
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-35

2006-01-01

Efficient Mapping of Virtual Networks onto a Shared Substrate Efficient Mapping of Virtual Networks onto a Shared Substrate

Jing Lu and Jonathan Turner

Virtualization has been proposed as a vehicle for overcoming the growing problem of internet

ossification [1]. This paper studies the problem of mapping diverse virtual networks onto a

common physical substrate. In particular, we develop a method for mapping a virtual network

onto a substrate network in a cost-efficient way, while allocating sufficient capacity to virtual

network links to ensure that the virtual network can handle any traffic pattern allowed by a

general set of traffic constraints. Our approach attempts to find the best topology in a family of

backbone-star topologies, in which a subset of nodes constitute the... Read complete abstract Read complete abstract

on page 2. on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Lu, Jing and Turner, Jonathan, "Efficient Mapping of Virtual Networks onto a Shared Substrate" Report
Number: WUCSE-2006-35 (2006). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/186

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/186?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/186

Efficient Mapping of Virtual Networks onto a Shared Substrate Efficient Mapping of Virtual Networks onto a Shared Substrate

Jing Lu and Jonathan Turner

Complete Abstract: Complete Abstract:

Virtualization has been proposed as a vehicle for overcoming the growing problem of internet ossification
[1]. This paper studies the problem of mapping diverse virtual networks onto a common physical
substrate. In particular, we develop a method for mapping a virtual network onto a substrate network in a
cost-efficient way, while allocating sufficient capacity to virtual network links to ensure that the virtual
network can handle any traffic pattern allowed by a general set of traffic constraints. Our approach
attempts to find the best topology in a family of backbone-star topologies, in which a subset of nodes
constitute the backbone, and the remaining nodes each connect to the nearest backbone node. We
investigate the relative cost-effectiveness of different backbone topologies on different substrate
networks, under a wide range of traffic conditions. Specifically, we study how the most cost-effective
topology changes as the tightness of pairwise traffic constraints and the constraints on traffic locality are
varied. In general, we find that as pairwise traffic constraints are relaxed, the least-cost backbone
topology becomes increasingly "tree-like". We also find that the cost of the constructed virtual networks is
usually no more than 1.5 times a computed lower bound on the network cost and that the quality of
solutions improves as the traffic locality gets weaker.

https://openscholarship.wustl.edu/cse_research/186?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/186?utm_source=openscholarship.wustl.edu%2Fcse_research%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-35

Efficient Mapping of Virtual Networks onto a Shared Substrate

Authors: Jing Lu, Jonathan Turner

Corresponding Author: jl1@arl.wustl.edu

Web Page: http://www.arl.wustl.edu/~jl1

Abstract: Virtualization has been proposed as a vehicle for overcoming the growing problem of internet
ossification [1]. This
paper studies the problem of mapping diverse virtual networks onto a common physical substrate. In particular,
we develop a method for mapping a virtual network onto a substrate network in a cost-efficient way, while
allocating sufficient capacity to virtual network links to ensure that the virtual network can handle any traffic
pattern allowed by a general set of traffic constraints. Our approach attempts to find the best topology in a family
of backbone-star topologies, in which a subset of nodes constitute the backbone, and the remaining nodes each
connect to the nearest backbone node. We investigate the relative cost-effectiveness of different backbone
topologies on different substrate networks, under a wide range of traffic conditions. Specifically, we study how
the most cost-effective topology changes as the tightness of pairwise traffic constraints and the constraints on
traffic locality are varied. In general, we find that as pairwise traffic constraints are relaxed, the least-cost
backbone topology becomes increasingly "tree-like". We also find that the cost of the constructed virtual
networks is usually no more than 1.5 times a computed lower bound on the network cost and that the quality of
solutions improves as the traffic locality gets weaker.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Efficient Mapping of Virtual Networks onto a
Shared Substrate

Jing Lu and Jonathan Turner
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

Email: {jl1, jst}@arl.wustl.edu

Abstract— Virtualization has been proposed as a vehicle for
overcoming the growing problem of internet ossification [1]. This
paper studies the problem of mapping diverse virtual networks
onto a common physical substrate. In particular, we develop a
method for mapping a virtual network onto a substrate network
in a cost-efficient way, while allocating sufficient capacity to
virtual network links to ensure that the virtual network can
handle any traffic pattern allowed by a general set of traffic
constraints. Our approach attempts to find the best topology
in a family of backbone-star topologies, in which a subset
of nodes constitute the backbone, and the remaining nodes
each connect to the nearest backbone node. We investigate
the relative cost-effectiveness of different backbone topologies
on different substrate networks, under a wide range of traffic
conditions. Specifically, we study how the most cost-effective
topology changes as the tightness of pairwise traffic constraints
and the constraints on traffic locality are varied. In general, we
find that as pairwise traffic constraints are relaxed, the least-cost
backbone topology becomes increasingly “tree-like”. We also find
that the cost of the constructed virtual networks is usually no
more than 1.5 times a computed lower bound on the network cost
and that the quality of solutions improves as the traffic locality
gets weaker.

I. I NTRODUCTION

In recent years there has been a growing recognition that the
protocols at the heart of the Internet have become so resistant
to change that practical progress in networking has become
stalled. Virtualization is widely viewed as offering a way to
overcome the current impasse [1]. In a virtualized network
infrastructure, diverse virtual networks share a common phys-
ical substrate consisting of both links and flexible network
platforms capable of hosting multiple virtual routers [2], [3].
A diversifiedInternet can lower the barriers to entry and make
it easy to deploy new network architectures and technologies,
stimulating innovation and higher value services.

This paper addresses the problem of how to map virtual
networks onto a common substrate in a way that enables the
network to support any traffic pattern allowed by a general
set of constraints, while minimizing the network cost. The
problem of mapping multiple virtual networks onto a common
physical infrastructure has been addressed in several different
contexts. PlanetLab [4] is an overlay network testbed that is
similar in spirit to the virtualized network environment that
we are interested in here [2]. However, resource allocation
in PlanetLab is handled in a very loose fashion. The basic
operation of PlanetLab can be best characterized as “fair,

best-effort.” Since users can place computational demands
on any node in the PlanetLab system as they choose, there
is no systematic way to reserve resources for any particular
purpose. In addition, PlanetLab operates purely in an overlay
mode without the use of dedicated links between nodes. These
factors make the nature of the resource allocation problem in
PlanetLab fundamentally different from the problem we focus
on here.

PlanetLab supports the use of multiple resource allocation
services, which seek to balance the load across PlanetLab
nodes, while satisfying objectives provided by users. One such
service is assign, a resource discovery and allocation tool
initially designed for the Emulab testbed [5].Assign Char-
acterizes resources and groups them into equivalence classes
to dramatically reduce the search space. Using simulated
annealing, it then seeks a good match between the user’s
stated resource needs and the available resources. Focusing on
load balance issues on substrate networks, Zhu et al. proposed
a set of heuristic algorithms for assigning substrate network
resources to virtual networks [6]. Their main idea is to identify
the cool spot in the substrate (i.e. an area with relatively low
stress in terms of available resources) and allocate resources
to the virtual networks from there.

In this paper, we focus on system contexts in which re-
sources can be reserved for use by different virtual networks,
and where resource requirements are defined in terms of a set
of general traffic constraints. This is built on prior work on
constraint-based network design[7]–[11], in which traffic is
defined by a set of constraints on the traffic between designated
sets of network nodes. In general, a constraint can be stated
informally as “the traffic from node setSsub1 to node set
Ssub2 is at mostB.” The classical form of network design
in which network traffic is specified as a matrix defining the
traffic flows between each pair of nodes, can be viewed as a
special case of constraint-based network design. The so-called
hose model, popularized by Duffield [12] can also be viewed
as a special case. The hose model specifies the total traffic
entering and leaving each node without placing constraints
on pairwise traffic flows. In this paper, we specify traffic
using a combination of pairwise constraints andtermination
constraintssimilar to those in the hose model. We also make
use of distance-based constraintsthat bound the amount of
traffic between each node and its more distant peers.

Given a set of traffic constraints, the objective of constraint-
based virtual network design is to find a network configuration
that can handle any traffic pattern allowed by the constraints.
This involves selecting a network topology comprising virtual
links and virtual routers, where the links areprovisioned
with sufficient capacity to accommodate any traffic pattern
permitted by the given constraints. In this paper, alternate
network designs are evaluated using a cost metric in which
the cost of a virtual link is proportional to the product of
its capacity and its physical length. Virtual links are typically
provisioned under the assumption that traffic is routed along
the least-cost path in the selected virtual network topology,
although other routing policies can also be handled. (It should
be noted that the routes used for network dimensioning are
best viewed as the “default paths” rather than the only paths
that may be used in the operational network.)

Our experiments show that the system of traffic constraints
has a profound influence on the least-cost network structure. In
particular, tight pairwise constraints favor network topologies
in which all pairs of nodes are directly connected by links
with just the right capacity. While constraints get looser,
“tree-like” topologies are advantageous in reducing network
costs. With constraints provided by the pure hose model, the
most cost-effective network topologies turn to have all nodes
connected through a single, centrally located intermediate
node. In addition, we find the least-cost network structure is
also affected by the underlying substrate network topology.

The paper proceeds as follows: Section II describes the
constraint-based virtual network design and mapping onto sub-
strate networks and our iterative design method. In particular,
II-A discusses the traffic constraints used for describing traffic
flows in networks. Link dimensioning using maximum flow
computations is presented in II-B, followed by a mixed integer
quadratic programming formulation of the mapping problem
in II-C. Section III shows how to compute a general lower
bound on the configuration cost. The iterative virtual network
design and mapping tool is described in Section IV. Using this
tool, virtual networks with different backbone topologies under
various conditions are mapped to three substrate networks. The
results are discussed in Section V. Finally, we conclude our
paper in Section VI.

II. CONSTRAINT-BASED V IRTUAL NETWORK DESIGN

The virtual network design problem starts with a substrate
network that is represented by an undirected graphH =
(W,F), in which each edgee has an associated length, and
these lengths are used to define shortest path distancesd(u, v)
between each pair of nodesu and v. For a particular virtual
network we also have a set ofaccess nodesA ⊆ W that
represents the locations in the substrate at which traffic enters
or exits that virtual network. Finally, we have a specification
of the expected traffic for the virtual network, which is given
in the form of a set of general traffic constraints. Each of the
constraints is simply an upper bound on the allowed traffic
from some setA1 ⊆ A to a disjoint setA2 ⊆ A.

The objective of the virtual network design problem is
to select a virtual network that has sufficient capacity to
handle any specific traffic pattern allowed by the given traffic
constraints, while minimizing the overall use of substrate
resources. A virtual network is a directed graph, defined on
a subset of the substrate nodes that includes all of the access
nodes, and possibly some others. Each directed edge(u, v)
of the virtual network is mapped to a shortest path in the
substrate and is assigned a length equal to the path length
d(u, v) in the substrate. Each edge(u, v) in the virtual network
is also assigned a capacityc(u, v), which must be sufficient to
ensure that the virtual network can handle any allowed traffic
pattern. To account for the use of substrate resources by a
virtual network, we “charge” the virtual network an amount
proportional toc(u, v)d(u, v) for each virtual network link.

Virtual network link capacities can be determined using lin-
ear programming [9], for any fixed routing policy. In particular,
if shortest path routing is used, one can determine for each
link, the traffic pattern allowed by the given constraints that
maximizes the traffic sent through the link. Thus, the key issue
in virtual network design is to determine which substrate nodes
to include in the virtual network and which pairs of nodes to
connect with virtual links.

Since the problem of finding an optimal virtual network
design is NP-hard, we seek to develop methods that produce
cost-effective, if not optimal designs. One approach to this
involves a direct search over the space of virtual network
topologies. A given solution can be incrementally modified
by adding/removing links and/or nodes, then the links of the
modified topology re-dimensioned, so that the cost can be
evaluated. This can be done using simulated annealing, or
some similar local search technique. This approach has two
drawbacks. First, to evaluate any candidate modification to the
current topology, we must recompute all the link dimensions.
Second, the overall huge space of candidate topologies makes
it difficult to determine which of the large number of possible
local modifications to choose from.

For these reasons, we explore a more structured approach
that reduces the per step overhead associated with exploring
alternate topologies, and effectively reduces the size of the
search space that must be explored. To do this, we constrain
the virtual network topologies to what we callbackbone-star
topologies. In a backbone-star topology, some of the nodes
are designated as backbone nodes, while the remainder are
referred to as access nodes. Each access node has a single edge
connecting it to a backbone node, meaning that each backbone
node is at the center of a “star” formed by its neighboring
access nodes. The subset consisting of the backbone nodes can
be connected together in an arbitrary fashion, but in this paper
we further constrain the search space by specifying a particular
backbone topology, such as a complete graph, a ring or a star.
The restrictions we impose on the topology make the virtual
network design problem primarily a problem of mapping the
virtual network onto the substrate in the most efficient way.
Fig. 1 illustrates a virtual network in a backbone-star topology,
where the four backbone nodes are connected into a complete

backbone
node

access node

Fig. 1. Example of a virtual network in a backbone-star topology, where the
four backbone nodes are connected into a complete graph

graph.
Note that if we have a fixed virtual network with dimen-

sioned links, we can quickly evaluate alternative mappings of
the backbone nodes to the substrate. However, as we change
the backbone mapping, we also change the shortest paths in the
virtual network, which changes the required link dimensions.
These inter-dependencies have led us to adopt the iterative
method outlined below.

1) Select an initial mapping of backbone nodes onto the
substrate. This initial mapping can be arbitrary, and sim-
ply provides a starting point for the iterative refinement
procedure.

2) Connect access nodes to backbone nodes. To provide
flexibility in the virtual network topology, we do not
make a rigid connection between access nodes and
backbone nodes. Instead, during each iteration of the
algorithm, we connect each access node to the backbone
node that is closest to it in the substrate.

3) Compute shortest paths. Given the specified topology
connecting the backbone nodes, the mapping of back-
bone nodes onto the substrate, and the connection of
access nodes to backbone nodes, we have a complete
virtual network topology with defined link lengths that
we can use to compute shortest paths in the virtual
network.

4) Determine link capacities. This can be done using linear
programming as in [9] or for restricted classes of traffic
constraints using maximum flow computations. This will
be discussed further in II-B.

5) Find best backbone node mapping. The previous steps
result in a complete virtual network topology with
defined link capacities. We now explore alternative
mappings of backbone nodes onto the substrate, while
maintaining the same virtual network topology and link
capacities. The best mapping found in this step is
then used in the next iteration of the algorithm, which
continues from step 2, above.

The computations required in steps 2 and 3 are straight-
forward and won’t be discussed further. The computations
required in steps 4 and 5 are discussed in more detail in II-
B and II-C, below. The iterative procedure terminates either

when there no further improvement in the quality of the
solution obtained, or a pre-specified upper bound on the
number of iterations is reached.

A. Defining Traffic Constraints

In general, traffic constraints can be expressed as upper
bounds on the traffic between arbitrary subsets of the virtual
network nodes. Although our approach can be applied to
virtual networks described by arbitrary constraints, there are
certain types of constraints that are particularly appropriate
for describing network traffic. By imposing some structure on
the system of constraints, we can make it easier for network
planners to define appropriate constraints, while also reducing
the computational effort required for link dimensioning.

For these reasons, we focus here on three classes of
constraints that are suitable for describing traffic flows in
networks. Termination constraintsdescribe the total traffic
terminating at the virtual network’s access nodes and are
described by two functionsα andω, whereα(u) is an upper
bound on the outgoing traffic from an access nodeu and
ω(u) is an upper bound on the incoming traffic to an access
nodeu. α andω are also called the egress traffic and ingress
traffic, respectively. When termination constraints are the only
constraints specified, we have an instance of the so-called hose
model [12].

Pairwise traffic constraintsare specified by a function
µ(u, v) which gives an upper bound on the traffic from an
access nodeu to another access nodev. We allow

∑
v µ(u, v)

to exceed α(u) and
∑

u µ(u, v) to exceed ω(v). When∑
v µ(u, v) is close toα(u) for all u and

∑
u µ(u, v) is close

ω(v) for all v, we say that the pairwise constraints are tight,
otherwise they are loose.

For each access nodeu, we defineγ(u) to be the local
neighborhoodof u. To limit the total amount of traffic atu that
is permitted to leave its neighborhood, we specify thedistance
constraintsby the functionsαF and ωF , whereαF (u) is an
upper bound on the total traffic from nodeu to nodes outside
of γ(u) andωF (u) is an upper bound on the total traffic going
to nodeu from nodes outside ofγ(u).

Distance constraints complicate the derivation of the pair-
wise constraints somewhat. We now describe the precise
method used to compute the pairwise constraints.

For any two nodesu andv, let

f1(u, v) = ω(v)∑
t∈γ(u)

ω(t)
· (α(u)− αF (u)) if v ∈ γ(u)

f2(u, v) = ω(v)∑
t/∈γ(u),t 6=u

ω(t)
·αF (u) if v /∈ γ(u)

When v ∈ γ(u), f1(u, v) representsv’s fair share ofu’s
local egress traffic among all nodes withinu’s neighborhood
γ(u). When v /∈ γ(u), f2(u, v) is v’s fair share ofu’s non-
local egress traffic amongu’s non-neighbors outside ofγ(u).
f1 and f2 are the traffic constraints fromu to v from u’s
perspective.

We also let

g1(u, v) = α(u)∑
t∈γ(v)

α(t)
· (ω(v)− ωF (v)) if u ∈ γ(v)

g2(u, v) = α(u)∑
t/∈γ(v),t 6=v

α(t)
·ωF (v) if u /∈ γ(v)

When u ∈ γ(v), g1(u, v) representsu’s fair share ofv’s
local ingress traffic among all nodes withinv’s neighborhood
γ(v). When u /∈ γ(v), g2(u, v) is u’s fair share ofv’s non-
local ingress traffic amongv’s non-neighbors outside ofγ(v).
g1 and g2 are the traffic constraints fromu to v from v’s
perspective.

Depending on whether or notu andv are neighbors, traffic
from u to v is bounded by the following four cases:

µ(u, v) =

δ·

max(f1(u, v), g1(u, v)) if v ∈ γ(u), u ∈ γ(v)
max(f1(u, v), g2(u, v)) if v ∈ γ(u), u /∈ γ(v)
max(f2(u, v), g1(u, v)) if v /∈ γ(u), u ∈ γ(v)
max(f2(u, v), g2(u, v)) if v /∈ γ(u), u /∈ γ(v)

where δ is called therelaxation factor. By setting δ = 1
we tightly constrain the pairwise traffic. By allowingδ to
grow larger than 1, more flexibility is allowed in the traffic
distribution.

B. Determining Link Capacities

In this section, we describe the procedure for dimensioning
each link, to ensure that it has sufficient capacity to handle
any traffic pattern allowed by the traffic constraints.

Given: A virtual network, represented as a directed graph
G = (V, E), a link ` ∈ E, a deterministic routing func-
tion R(u, v) specifying the path used by traffic fromu to
v and a set of traffic constraints defined by the functions
[α, ω, γ, αF , ωF , µ]. We are also givenA ⊆ V as a collection
of access nodes.

Find: a set oftraffic flowsf(u, v) that maximizes

∑

u,v∈A,`∈R(u,v)

f(u, v)

subject to the following inequalities:

f(u, v) ≤ µ(u, v) ∀u, v ∈ A∑

v∈A

f(u, v) ≤ α(u) ∀u ∈ A

∑

v∈A,v/∈γ(u)

f(u, v) ≤ αF (u) ∀u ∈ A

∑

u∈A

f(u, v) ≤ ω(v) ∀v ∈ A

∑

u∈A,u/∈γ(v)

f(u, v) ≤ ωF (v) ∀v ∈ A

The value of the objective function is the capacity needed at
link ` to ensure that̀ has enough capacity to handle any traffic

s

a1

a2

b1

b2

c1

c2

d1

d2

t

a3

a4

b3

b4

c3

c4

d3

d4

α(d)

α(a)

α(b)

α(c)

αF(a)

αF(b)

αF(c)

αF(d) ω(d)

ω(a)

ω(b)

ω(c)

ωF(a)

ωF(b)

ωF(c)

ωF(d)

µ(a,c)

µ(b,c)

µ(d,c)

Fig. 2. Example maximum flow problem for dimensioning link`

pattern allowed by the constraints. While we could solve this
problem using linear programming, it can also be formulated
as a maximum flow problem, allowing for a much faster
solution. Since link dimensions must be computed repeatedly
for every link during each iteration of the design procedure, the
use of maximum flow computations can significantly reduce
the overall running time.

The equivalent maximum flow problem is defined on a flow
graphN = (U,M) whereU = {s, t}∪{ui|u ∈ A, 1 ≤ i ≤ 4}.
The edge setM includes edges of the form(s, u1) with
capacity α(u), edges(u1, u2) with capacity αF (u), edges
(u3, u4) with capacityωF (u), and edges(u4, t) with capacity
ω(u) for all u ∈ A. For all pairs of vertices(u, v) with
` ∈ R(u, v), we include an edge of the form(ui, vj) for
1 ≤ i ≤ 2 and3 ≤ j ≤ 4 with capacityµ(u, v). Specifically,
if u ∈ γ(v) and v ∈ γ(u) an edge(u1, v4) is included. If
u 6∈ γ(v) and v 6∈ γ(u) an edge(u2, v3) is included. If
u ∈ γ(v) and v 6∈ γ(u) we include an edge(u1, v3). If
u 6∈ γ(v) and v ∈ γ(u) we include an edge(u2, v4). A
maximum flow froms to t corresponds to a worst-case traffic
configuration for link̀ . The capacity limits on the edges of the
form (s, u1) and(u4, t) ensure that the termination constraints
are satisfied. The placement of the edges of the form(u2, vj)
and (vi, u3) together with the capacity limits on the edges
of the from (u1, u2) and (u3, u4) ensure that the distance
constraints are satisfied. Finally, the capacities of the edges
of the form (ui, vj) ensure that the pairwise constraints are
satisfied. An example of one such flow graph for a virtual
network with access node setA = {a, b, c, d} is shown in
Figure 2. Three pairs of nodes,(a, c), (b, c) and (d, c) have
their traffic go through link̀ .

C. Backbone Node Mapping

In this section, we describe how we map backbone nodes
onto the substrate. We formulate the backbone mapping prob-
lem as a mixed integer quadratic program. We are given
a substrate networkH = (W,F) and a virtual network
G = (V,E). For each vertexu ∈ V , we are also given a
set of substrate verticest(u) ⊆ W that defines the set of
locations thatu may be mapped to. For access nodes in the
virtual network, t(u) will be a single substrate node, while
for backbone nodes,t(u) will be a subset ofW . For each pair

of substrate nodes(p, q), we are also given adistanced(p, q)
representing the shortest path length between nodesp and q
in the substrate. Finally, for link(u, v) in the virtual network,
we are given acapacity c(u, v). In particular, the unit link
capacity cost is set equal to the physical length of the link,
reflecting the higher costs associated with longer links.

Given all of the above, we want to construct a least-cost
mapping of virtual nodes onto substrate nodes. We represent
the mapping using a collection of indicator variablesxu,p.
xu,p = 1 indicates thatu ∈ V is mapped top ∈ W .
Otherwise,xu,p = 0. With this definition, we can define the
objective function for our mixed integer quadratic program as

∑

(u,v)∈E

∑

p,q∈W

xu,pxv,qc(u, v)d(p, q)

To minimize the quadratic objective function, we need to
specify certain constraints on the indicator variables. Specifi-
cally,

xu,p ∈ {0, 1} ∀u ∈ V, p ∈ W∑

p∈W

xu,p = 1 ∀u ∈ V

xu,p = 0 ∀u ∈ V, p ∈ W,p /∈ t(u)

We solve the problem using a general solver called
MIQPBB, developed by Fletcher and Leyffer [13]. MIQPBB
uses depth-first tree search and maximal fractional branching.

III. L OWER BOUND ON V IRTUAL NETWORK

CONFIGURATION COST

We evaluate virtual network designs by comparing their
costs to a general lower bound that is independent of the virtual
network topology.

The input to the lower bound computations includes
the substrate network, specified by an undirected graph
H = (W,F), with edge lengths and resulting shortest path
distancesd(u, v). The input also includes a setA of access
nodes, and a set of traffic constraints defined by the functions
[α, ω, γ, αF , ωF , µ]. Given these inputs, we seek a set of
traffic flows f(u, v) that maximizes

∑

u,v∈A

d(u, v)f(u, v)

subject to the following inequalities:

f(u, v) ≤ µ(u, v) ∀u, v ∈ A∑

v∈A

f(u, v) ≤ α(u) ∀u ∈ A

∑

v∈A,v/∈γ(u)

f(u, v) ≤ αF (u) ∀u ∈ A

∑

u∈A

f(u, v) ≤ ω(v) ∀u ∈ A

∑

u∈A,u/∈γ(v)

f(u, v) ≤ ωF (v) ∀u ∈ A

Fig. 3. GUI for viewing configuration results

This problem can be solved using linear programming.
Alternatively, it can be formulated as a maximum cost flow
problem, defined on a flow graph similar to the one used for
the link dimensioning problem. As before, we have a network
N = (U,M) where U = {s, t} ∪ {ui|u ∈ A, 1 ≤ i ≤ 4}.
The edge set includes edges of the form(s, u1) with capacity
α(u), edges(u1, u2) with capacityαF (u), edges(u3, u4) with
capacityωF (u), and edges(u4, t) with capacityω(u) for all
u ∈ A. These edges all have zero cost. For all pairs of vertices
(u, v), we include an edge of the form(ui, vj) for 1 ≤ i ≤ 2
and 3 ≤ j ≤ 4 with capacityµ(u, v) and costd(u, v). If
u ∈ γ(v) and v ∈ γ(u) an edge(u1, v4) is included. If
u 6∈ γ(v) and v 6∈ γ(u) an edge(u2, v3) is included. If
u ∈ γ(v) and v 6∈ γ(u) we include an edge(u1, v3). If
u 6∈ γ(v) and v ∈ γ(u) we include an edge(u2, v4). A
maximum cost flow froms to t corresponds to a worst-case
traffic configuration for any virtual network defined on this
substrate with the given constraints.

IV. A T OOL FORV IRTUAL NETWORK CONFIGURATIONS

IN DIVERSIFIED NETWORKS

A tool has been implemented to automate the iterative
virtual network design and mapping process. To use the tool,
one specifies a virtual network backbone topology, a substrate
network, a set of access nodes, and a set of traffic parameters.
After an initial mapping of backbone nodes to substrate nodes
is selected, the tool carries out the iterative design procedure
discussed in Section II.

The tool also includes a graphical user interface that vi-
sualizes the computed virtual network configurations. For
example, Fig. 3 shows the least-cost configuration of a virtual
network on a substrate network consisting of the 50 largest
metropolitan areas in the United States. The area of the circles
shown for each node are proportional to the total population of
the city represented by that node. This virtual network has 6
backbone nodes connected in a star topology with the central
backbone node (shown in green) located in Indianapolis. The
other 5 backbone nodes (shown in red) are in Salt Lake City,
Dallas, Atlanta, Columbus, and Philadelphia. Backbone links
are highlighted in red, and access links shown as dashed blue

(b) us_metro_50

(a) us_metro_20

(c) eu_metro_20

Fig. 4. Substrate networks

lines connect metro areas to their nearby routers. If a link
is used both as a backbone link and an access link, it is
shown in pink. On the left hand side of the window, some
useful statistics associated are displayed, including the values
of the traffic parameters, the cost of the configuration, the
lower bound and the ratio of the configuration cost to the
lower bound.

V. EVALUATION

A. Experiment Setup

In this section, we describe a set of experiments carried
out using the virtual network design tool described above. We
consider three substrate network topologies taken from [11].

• Us metro20: this substrate network spans the 20 largest
metropolitan areas in the United States.

• Us metro50: this substrate is a larger version of
us metro20, which spans the 50 largest metropolitan
areas in the United States.

• Eu metro20: this substrate spans the 20 largest
metropolitan areas in western Europe.

The substrate network topologies are shown in Fig. 4. We
assume substrate links have sufficient capacities to handle
the traffic for the virtual network being mapped. We also
assume that all substrate nodes are access nodes for each
virtual network. We use the population of each access node
to define the total traffic terminating at that node. That is, we
define the values of the functionsα andω to be proportional
to the populations of the associated metropolitan areas. For
simplicity, we let α(u) = ω(u) for all access nodesu. To
define the distance constraints, we let the neighborhood of
each node be the set of three nodes that are closest to it
in the substrate. We then limit the total traffic leaving the
neighborhood to be a fixed percentage of the total traffic at a
node. That is, we letαF (u) ≤ θ·α(u) andωF (u) ≤ θ·ω(u),
for some constantθ. In our experiments, we letθ take on
values 0.25, 0.5, 0.5 and 1.0. We refer to the constantθ as the
distance factor. Note whenθ = 1, all traffic at a node may
be non-local, in which case, we set the local neighborhood of
each access node to be empty. For the relaxation factorδ, we
allow it to vary from 1.0 to 1.6.

We have studied five different virtual network backbone
topologies in our experiments: star, ring, star-ring, complete
graph, and minimum spanning tree (MST). The star-ring
topology combines a star topology with a ring, connecting
the leaves of the star. For the MST topology, the set of
links included in the backbone is recomputed at the start of
each iteration. For each backbone topology, we also vary the
number of backbone nodes. In particular, for usmetro20 and
eu metro20, the number of backbone nodes ranges from 3
to 10, and for usmetro50, the number ranges from 3 to 16.
In order to see the impact of the number of backbone nodes
on the configuration cost, we add constraints in the mapping
formulation to allow only one virtual network backbone node
to be mapped to a substrate node.

The different parameter combinations generate a total of
4200 virtual network configuration problems. To help under-
stand the analysis, we define the following terms:

• Run: it is a complete virtual network configuration pro-
cess, which starts with a randomly selected backbone
router placement, and iterates until there is no further
change in placement in two consecutive iterations or a
pre-set 10 iteration limit is reached. In our experiments,

av
er

ag
e

co
st

av
er

ag
e

co
st

av
er

ag
e

co
st

av
er

ag
e

co
st

number of routers

number of routers

number of routers

number of routers

(a) δ = 1.0

(c) δ = 1.4

(b) δ = 1.2

(d) δ = 1.6

star

complete

star

complete

complete star star

complete

Fig. 5. Average configuration cost and error of star and complete topologies
on usmetro50 when distance factorθ = 0.75

for each virtual network configuration problem, 20 inde-
pendent runs are performed, each with a different random
starting point.

• Configuration cost of a run: a run may take multiple
iterations, which are valid configurations each associated
with a configuration cost. The configuration cost of a run
is defined to be the cost of the least-cost configuration in
that run.

• Average configuration cost: this is the mean value of the
20 configuration costs in 20 runs on the same virtual
network.

B. Evaluation Results

Fig. 5 has four subgraphs that show the average config-
uration cost for the star and complete backbone topologies
mapped onto usmetro50 with a distance factor equal to
0.75. Note that each subgraph has a different relaxation factor.
The x axis is the number of routers in each topology. The
average costs shown are averaged over 20 runs. To evaluate
the variation among these runs, we also show, for each data
point, the minimum and maximum cost among the 20 runs.
In addition, we compute the standard deviation and show it as
a rectangle around the average cost. The standard deviation is
typically within 4% to 8% of the average cost, which indicates
that the randomly-chosen backbone node placement has fairly
small impact on the configuration results found by the tool.

In most cases as shown in the four subgraphs, the average
configuration cost decreases as the number of backbone nodes
increases. However, the benefit of having more backbone
nodes becomes negligible when the number of backbone nodes
is sufficiently large. In some cases, increasing the number of
backbone nodes even causes the configuration cost to go up.

complete
MST

star

di
st

an
ce

 fa
ct

or

complete

MST

star

di
st

an
ce

 fa
ct

or

relaxation factor relaxation factor

(a) us_metro_20 (b) us_metro_50

relaxation factor

(c) eu_metro_20

complete

MST

star

di
st

an
ce

 fa
ct

or

Fig. 6. Least-cost configurations on usmetro20, usmetro50 and
eu metro20 under different conditions

As the relaxation factor increases, so are the configuration
costs of both topologies. However, the cost of the star topology
grows much slower than the cost of the complete topology. In
subgraph 5a where relaxation factorδ = 1.0, the complete
topology is clearly better than the star. Asδ increases, pair-
wise traffic constraints are further relaxed and the difference
between the complete topology and the star gets smaller. In
subgraph 5d whereδ is 1.6, reflecting very loose pairwise
traffic constraints, the star outperforms the complete topology.

In Fig. 6, we show the least-cost backbone topologies found
under different conditions for all three substrate networks. The
x and y axes are the relaxation factor and distance factor,
respectively. The best backbone topology for each combination
of relaxation factor and distance factor is identified by the
character that precedes the number at each point in the chart.
Points for which the star backbone topology is best are marked
by “∗”, points for which the complete backbone topology
is best are marked by “×” and points for which the MST
topology is best are marked by “·”. The number at each
point represents the number of backbone nodes in the most
cost-effective configuration. Note that the ring and star-ring
backbone topologies were never the most cost-effective and so
do not show up in these charts. The charts reveal both some
interesting similarities and some significant differences. In
general, we see that the complete graph is preferred when the
pairwise constraints are tightest (small relaxation factor) while
the star and MST do best when the relaxation factor is large.
The MST outperforms the star when the locality constraints are
stronger. In spite of these general observations, the regions of
best performance for the different backbone topologies varies
fairly widely. We believe this is due to the differences inherent
in the underlying substrate network topologies. Here, we see

co
st

lo
w

er
 b

ou
nd

relaxation factor relaxation factor

(a) (b)

relaxation factor

(c)

ra
tio

θ = 0.25

θ = 0.5

θ = 0.75

θ = 1

θ = 0.25

θ = 0.5

θ = 0.75

θ = 1

θ = 0.25

θ = 0.5 θ = 0.75

θ = 1

Fig. 7. Lower bound, cost of the least-cost configurations in Fig. 6, and the
ratio of cost to lower bound on usmetro50 under different conditions

our iterative design tool is very sensitive to the changes in
traffic conditions and substrate network topologies.

In the conventional network design context, it has been
shown, when traffic between pairs of end points is tightly
constrained (small relaxation factor), the complete topology
is optimal, and the best star is close to the optimal topology
while there is only egress and ingress constraints (infinite large
relaxation factor) [11]. Even though our study focuses on the
backbone topology of a virtual network and is restricted by
the underlying substrate topology, our results, in these cases,
still conform to the observations in the conventional network
design.

Fig. 7a shows how the lower bound varies as a function of
the relaxation factor and distance factor for usmetro50. We
observe that cost grows as either factor increases, since the
looser constraints on the traffic allow higher cost traffic config-
urations. Fig. 7b shows how the cost of the best virtual network
configuration found varies as a function of the relaxation factor
and distance factor for usmetro50. We see that the costs vary
in a similar fashion to the lower bound. Fig. 7c shows the ratio
of the cost of the best configuration to the lower bound. Here
we find, that the most cost-effective configurations come close
to the lower bound when the locality constraints are loosest.
Overall, the cost of the best virtual network configuration is
no more than 1.5 times the lower bound. Also note in Fig. 7c,
the two curves forθ = 0.5 and θ = 0.75 have peak points
at relaxation factor = 1.4, which corresponds to the topology
transitions indicated in Fig. 6b. The lower bound and the cost
of the best virtual network configuration as a function of the
two factors are not shown for usmetro20 and eumetro20
because they have very similar characteristics as what we see
in Fig. 7.

Fig. 8 compares the costs of the least-cost configurations

distance factor

co
st

complete

star

Fig. 8. Cost of the least-cost configurations for star and complete topology
with 8 routers on usmetro50 when relaxation factor = 1.6

for virtual networks with 8 routers in the complete and star
backbone topologies. The relaxation factor is 1.6 and the
substrate network is usmetro50. When the distance factor
is 0.25 or 1.0, the costs of the star and complete topology
are about the same. When the distance factor is 0.5 or 0.75,
the star is less expensive than the complete topology. To
explain this phenomenon, we show the best configurations
of the corresponding complete and star topologies in Fig. 9
and Fig. 10. We vary the distance factor while keeping the
relaxation factor fixed at 1.6. When distance factorθ is 0.25,
75% of the total traffic is confined within each node’s local
neighborhood, which means heavy traffic on access links and
light traffic on backbone links. To lower the cost on the access
links, routers in both topologies are spread out in the substrate
network to make access links short. When nodes within the
same local neighborhood have to access the virtual network
through different routers, the traffic has to pass through some
backbone links. We call such traffic thedetoured local traffic.
To handle thedetoured local traffic, direct backbone links
between every pair of routers in the complete topology helps
to lower the cost. As to the star topology, such traffic has to
take a much longer route through the star center (highlighted
in green), which contributes to a higher cost on backbone
links in star topology. Even though star is more suitable than
complete topology in handling the rest 25% non-local traffic,
the detoured local traffickills this advantage. When distance
factor gets larger, increased non-local traffic starts to play a
more important role in the configuration cost. To handle the
increased non-local traffic, the capacities of backbone links
must increase accordingly. In Fig. 9 and Fig. 10, we see the
routers in both topologies retreat towards the center of the
substrate network in order to lower the cost through shortening
the backbone links. This is done at the expense of longer
access links and hence higher costs for access links. Because
the routers move towards the network center, more nodes can
share a router, which largely reduces the negative impact of
the detoured local trafficon the star topology. Due to this
reason, we see star costs less than the complete topology.
Whenθ equals 1.0 with all traffic being non-local, the routers
are clustered at the network center. At this point, there is no
noticeable difference in cost between the star and complete
topology. The “shrinking” phenomenon is quite interesting,

(a) θ = 0.25 (b) θ = 0.5 (c) θ = 0.75 (d) θ = 1.0

Fig. 9. Best configurations for virtual network with 8 routers in complete topology on usmetro50 when relaxation factorδ = 1.6

(a) θ = 0.25 (b) θ = 0.5 (c) θ = 0.75 (d) θ = 1.0

Fig. 10. Best configurations for virtual network with 8 routers in star topology on usmetro50 when relaxation factorδ = 1.6

m
ap

pi
ng

 ti
m

e
(s

ec
)

m
ap

pi
ng

 ti
m

e
(s

ec
)

number of routersnumber of routers

(a) us_metro_20 (b) us_metro_50

Fig. 11. Average mapping time on usmetro20 and usmetro50

which suggests, if we reduce the number of routers, we should
get lower cost. This is actually proven to be true in Fig. 6b,
where the complete topology with 4 routers is shown to be
the least-cost one.

The running time of an iteration is dominated by the
mapping time of the MIQPBB solver. Fig. 11 shows the
average CPU time for mapping virtual networks in different
topologies on usmetro20 and usmetro50. Mapping time
is a function of the substrate network topology, the virtual
backbone topology and the number of routers in the virtual
networks. Specifically in our experiments, mapping a virtual
network with 16 routers on usmetro50 takes 1.7 seconds for
the ring topology and less than 0.4 second for the star and
complete topology. On usmetro20, mapping takes less than
0.1 second. The mapping time on eumetro20 is very similar

number of iterations

C
D

F eu_metro_20

us_metro_20

us_metro_50

Fig. 12. CDF for the number of iterations per run on usmetro20,
us metro50 and eumetro20

to the mapping time on usmetro20. Although the mapping
time increases exponentially as the number of virtual routers
increases, mapping a good-sized virtual network on a large
substrate network can still be done in reasonable time.

In all experiments, a run is cut off if it doesn’t converge
within 10 iterations. Fig. 12 shows the Cumulative Distribution
Function (CDF) for the actual number of iterations performed
in each run on the three substrate networks. On usmetro20
and eumetro20, nearly all runs end within 6 iterations. On
us metro50, more than 96% of the runs finish within 9
iterations. Overall, we can see that the tool is very efficient in
finding a good configuration in just a few iterations.

VI. CLOSING REMARKS

In this paper, we have developed an effective method
for computing high quality mappings of virtual networks
onto substrate networks. The computed virtual networks are
constructed to have sufficient capacity to accommodate any
traffic pattern allowed by user-specified traffic constraints. Our
computational method produces high quality results that are
demonstrably close to a lower bound and is fast enough to
handle networks of practical size.

There are several ways in which this work can be extended.
One important direction is to incorporate additional elements
into the network design procedure. In particular, we currently
assume that substrate links have sufficient capacity not to
constrain the mapping of virtual networks. Because substrate
networks are typically designed to have enough resources for
accommodating multiple virtual networks, this assumption is
legitimate when the number of virtual networks on the sub-
strate isn’t very large. However, adding substrate link capacity
constraints is a natural and useful extension. We also do not
currently account for costs associated with mapping backbone
nodes to different locations. Since the location of a backbone
node affects the amount of traffic passing through it, some
locations will naturally require more processing resources to
be allocated to a backbone node, contributing to a higher cost.

There are also other algorithmic possibilities that we have
not explored. In particular, there are other alternatives that
can be used for the backbone mapping procedure that may be
worth exploring. Given that we need to use multiple iterations
in our search for the best overall solution, it is not clear that we
need to devote so much effort to finding the best mapping in
each iteration. A simple local improvement algorithm (perhaps
based on simulated annealing) might produce equally good
results with less overall computational effort. This would allow
us to handle both larger substrates and larger virtual networks.

Load balancing on substrate networks and partial reconfig-
uration of virtual networks are also future research directions
we plan to pursue.

ACKNOWLEDGMENT

We would like to thank Dr. Fletcher and Dr. Leyffer for
their generous help with the MIQPBB solver [13].

REFERENCES

[1] L. Peterson, S. Shenker, and J. Turner, “Overcoming the Internet impasse
through virtualization,” inACM Workshop on Hot Topics in Networks
(HotNets), 2004.

[2] J. Turner and D. Taylor, “Diversifying the Internet,” 2004.
[3] D. Taylor and J. Turner, “Towards a diversified Internet,” Nov. 2004.
[4] Chun, “PlanetLab: An Overlay Testbed for Broad-Coverage Services,”

ACM Computer Communications Review, vol. 33, no. 3, 2003.
[5] R. Ricci, C. Alfeld, and J. Lepreau, “A Solver for the Network Testbed

Mapping Problem,”SIGCOMM Computer Communications Review,
vol. 33, no. 2, pp. 65–81, 2003.

[6] Y. Zhu and M. Ammar, “Algorithms for Assigning Substrate Network
Resources to Virtual Network Components,” inIEEE Infocom, 2006.

[7] A. Fingerhut, S. Suri, and J. Turner, “Designing Least-Cost Nonblocking
Broadband Networks,”Journal of Algorithms, pp. 287–309, 1997.

[8] ——, “Designing Minimum Cost Nonblocking Communication Net-
works,” in 5th International Conference on Telecommunication Systems
Modelling and Analysis, Mar. 1997.

[9] A. Fingerhut, “Approximation Algorithms for Configuring Nonblocking
Communication Networks,”Doctoral Dissertation, Washington Univer-
sity in St. Louis, May 1994.

[10] H. Ma, I. Singh, and J. Turner, “Constraint Based Design of ATM
Networks, an Experimental Study,”Technical Report, Washington Uni-
versity, Apr. 1997.

[11] S. Y. Choi, “Resource Configuration and Network Design in Extensible
Networks,”Doctorial Dessertation, Washington University in St. Louis,
Dec. 2003.

[12] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive, “A flexible model for resource management
in virtual private networks,” inACM SIGCOMM, 1998, pp. 95–108.

[13] R. Fletcher and S. Leyffer, “A Mixed Integer Quadratic Programming
Package,” 1998.

	Efficient Mapping of Virtual Networks onto a Shared Substrate
	Recommended Citation
	Efficient Mapping of Virtual Networks onto a Shared Substrate

	tmp.1418149444.pdf.XbNiu

