relative motion understanding. Sub-questions of their study 

included whether the students could transfer what they learned online, during the 

interaction with the computer simulation to off-line situations, with particular focus 

on the simulations ability to facilitate mental simulations off-line (Monaghan & 

Clement, 1 999). It is important to note that Monaghan and Clement' s ( 1 999) use of 

the term mental simulation is not synonymous with Johnson-Laird' s  term mental 

modeL However, as discussed by Monaghan and Clement ( 1 999), the ability to create 

an accurate mental simulation is indicative of an accurate knowledge schema, a term 

that can be used synonymously with Johnson-Laird's  mental model. More general 

purposes of their study were to examine helpful or detrimental modes of thinking that 
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may occur during computer simulation use, and to identify any "hidden pitfalls" 

(Monaghan & Clement, 1 999, p. 92 1)  associated with computer simulation use. 

Upon careful analysis of the pre-test and post-test scores as well as the 

interviews conducted with the students, Monaghan and Clement ( 1 999) concluded 

that for two of the students, visualization of the post-test problems was facilitated by 

memory of the computer simulations. This visualization guided the students to 

accurate problem solutions and showed that transference occurred between the 

computer simulation and the off-line post-test problems. The ability of students to 

solve problems off-line indicated that computer simulations foster the development of 

appropriate mental simulations of target problems (Monaghan & Clement, 1 999). 

There was also evidence that the skills obtained during the computer simulation 

intervention were dynamic and allowed the students to draw appropriate analogies in 

new situations to make inferences regarding the outcome of those situations 

(Monaghan & Clement, 1 999) . 

Despite the success of these two students following the use of the computer 

simulations, results obtained from one of the students in Monaghan and Clement's 

( 1 999) intervention program indicates that the use of computer simulations is not a 

cure-all for alleviating the difficulties that students have with abstract physics 

concepts such as relative motion. These particular results indicate that students may 

actually regress following the use of a computer simulation. Monaghan and Clement 

( 1 999) hypothesized that regression may be a consequence if a student does not 

understand the computer simulation, if the student inaccurately transfers knowledge 
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gained from the computer simulations to analogous situations that are not truly 

analogous, or if the student visualizes scenarios that are not scientifically accurate. 

In 2000, Clement and Monaghan published another research study entitled 

"Algorithms, Visualization, and Mental Models: I}igh School Students ' Interactions 

with a Relative Motion Simulation." In this study they investigated the use of 

computer simulations a means of reversing the difficulties that people have in 

understanding relative motion concepts. They hypothesized that the "construction of 

visual models [via computer simulations] , the resolution of these visual models with 

numeric models, and in many cases the rejection of commitments such as the belief in 

one 'true ' velocity, are necessary for students to form integrated mental models of 

relative motion events" (Clement & Monaghan, 2000, p. 3 1 1  ). To investigate their 

beliefs, thirty-eight high school science students were separated into two groups. One 

group received algorithmic instruction of relative motion and the other group 

performed predict-observe-explain activities with relative motion computer 

simulations. Although both groups posted significant gains on the relative motion 

diagnostic test, analysis of the interviews showed striking differences between the 

problem solving approaches used by the two groups. Students that received 

algorithmic instruction tended to "mechanically solve exercises without reflection" 

(Clement & Monaghan, 2000, p. 323). Instruction via computer simulations however, 

"appeared to be far less susceptible to facilitating mechanical solution of problems" 

(Clement & Monaghan, 2000, p. 323). Monaghan and Clement describe evidence that 

the cognitive dissonance generated by the computer simulations appears to cause 
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changes in a students mental model of an event, and potentially his/her mental model 

concerning the relativity of reference frames. 

The results obtained by Monaghan and Clement ( 1 999) showed that computer 

) 

simulations cannot be seen as a panacea for the difficulties that students encounter 

when studying abstract concepts related to physics. However, their research had many 

implications regarding use of computer simulations as to tool for aiding in the 

development of accurate mental models in area of Newtonian physics (Monaghan & 

Clement, 1 999, 2000). 

Carmen Pena, from the University of Houston, and Stephen Alessi, from the 

University of Iowa ( 1999), conducted a large-scale study that also found evidence 

that pointed to the effectiveness of using computer simulations within a physics 

classroom. The study, which involved 330 students, compared hands-on laboratory 

experiments with computer simulations. In the hands-on laboratory experiments, a 

group of students was asked to investigate the motion of a falling object using a 

picket fence and a photo gate. Another group of students was asked to interact with a 

simulated version of this hands-on investigation. Both groups completed a pretest and 

posttest which assessed their understandings of the presented concepts as well as their 

confidence levels regarding their answers to the content questions. Analysis of the 

pre- and post-tests showed no significant differences between the students in the 

hands-on condition and the students in the simulation condition. This suggests that 

both methods "facilitated the comprehension of the concepts involving the behavior 

of objects in freefall" (Pena & Alessi, 1 999, p. 454). Pena and Alessi hypothesized 
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that since "the simulation investigations eliminated much of the logistical overhead" 

(p. 455) associated with the in-depth laboratory investigations, more teachers would 

be willing to incorporate these investigati9ns within their courses. 

Many researchers have discussed the general benefits regarding the use of 

computer simulations within a physics classroom. Zacharia (2005) published a study 

in the International Journal of Science Education that described the results of his 

study which compared the effects of interactive computer simulations with science 

textbook assignments on the nature and quality of a subject' s  explanations regarding 

( 

physical phenomenon in mechanics, waves/optics, and thermal physics. The results 

indicated that use of computer simulations had more positive impact on the nature 

and quality of the subject's explanation. The explanations were more elaborate, 

reflected cause-effect reasoning, and formal reasoning (Zacharia, 2005). McDonnell, 

McAtamney, Keegan, and McMahon (200 1), in their article "Aspects ofVirtual 

Reality and Visualization," which appeared in the International Journal of Modern 

Physics, state that "understanding is helped if you can have some sort of picture in 

your head" (p. 58 1 ) . They claim that multimedia tools are mechanisms for instilling 

this picture. Tao (2004) discussed the mediating role that the computer simulation 

played while students, working in dyads, investigated image formation by lenses. The 

results of this study showed "that overall, students improved their understanding of 

image formation" (Tao, 2004, p. 1 1 7 1 ). In a similar study, Eylon, Ronen and Ganiel 

( 1 996) showed that RAY, a computer based learning environment developed as a tool 

for enhancing the learning of geometric optics, contributed significantly to student 
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understandings of geometric optics. Tao and Guns tone ( 1999) explained that 

computer simulations allow students to freely explore the micro-world of the program 

by changing the parameters of the variables and immediately visualizing the 

consequences of their manipulations. He claimed that this allowed students to 

interpret the underlying scientific conceptions of the program and to compare them 

with their own conceptions. Graham and Rowlands (2000), in their article "Using 

Computer Software in the Teaching of Mechanics," reasoned that the major difficulty 

in challenging inaccurate mental models of mechanics is the inability to set up an 

experiment in which the s tudent or teacher is able to control all of the variables. They 

conclude that many of these difficulties can be removed through the use of software 

that can simulate many different physical situations. 

Limitations to Computer Simulations 

Despite the many benefits that computer simulations provide for physics 

education, as with any instructional method, there are limitations and negative 

consequences involved in their use. Steinberg (2000), from the City College ofNew 

York, examined two different instruction techniques used in an introductory physics 

course to present the effects of air resistance on the motion of an object. One 

instructional technique involved the use of a computer-based tutorial, and the other 

used exclusively non-computer-based techniques. Steinberg observed that in both 

situations the students were diligent and engaged, however, since the students without 

a computer had no way of directly verifying their answers, they spent more time 

reasoning about the logic behind their answers. In contrast, students who had access 
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to the computers would rely on receiving the answers from the computer without 

taking the opportunity to substantiate their answers for themselves. The students 

seemed to adopt the attitude of "it is true because the computer says it is true" 

(Steinberg, 2000, p. S39). From his observations, Steinberg (2000) claimed that 

"there is a danger that with computer simulations, students will see no need to take 

responsibility for their own understanding" (p. S39). 

A Lab of a Different Nature- Computer Simulations with Traditional Labs 

Since laboratory investigations and computer simulations both have clear 

advantages to physics instructions, some researchers have concluded that the two 

pedagogical methods should be implemented in conjunction with each other. In her 

article, "Integrating the study of trigonometry, vectors, and force through modeling," 

Helen M. Doerr ( 1996), of Syracuse University, discusses the benefits ofusing 

computer simulations in conjunction with laboratory based experiments to construct 

an understanding of the motion of an object down an inclined plane. The study was 

conducted in an integrated algebra, trigonometry, and physics class containing 

seventeen students ranging from grade nine to grade twelve. Doerr collected data in 

the form of interviews, observations, pretests, and posttests. A clear benefit described 

in her research was that when the students ' analyses of their experimental results 

were inconclusive, they turned to the simulation environment in an information

gathering approach in order to construct a complete understanding. Another benefit 

was that the simulation environment allowed the students to set up experiments that 

were free of experimental error. The simulated experiments also allowed the students 
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to run many more trials, and resulted in the refinement of the conclusions generated 

during the hands-on experiment. Doerr concluded that in beginning an experiment 

with a hands-on activity, the students generated their own representations of the 

phenomenon. They could then verify their representations through the simulation. 

"In principle, the simulations should serve as a cognitive framework for 

enhancing the subsequent more open-ended inquiry learning in the subject matter 

domain ofthe experiments" (Zacharius & Anderson, 2003 , p. 6 1 8) .  To test their 

opinion, Zacharia and Anderson integrated simulations and experiments into a one

semester physics class. The results from semi-structured interviews with the 

participating students indicated that the use of computer simulations prior to the 

completion of an inquiry-based experiment improved the student's ability to make 

acceptable predictions and explanations of the phenomenon in the experiments. From 

the interviews, they were also able to conclude that the students experienced 

significant changes in their mental models related to the areas of mechanics, 

waves/optics, and thermal physics. 

The research shows that students typically enter introductory physics classes 

with incredibly naive theories of motion (McCloskey, 1 984) that are deeply rooted in 

their current mental models. It  is  the goal of physics education to present students 

with the inconsistencies that exist between their current mental models and truth 

according to the laws of physics. The exact pedagogical methods for this presentation 

are not universally agreed upon. However, what is obvious to most researchers is that 

if integrated properly, computer simulations can enhance the learning that takes place 
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within a physics classroom. As stated by Steinberg (2000), "if we ignore the critical 

role of computers in science and engineering, we would be doing a disservice to 

students" (p. S40). 
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Chapter 3 :  Applications and Evaluation 

Objective of the Study 

As stated previously, the main goal of this action research proj ect is to 

determine if a computer simulation can act as a bridge between scientific theory and 

perceived reality. If a computer simulation is effective at bridging this gap, students 

should be able to more effectively revise their naive theories of motion. The topic of 

focus for this proj ect was Newton's  First Law of Motion. The law states, "An obj ect 

that is at rest will remain at rest, and an object that is moving will continue to move in 

a straight line with constant speed, if and only if the net force acting on that obj ect is 

zero" (Zitzewitz, 2005, p. 94). Although this law can be recited by most students by 

the time they reach high school, I have found that few students accurately apply this 

law to the motion of everyday obj ects. 

Participants in the Study 

In order to investigate these questions, an action research project was 

developed within the context of a high school physics classroom. Thirty-six eleventh 

and twelfth grade students, divided between three classes, participated in the proj ect. 

Of the thirty-six students, three students are classified as "special needs" students 

with instructional modifications authorized through a New York State 504 or IEP. 

The group contained seventeen girls and nineteen boys, with ethnic origins being 

predominately white/Anglo-Saxon. According to the New York State School Report 

Card, the high school contains approximately 850 students with a demographic 

breakdown of 85% white (not Hispanic), 7% black (not Hispanic), 6.5% Hispanic, 
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and 1 .5 % American Indian, Pacific Islander, or Asian. The high school is officially 

classified by the U.S. Department of Education as a low-income school district, with 

1 5% of the student population e-ligible for the free school lunch program. 

The classroom contains twenty student desks located at the front of the room 

and three large laboratory tables located in the back of the room. A computer cart 

containing fourteen laptops is located in the classroom. Each laptop has wireless 

internet capabilities and the Interactive Physics® software package. An InFocus ® 

computer video projector is available to the teacher for large group instruction. 

Classroom instruction takes place in the form of lectures and laboratory 

activities. Formal lectures are presented five times a week during forty-minute 

periods. Laboratory instruction occurs three times a week during a forty-minute 

period that immediately follows the lecture period. The back-to-back lecture and lab 

periods allow instructional flexibility for activities that may require more than a forty 

minute period to complete. The classroom teacher, author of this paper, is certified by 

New York State in the area of Physics 7- 12  and has five years teaching experience 

within the New York State educational system. 

Procedures of the Study 

Using Newton' s  First Law as a basis for the action research project, I 

developed a laboratory investigation in which a computer simulation was used in 

conjunction with a hands-on laboratory activity. This hands-on laboratory activity 

involved the exploration of the effects ofbalanced and unbalanced forces on the 

motion of a dynamic cart. Using the Interactive Physics ® software, I designed a 
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computer simulation that mirrored the hands-on activity. After a short description of 

the activity, students worked in dyads to complete the laboratory investigation. 

Three separate classes, containing a total of 36 students, completed the 

laboratory investigation. Each class had an 80-minute time block to complete the 

tasks. The main objective in the investigation was to determine how balanced and 

unbalanced forces affect an object's motion. Within the hands-on setup (see Figure 

3 ), there appears to be only two forces acting on the cart, the "engine force" and the 

"resistance force," however, there are other horizontal forces that affect the motion of 

the cart. These forces include the frictional forces present as a consequence of air 

resistance and surface to surface contact. 
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Figure 3. Hands-on setup for each group of students. 
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Within the Interactive Physics® computer simulation (see Figure 4) the 

students had the ability to control all of the forces that were affecting the motion of 

the cart as well as the initial velocity of the cart. The students were able to control 

these variables using the four sliders labeled Engine Force, Resistance Force, 
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Unnoticed Forces, and Initial Velocity. Graphs and meters within the simulation 

allowed the students to quantitatively and qualitatively analyze the motion of the cart. 

During the investigation, specific emphasis was placed on the type of motion possible 

when all forces were in equilibrium. Through careful experimentation and 

observation the students were able to observe situations resulting in either accelerated 

motion or constant velocity motion. 
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Figure 4. Interactive Physics computer simulation interface. 

Instruments of the Study 

Qualitative and quantitative data were collected throughout the course of the 

investigation. Prior to any intervention, each student was asked to complete a pretest 

designed to identify the presence of any naive theories motion relating to Newton's 

First Law of motion (see Appendix B). Qualitative and quantitative data were 

gathered from the pretests. Upon completion of the pretest, several students took part 
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in short interviews related to their responses to the pretest questions (see Appendix 

C). The following hour was devoted to the completion of the laboratory investigation 

(see Appendix D). Twenty-four hours later, each student was asked to complete a 

posttest (see Appendix E). This posttest was designed to identify any changes in 

mental models of motion that resulted from the investigation. Post-intervention 

interviews (see Appendix G) were then conducted with the students that took part in 

the pre-intervention interviews. Finally, each student completed a questionnaire that 

explored his/her opinions on the effectiveness of using computer simulations in 

conjunction with hands-on activities (see Appendix F). 
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Chapter 4: Results 

Pretest 

Greca and Moreira (2002), McClosekey ( 1 984), and Tasar, Dana, and Lunetta 

(2000) independently c;oncluded that it is very difficult to provide physics instruction 

with lasting effects on a student's mental models. As stated by Greca and Moreira 

(2002), "one could say that the physics description of the world remained indifferent 

to the [classroom] experience for the majority of the students" (p. 1 12). According to 

Johnson Laird's Mental Model Theory this difficulty arises as a consequence of a 

student's inability to construct a single mental model that satisfies a set of 

propositions. The propositions in this case include truth according to reality and truth 

according to theory. If a student is unable to resolve the conflict between these two 

truths, the student's  mental model of motion will remain unchanged. 

The first step in my research was to determine if the regular classroom 

instruction received by my students had been sufficient to eliminate any of their na'ive 

mental models of motion (see Appendix A). In order to make this determination, a 

pretest was given to each of the 36 students prior to any intervention. Despite success 

on written tests given previously in the semester, quantitative analysis of the pretests 

showed that 60% of the students predicted that a car initially traveling at 65 mph 

would come to a stop if the resistance force was equal and opposite to the engine 

force. During interviews sessions, three students were asked to explain why they 

believed the car would stop. 
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Student A 1 commented: 

It is about equal and opposite forces [Newton's Third Law], like 

if you ran into a wall. It pushes back on you with an equal and 

opposite force. This force results in no motion. 

Student A2 commented: 

It is what happens in everyday life. If something pushes against you 

with an equal force it will cause you to stop. 

Student A3 commented: 

The car's motion would have to stop; it would be at rest. The force 

propelling it and resisting it would cancel out and with no net force 

acting on it, it would not move. 

Each explanation, as well as the predictions made by 60% of the students, 

violates Newton's First Law of motion and points toward the retention of a naYve 

theory of motion. It was obvious that for the majority of the students, regular 

classroom instruction was not effective at causing lasting changes to their mental 

models. 

Laboratory Investigation 

Working in dyads, the students completed the laboratory investigation 

described in the Procedures of the Study section of this report. The investigation 

allowed the students to interact with both a computer simulation and hands-on 

equipment to investigate the behavior of an object under situations involving 

balanced and unbalanced forces. 
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While the students were completing the investigation, I made several 

observations regarding their use of the provided equipment. I noticed that the students 

seemed to prefer to manipulate the variables within the computer simulation instead 

of the hands-on equipment. When I inquired about my observation one student 

commented, "The computer simulation is easier to control, therefore it is more 

reliable." Despite the students' preference to manipulate the computer simulation, 

there seemed to be a hesitation by the majority of the students to trust the results of 

the simulation. The students often returned to the hands-on equipment to verify the 

results obtained through the use of the computer simulation. As stated by a student 

working with the computer simulation, "The computer helps me to understand, but it 

does not prove anything to me. For that I need the cart in front of me." All of the 

students seemed to enjoy and benefit from the simultaneous use of computer 

simulation and the hands-on equipment. 

Posttest 

The posttest, which was identical to the pretest, was given 24-hours after the 

intervention. The time lag between the intervention and the posttest was designed to 

assess whether the intervention had lasting effects on the mental models of the 

students. 

Analysis of the posttest responses showed an increase in the percentage of 

correct explanations for the car scenario. Compared to the 60% accuracy on the 

pretest, 92% of the participating students correctly explained that the car would 

continue at a constant velocity when the sum of the resistance forces was equal and 
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opposite of the engine force. On the posttest, the students were asked to describe how 

they arrived at their explanation for the behavior of the car. In answering this 

question, 1 9  students identified the computer simulation as the main source of 

assistance in the development of their explanation. Written comments to this question 

included: 

By using the computer simulation there is a visual to back up the 

theories that have been proven to be true. 

The graphs within the computer simulations allowed us to understand 

what truly happens when all of the forces were taken into 

consideration. 

At first I thought that car would stop if the resistance forces were 

equal to the force of the engine, but after doing the experiment on 

the computer I see that the car kept moving as long as the unnoticed 

forces were at zero. 

Post-intervention interviews were conducted with the three students who 

participated in the pre-intervention interviews. In the pretest all three students 

incorrectly predicted that the car would stop. In the posttest all three students 

correctly predicted that the car would continue to move at a constant velocity. During 

the post-intervention interview the three students were asked to explain how they 

came to conclude that the car would remain in constant velocity motion. Their 

responses included: 
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Student A l :  

When the net force is zero, there's  nothing to stop the car. So, if it was 

moving it would keep moving, but not change in speed. 

Student A2 : 

I was initially thinking of what would happen on earth, not in the 

physics ideal world. I saw in the computer simulation and in the 

hands-on activity that if the net force is zero, a car already moving 

wo).lld not stop. 

Student A3 : 

In both the computer and in real-life, when we added enough mass to 

create a truly balanced system, the car kept moving at a constant speed 

after you gave it a push [an initial velocity] . 

There are many factors that could have contributed to the increase in the 

percentage of correct explanations of the car scenario, however, the results from both 

the posttests and the interviews point toward students making accurate revisions to 

their na'ive mental models of motion through the simultaneous use of the computer 

simulation and the hands-on activities. However, the comments made by Student A2 

during the post-intervention interview may be a cause for concern about student 

beliefs. It is possible that a portion of the students see a major disconnect between 

what "happens on earth" and what happens "in the physics ideal world." In her 

comments she still seems to be struggling with bridging the gap between theory and 

reality. Despite her ability to correctly predict the behavior of the car, it appears as 
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though the intervention may not have been helpful in revising her nai."ve theories of 

motion. 

Post Intervention Questionnaire 

Once the students finished all of the components in the intervention, they were 

asked to complete a post-intervention questionnaire. The questionnaire was designed 

to collect their opinions regarding the effectiveness of a computer simulation when 

used in conjunction with a hands-on laboratory investigation. 

The questionnaire asked the students to comment on whether the computer 

simulation was effective at clarifying the results of the laboratory investigation. 

According to their responses, 92% of the students believed that the computer 

simulation was effective. The three students, 8% of the population, which said that it 

was not effective, explained that regular classroom instruction was sufficient for them 

to understand the concept. For the students that supported the use of the computer 

simulation, comments included: 

It [the computer simulation] shows us exactly what teachers try to put 

into words. 

The computer simulation was a visual example that worked the way 

that theory says it should. 

It [the computer simulation] helped me to see what was actually taking 

place, which clarified my misconceptions. 

Sometimes in physics it is hard to completely understand some of the 

theories, like how a car could stay in motion even if the force of 

33 



friction was equal to the engine force. The computer simulation 

actually showed me how this is true. 

The computer helped give a clear picture in my mind of how resistance 

affects motion. 

By interacting with the computer, and changing the resistance for 

myself, it was a lot easier to visualize what happens, rather than just 

discussing it in class and trying to create my own mental picture. 

I was also curious if the students believed that the computer simulation 

contributed to their understanding of the physics concept beyond what they would 

have understood with only the hands-on laboratory activity. From the results of the 

questionnaire, 86% of the students believed that the computer simulation did extend 

their understanding. Aligned with the results from the first question, the students who 

indicated that the computer simulation did not extend their understanding explained 

that they already had a clear understanding of the concept. The students who 

indicated that the computer simulation extended their understanding explained: 

The mixture of real-world lab with the computer simulation of ideal 

conditions, gave me a more complete understanding of the law as well 

as a real world application. 

No matter how hard we tried, we could not ' even' the friction with the 

added mass. Real-life just can't be perfect, so you always end up with 

results that are aligned with theory. In the computer simulation, your 

experiment can be perfect. 
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The hands on activity helped a lot, but the computer simulation proved 

the concept better by showing the graphs that kept on going. 

The physics concept is based on things that can't be proven solely in a 

lab experiment done in a classroom. It takes further understanding to 

believe something that goes against what you see everyday. 

The simulation helps to put a real-life perspective on theoretical 

situations. 

Finally, I was curious about the students ' opinions regarding the use of 

computer simulations in conjunction with labs completed earlier in the semester. 
' 

When asked to comment on this topic, the same 86% of the students felt as though a 

computer simulation would have aided in their understanding in several laboratory 

investigations. Student comments included: 

During some of the labs, I would be doing it wrong and not know why. 

With a computer simulation you can see how it is supposed to be and 

then work towards making your lab close to that. 

I think computer simulations give very clear examples of concepts in 

physics. Some labs like the one on waves might have been clearer if I 

could have seen the concepts happening on the computer. 

There are a lot of labs where we had to imagine certain conditions that 

had a direct effect on our results. By having to imagine it, you don't 

really get a complete grasp of the concept. Perhaps if we had the 
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computer simulation for such labs, we would have been able to 

visualize the concept a little more effectively. 

The comments from the majority of the students showed tremendous support 

for the simultaneous use of computer simulation and hands-on laboratory 

investigations. Any comments that did not support the use of computer simulations 

were from students that felt as though they had a sufficient understanding of the 

concepts without the extra assistance. 
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Chapter 5: Conclusions and Recommendations 

Discussion 

The analysis of the posttests, interviews, and questionnaires reveals two major 

themes. As the posttest results and the post-intervention interviews show, the students 

appear to be making accurate revisions to their na'ive mental models of motion, as 

related to Newton's First Law of Motion. As noted by one student, "At first I thought 

that car would stop if the resistance forces were equal to the force of the engine, but 

after doing the experiment on the computer I see that the car kept moving as long as 

the unnoticed forces were at zero." 

The second major theme, evident on the student questionnaires, is that the 

majority of the students believe that the computer simulations assisted in the 

clarification of the laboratory results and allowed them to more fully understand the 

theoretical concepts being presented in the laboratory investigation. Typical student 

comments were similar to that of this student, who said, "The mixture of real-world 

lab with the computer simulation of ideal conditions gave me a more complete 

understanding of the law as well as a real world application." 

Overall, computer simulations, when used in conjunction with traditional 

laboratory-based experiments, allow my students to bridge the gap between 

theoretical truths and perceived truths. As one student commented, "Looking at the 

motion of the car through the computer simulation helped me to make the connection 

from the lab to the physics theory of motion." 
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Action Plan 

Based on the themes that have emerged in this action research project, I plan 

to develop more laboratory investigations which contain computer simulations and 

traditional hands-on activities. Many of these simulations can be developed through 

the Interactive Physics® software. However, the use of this particular software is 

limited mostly to concepts in mechanics. The simulations necessary for investigations 

within other areas of physics, such as optics, waves, electricity and magnetism, and 

modem physics, will need to be found on the internet or purchased through a vendor. 

There are many simulation bundles available for purchase through any physics 

education catalog. For simulations in modem physics, optics, and waves, NeoSci® 

makes three popular simulation software bundles, NeoSci ® Modem Physics 

Simulation, NeoSci ® Light & Optics Simulation, and NeoSci ® Waves & Sound 

Simulation. For simulations in the areas of electricity and magnetism, Discovery 

School® has several software bundles available. 

Software purchases will need to be approved by the technology committee 

within our high school. Submission and approval of technology purchases would need 

to be completed by July 1 ,  2006 to assure time for installation and trouble shooting. 

Any laboratory activities designed to include the new software would be written 

throughout the course of the 2006 - 2007 school year. Data regarding the 

effectiveness of this software would need to be collected throughout the course of the 

first year of implementation. 
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The results of this action research process will be shared at two levels. First, 

the research will be shared on a local level within science department meetings. If I 

obtain approval for the software purchases, many of the simulations would be 

appropriate for use within other science disciplines. Training sessions would need to 

be organized and made available to any teachers desiring to use the simulation 

software. Upon approval from the superintendent of curriculum, in-service credit 

could be awarded to any participating teachers. The results of this action research 

project should also be shared with other physics teachers in the surrounding school 

districts. A forum for sharing is possible through the RAPTOR organization. 

RAPTOR, Rochester Area Physics Teachers Out-Reach, is a group of local physics 

teachers who convene once a month to share ideas and discuss issues related to 

physics education. I hope to give a short presentation on the use of computer 

simulations in conjunction with traditional laboratory investigations during an 

upcoming meeting. 

Recommendations for Future Research 

This research has indicated that the use of computer simulations in 

conjunction with laboratory-based experiments helped students to revise their naive 

mental models of motion. However, very little research as been done to identify other 

areas in physics where this instructional technique would help to increase student 

understanding. Future researchers should focus on identifying the role of computer 

simulations in areas such as Electromagnetism, Optics, and Modem Physics. Once 

this role is identified, resources should be allocated on a national, state, and local 
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level for the creation of a physics curriculum that utilizes computer simulations 

within a physics laboratory setting. 

Conclusions 

On the basis of their everyday experiences, people develop remarkably well

articulated na'ive theories of motion (McCloskey, 1984). These na'ive theories of 

motion are constructed through interaction with a world dominated by latent forces. 

The presence of these forces is so universal that their effects are considered to be a 

normal part of the behavior of an object in motion. As a consequence, the mental 

models that a person develops when interacting with this world are inherently flawed. 

These flawed mental models result in a gap between theory and perceived reality. 

Physics educators are faced with the difficult task of eliminating this gap. Based on 

the results of this research project, computer simulations may act as a bridge between 

theory and perceived reality when used alongside traditional laboratory 

investigations. As one of my students commented, "Looking at the motion of the car 

through the computer simulation helped me to make the connection from the lab to 

the physics theory of motion." 
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Appendix A 

Student Pretest 

Question One 
A, B, and C below show a car in three different scenarios of motion. 

A 

At rest 
v = O mph 

B 

•'"' •  
Constant Velocity 

v =  65 mph 

c 

•·'h-·· 
Speeding up 

v = 50 mph increased to 65mph 

Classify each scenario as having either a net force of zero or a net force 
greater than zero. (Net force of zero means that all of the forces balance each 
other out. A net force greater than zero means that there is an unbalanced 
force present.) For each car, explain why the classification must be true. 

Car A: 

Car B :  

Car e :  

Question Two 
A car is traveling down the road at 65 mph. If the resistance forces (air, 
friction, etc.) gradually increased until they were pushing against the car with 
a force that is equal and opposite to the force of the engine, what would 
happen to the car's motion? Explain your answer. 

< Resistance 

Describe how you arrived at the explanation for Question Two. What allowed you to 
answer the question? 
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Appendix B 

Pre-Intervention Interview Session 

To the Participant: 

All information in this interview will remain confidential. Your opinions will be used 
to draw general conclusions regarding the effectiveness of computer simulations used 
in conjunction with traditional laboratory experiments in the development of accurate 
mental models. 

A car is traveling down the road at 65 mph, if the resistance (air, friction, etc.) was 
pushing against the car with a force that is equal to the force of the engine, what 
would happen to the car's motion? 

----- < Resistance 

----

Describe why you believe this. 
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Appendix C 

Laboratory Investigation 

Problem: How do balanced and unbalanced forces affect an object's motion? 

Our personal theories of motion are constructed through interaction with a 
world dominated by the effects of friction and gravity. The presence of these forces 
is so universal that their effects are considered a normal part of the behavior of an 
object in motion. Consequently, our personal theories are inherently flawed. Let us 
look at a simple example, a car traveling down the road. If the resistance forces, such 
as friction and air resistance, are exactly equal and opposite to the car's engine force, 
will it stop? 

Lab Set -up: 

cart II laptop II I 
pulley 

........................... ""·····················································································�·····························t················· ············· 
lJ lJ l ILr------------------------------------------�1 

i/ string 

0 
mass 

(Resistance).__ _____________________ _, 

Set-up 
1 .  Set-up the equipment as shown above. 

D 
mass 

(Engine) 

2. The Interactive Physics simulation can be opened from the student shared 
folder on the network drive. Open the IP Models folder. 

Procedure: 
1 .  Hang two 100 g masses from each string as shown in the diagram above. The 

force pulling to your right will represent the engine force and the string 
pulling to your left will represent the resistance force. (If these forces are 
equal and opposite, will the cart stop?) 

2. Give the cart a gentle push to the right. Describe the carts behavior. __ _ 
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3 .  The forces that we can clearly see are equal and opposite, however, there are 
unnoticed forces that are causing the visible forces to be unbalanced. 

4. Look at the computer simulation. Set the following parameters : 
Engine Force = 5 N 
Resistance Force = 5 N 
Unnoticed Resistance = 0. 1 0  
Initial Velocity = 4.0 m/s 

Click Run. Describe what happens to the cart. __________ _ 

5 .  Keeping everything else the same, adjust the Unnoticed Resistance to zero. 
Click Run. Describe what happens to the cart. Pay close attention to the 
graph. ______________________________________________ __ 

6. If the resistance force was exactly equal and opposite to the engine force, 
would a car in motion stop? _________________ _ 

7. The difficulty in laboratory investigations is trying to control the forces that 
we can't see. To attempt balance out the unnoticed resistance force small 
masses and/or paper clips from the engine mass end until you can get your 
cart to roll at a constant velocity across the counter. (You will have to tap the 
cart to get it to start moving after each adjustment is made.) Once this is 
accomplished you have truly created a system where the resistance force 
equals the engine force (a net force of zero). 

8 .  From the network folder open the "Corvette Simulation." This simulation is 
designed to exactly match reality. You can control the engine force, but the 
resistance force is out of your control. As the car speeds up, the resistance 
force increases due to an increase in air drag. As the resistance force 
increases, the net force approaches zero (as indicated in the meter). When the 
net force is equal to zero (in other words, the resistance force is exactly equal 
and opposite to the engine force), what happens to the velocity of the car? 
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Conclusion: 
If the resistance forces, such as friction and air resistance, are exactly equal and 
opposite to the car' s engine force, will the car stop? ____________ _ 
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Appendix D 

Student Posttest 

Question One 
A, B, and C below show a car in three different scenarios of motion. 

A 

stl#tii-
At rest 

v = O mph 

B 

.. ,, ,,. 
Constant Velocity 

v = 65 mph 

c 

Speeding up 
v = 50 mph increased to 65mph 

Classify each scenario as having either a net force of zero or a net force 
greater than zero. (Net force of zero means that all of the forces balance each 
other out. A net force greater than zero means that there is an unbalanced 
force present.) For each car, explain why the classification must be true. 

Car A: 

Car B :  

Car e :  

Question Two 
A car is traveling down the road at 65 mph. If the resistance forces (air, 
friction, etc.) gradually increased until they were pushing against the car with 
a force that is equal and opposite to the force of the engine, what would 
happen to the car' s motion? Explain your answer. 

---- � ............. .. �- . < Resistance 

----

Describe how you arrived at the explanation for Question Two. What allowed you to 
answer the question? 

50 



Appendix E 

Post-Intervention Questionnaire 

To the Participant, 

All information in this questionnaire will remain confidential. Your opinions will be 
used to draw general conclusions regarding the effectiveness of the computer 
simulations used in conjunction with traditional laboratory experiments in the 
development of accurate mental models. 

1 .  Did the computer simulation clarify the results of the laboratory investigation? 

No Yes 

Explain how or why. 

2 .  In your opinion, did the computer simulation contribute to your understanding 
of the physics concept beyond what you would have understood with only the 
hands on activity? 

No Yes 

Explain how or why. 

3 .  Thinking back to other labs that we have done in physics this year, do you 
think a computer simulation of the investigation would have aided in your 
understanding of the lab and the concept it was trying to teach? 

No Yes 

Explain why. 

4. Rate the effectiveness of the computer simulation in helping you to develop a 
mental picture of the physics phenomenon. 

1 2 3 4 5 
Not Effective Very Effective 
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Appendix F 

To the Participant: 

All information in this interview will remain confidential. Your opinions will be used 
to draw general conclusions regarding the effectiveness of the computer simulations 
used in conjunction with traditional laboratory experiments in the development of 
accurate mental models. 

A car is traveling down the road at 65 mph. If the resistance (air, friction, etc.) was 
pushing against the car with a force that is equal to the force of the engine, what 
would happen to the car's motion? 

---- < Resistance 

----

Describe why you believe this. 
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