
 

Geometrical, Fresnel and Fraunhofer regime in single slit 

diffraction with decreasing slit width 

 

Recently, Panuski and Mungan
 
 presented the results of their study of light diffraction from a variable-

width single slit by observing and measuring the diffraction pattern on an observation screen placed at a 

fixed distance. In this way, the authors were able to demonstrate to students the important near-field 

effects for single slit diffraction which most often have been neglected in introductory courses. In this 

paper, we show that there exists  very good agreement between observed data
 
and theoretical calculations 

by plotting intensity from single slits using a method with Fresnel-Kirchhoff integrals (Fig. 2). In addition 

to these comparisons, and with the evaluation of Fresnel numbers, we argue that Panuski and Mungan 

demonstrated not only the near-field Fresnel, but also the far-field Fraunhofer regimes as well as the 

transition between the two. Furthermore, with a greater increase in the slit width, the transition to the 

geometric regime can be demonstrated (Fig. 3). 

 

The application of the Fresnel-Kirchhoff  integral   

to  evaluate the  light field behind a slit  

     In their experiment,  Panuski and Mungan
1
 measured normalized intensity of light at the screen 

situated at the fixed distance from the single slit, for nine selected values of the slit width a.  The slit was 

illuminated with light from red diode laser. Our aim in this paper is to compare these experimentally 

measured light intensities  and  intensities evaluated using the Fresnel-Kirchhoff integral.   

     Light is an electromagnetic wave, with electric ( ),( trE
rv

) and magnetic field ( ),( trB
rr

) vectors both 

satisfying the homogeneous wave equation, which  in vacuum reads
2a,3a,4a,5a,6a

:   
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Here,  r
r

 is a position vector, t  is time and c   velocity of light in vacuum.    This means that each 

rectangular component   ),( trV
r

of the field vectors satisfies the homogeneous wave equation:  
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In the case of a laser,  we consider  a monochromatic incident wave described by the complex function:  
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where  ω  is angular frequency.  It follows that the  space dependent part of  the   field component 
 
 )(rΨ  

satisfies the Helmholtz equation
4b
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Here  λ  denotes the wavelength and λπω /2/ == ck  is a wave number. The problem of diffraction is 

then reduced to the problem of finding the solution of the Helmholtz equation  behind a grating/slit (Fig. 

1), which satisfies specified initial and boundary conditions, corresponding to the physical situation.  

 

                                    
 

Fig. 1. Scheme of the slit and screen. 

 

     We shall consider the simplified case of an infinite vertical slit of finite width so that the  electric and 

magnetic fields do not depend on a vertical z coordinate. In that case, independently of polarization of 

incident light, electric and magnetic fields are expressed through a scalar function  ),( yxΨ  which satisfies  

the Helmholtz equation, too. The solution behind the slit of width a  is written in the form derived 

(Appendix 1) from the Fresnel-Kirchhoff integral
3b,4b

: 
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Here, A is a constant determined by the incident wave.  Assuming that waves spreading from various 

points of the slit are cylindrical
7,8
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where ( ) ( )22
'' yyxx −+−=ρ  and using the principle of superposition eq. (4), up to the constant and 

phase factor, follows directly:  
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Light intensity  at  point (x,y) is proportional to the modulus square of ),( yxΨ :   
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Comparison between experimental and theoretical curves  

     In the  experiment of Panuski and Mungan
1
,  wavelength of  laser beam was 660=λ nm,   slit  width 

a was  gradually reduced from a = 3.30 mm  to 0.100 mm. The  image was  observed and registered  at 

the fixed distance L = 0.656 m. 

    By numerical integration of the integral in (4), normalized intensity curves, )(),( 0 yIyxI , were 

evaluated and presented with full lines at Fig. 2. Here )(0 yI  is the maximal value of the intensity at the 

distance y . Experimental data of  Panuski and Mungan, extracted using WebPlotDigitizer
9
 are given at 

the same figure  with crosses. The program for the  numerical evaluation of the integral in (4), written 

using Matlab
10

,  is given in the Appendix 2. At Fig. 3 are  presented theoretical curves for values of  a  

which are greater than the values of  a  in the experiment
1
.   By comparing  theoretical graphs  and 

experimentally measured graphs at Fig. 2, we see very good  agreement of two sets of curves. We are 

going to analyze and discuss essential features of these curves.   

 

   

   

   

 

Fig. 2. Evaluated light intensities (blue solid line) and measured values
1
 (crosses) at the  distance  L = 0.656 m 

from the slit,  for  nine values of the slit width.  Wavelenght of light is  660=λ nm.  

The application of the Fresnel number in the characterization of the regions  

In our analysis  we are going to use the  known criteria  to characterize   geometric,   Fresnel and 

Fraunhofer region. These criteria  are based on the Fresnel  number
2b,3c,4b

:   

                                            LaFN λ4/2=                                                               (8) 

This criteria are:  

 



                1<<FN                  Fraunhofer diffraction                                                            (9a) 

              1≈FN                    Fresnel  diffraction                                                                  (9b) 

              1>>FN      geometrical optics   (either the slit width is very  large or                    (9c) 

                                             the observation screen is very near the grating) 

The “center” of  the Fresnel region  is  for  1=FN . By fixing the distance of the screen L and varying slit 

width one determines from (9b) the slit width associated with the center of the Fresnel region on a-scale: 

                                                                    
Lac λ2=

                                                            (10) 

For parameters in the experiment
1
 one finds ac = 1.316 mm, in agreement with the forms of intensity 

curves shown at Fig. 2.          

        For a = 0.1 mm   and 0.3 mm we see the typical Fraunhofer pattern, in agreement with the criteria 

(9a), since   FN = 0.0058<<1 and FN = 0.0520<<1, respectively. This pattern is characterised by the 

width which is larger than the slit width and increases with the distance of the screen from the slit. In 

addition, there are  oscillations with decreasing amplitudes, from both sides  of the central maximum.    

     For    a = 0.8, 1.10, 1.3, 1.4, 1.6, 2.0, 3.00 mm  Fresnel number  is of the order of unity and the curves 

are typical for the Fresnel region,  in agreement with the criteria (9b).  The width of these curves at the 

bottom is very close to the width of the slits, but this width decreases towards the top of the curve which 

consists of  several oscillations.   As the slit width decreases (Fresnel number decreases), number of 

oscillations at the top and their amplitudes  decrease  and the curve becomes nerrower at the top.    

     According to criteria (9c) geometric regime  is associated with  1>>FN , (in practice for 10>FN )  

i.e. for   La ⋅⋅> λ102 .  It follows that in this case geometric region is for a > 4,16 mm. Therefore,  in 

order to demonstrate the   geometric regime in the experiment
1
  it  would be  necessary to  increase  the 

slit  width   beyond  a = 3 mm.  At  Fig. 3  are shown evaluated intensity curves for three values of slit 

widths which correspond to 114 >>>FN . The diffraction pattern looks like a  shadow of the slit with 

many oscillations at the top.  

 

 

Fig. 3. Evaluated light intensities  at the  distance  L =  0.656 m  for  three values of the slit width which are 

larger than the values in
1
.   

Characteristic features of three regimes 

     Let us  summarize qualitatively features of curves at Figs. 2 and 3. For larger  values of a, each 

intensity curve (Fig. 3) has steep edges and many oscillations at the top (approximately it looks like a 

 

 

 

 

 

 



rectangle with oscillating plateau). Each curve looks like a hat with oscillations at the top. The width of 

the  “hat”  is very close to the slit width. So, for this large values of a  for which  FN >>1  it looks like 

that light propagates along a straight line (no diffraction) and this regime is called  geometric regime. 

With decreasing a, edges become less steep and number of oscillations at the top decreases.  With further 

decrease of a, the central narrow maximum with many  small oscillations along  the wings emerges. This 

region is called the Fresnel region.  With further decrease of   a  the   typical Fraunhofer intensity pattern  

appears, consisting of a large central maximum and several  small decreasing  maxima from its two sides 

(first two graphs at Fig. 2).   

     Harris et al.
11

 studied experimentally and theoretically, with 435.8 nm and  546.1 nm light,  single slit 

diffraction pattern at the distance 32,632 m from the slit, varying slit width from 0.5 to 32 mm. Based on 

the form of diffraction patterns authors interpreted their results as demonstrating Fresnel regime and the 

transition from Fresnel to Fraunhofer regime (see Fig. 2 in
11

) at slit width a = 2.5 mm.  By evaluating the 

Fresnel number for their parameters we find that authors  implicitly took 1.0=FN  for the value of 

Fresnel number marking the Fresnel-Fraunhofer transition, in agreement with the form of their graphs and 

the criteria (9a). Applying the same criteria  to the parameters  of Panuski and Mungan one finds the 

Fresnel-Fraunhofer transition at slit width 390.0=a mm. The value 390.0=a mm is in between  the 

values 3.0=a  mm and  a = 0.8 mm at Fig. 2 in
1
 for which typical Fraunhofer and Fresnel type curves, 

respectively were  measured.  Analogous set of theoretical curves Hecht
6b

 also interpreted as the Fresnel-

Fraunhofer transition.   

     For large values of slit width Harris et al. measured
11

 intensity  graphs  (see Fig. 3 in
11

) similar to our 

graphs  at Fig. 3. One such graph,  belonging to the geometric region, is presented  in the book by 

Möller
12

, where L = 4000 mm, a = 10 mm, 500=λ  nm and the corresponding  FN = 12.5.    

     It follows from the above analysis that Fresnel-Kirchhoff integral is a very powerful tool to describe  

the single slit diffraction in the near and far field. Taking into account that programs for numerical 

integration are available   to students,   we consider that it is  appropriate and useful to teach students to 

use and evaluate Fresnel-Kirchhoff integral.  To support our view we draw attention to  the  collection of 

numerical programs in optics by  Möller
12

, showing how students could learn  optics by computing.  

 

Single slit diffraction of matter waves       

     Fresnel-Kirchhoff  integral  will be useful to students when they start to learn quantum mechanics 

because in that course they will  have to solve the Helmholtz equation, too.  For example, single slit 

diffraction of  a matter wave   is described
13

  by the same  Fresnel-Kirchhoff integral as in  (4). The only 

difference is in the expression for the wave vector k.   In the case of matter waves k is determined by  

particle momentum, kmvp h==  (h  is Planck’s constant, m is particle’s mass), and angular frequency 

ω  is determined by particle’s kinetic energy, ωhh == mkE 2/
22

. Probability distributions of particles 

at the screen for various   distances of the screen   from the slit were presented by  Vušković et al.
13

   and  

look similar to the graphs of light intensity  behind the slit.     

 

Appendix 1: The solution of the Helmholtz equation in the Fresnel-Kirchhoff form  

     Here. we are going to present the  simplified derivation of the Fresnel-Kirchhoff integral  from which 

the expression (4) for the field behind the single slit was obtained.   

      The simplest solution of the Helmholtz equation (3) is a plane wave solution, such as:   
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It describes a  wave  propagating  along y-axis  (A is a constant).  

      It is easy to verify that the following solution  also satisfies eq. (3)  
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This solution describes the component of the spherical  wave field at point Q with position vector 

),,( zyxr =
r

, which propagates from the point P (Fig. 1) with position vector )',','(' zyxr =
r

.    

     To describe the wave propagating after the incident wave (1.1) encountered the slit, we shall use the 

superposition principle which  is justified by the fact the  wave equation is a linear equation. The 

superposition principle  is the  generalization of the Huygens principle. According to the Huygens  

principle every point on a wave front is a source of secondary spherical waves. This means that the 

solution of (3) behind the grating may be written as a superposition of  spherical  waves (1.2) propagating 

from points 'r
r

 at the slit:  
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The factor )/1( λi in front of the integral and the so called obliquity factor θcos  were introduced by 

Fresnel and Kirchhoff. Because of that   the solution of the wave equation in the  form  (1.3)  is  called the 

Fresnel-Kirchhoff integral.  

     In a more rigorous way one  derives the expression (1.3)  using Green’s theorem and Green’s 

functions
4b

. Here, we generalized  the derivation  for the electric  field component,  given in the standard 

Introductory physics textbooks which is valid only for points very far from the slit (Fraunhofer region). 

The advantage of  the above derivation is that it leads to the expression (1.3) which   is valid in the far 

field and in the near field, as well.  

     In order to evaluate the integral in (1.3) one has to express the absolute value of the vector 'rr
rr

−  in 

terms of x, y, z and x’,y’,z’:  

                                           
222 )'()'(' yzzxxrr +−+−=−
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For points which are not very near the grating,  the approximation  yxx <<− '  , yzz <<− '   is 

valid. Using this approximation, the square root in the integral is approximated by:  

                                   yzzyxxyyzzxx 2/)'(2/)'()'()'( 22222 −+−+≅+−+−              (1.5)  

and the obliquity factor is approximated by:                         

                                                  1cos ≅θ                                                                                   (1.6)    

  We shall assume also that the incident wave to a single slit grating is a plane wave:    

                                                                   
yik
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This implies that the incident field does not depend on x’ and  z’  coordinates. Using the approximation 

(1.5)  in the exponent of the integral (1.3), and by approximating the nominator by the distance y of the 

screen,   the integral takes the form:  
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Assuming that the walls are completely absorbing and the slit completely transparent, field component 

just behind  the slit is:  



                                      



≥

<<−
=Ψ +

2/',0

2/'2/,
),0,'(

ax

axaA
zx

                                         (1.9)

 

One usually assumes that the slit is  very long compared to its width. So, we write the integral in (1.8) as:  
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The value of the first integral was determined using the complex analysis
3c,13

:  
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So, the  field behind the single slit  is determined by the following expression:  
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Very far from the grating,  the quadratic term yikx 2/'2  
in the exponent in (1.12) may be also neglected, 

so (1.12) is further simplified  
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It is easy to determine the integral in (1.13)            
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By substituting  this result into (1.13) we find:     
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Here the index ff denotes far field.  It is convenient to express ),,( zyxffΨ  using the value of this 

function at  x=0 
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Using (1.16) one writes ),,( zyxffΨ  in the form familiar from the Introductory physics courses
5b

:  
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So, the Fresnel-Kirchhoff integral  (1.12) for the field behind a single slit grating encompasses as a 

special case the expression valid in the Fraunhofer region, which has been widely present in the textbook 

of Introductory physics courses. The advantage of the expression (1.12) is in the fact that   it gives the 

values of the field in the whole space behind the grating, very near it (geometrical region), in the Fresnel 

region and finally in the Fraunhofer region.   

     From   (1.17)  and (7) follows the expression for  the intensity of light in the far field:  
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It  is in agreement with the expression for the intensity of light in the Fraunhofer region derived in the 

Introductory physics courses. The latter derivation  uses the geometrical method
5b

  to evaluate the 

expression which is equivalent to the integral in  (1.13), except that the sum is  used instead of the 

integral. The application of the geometrical method is possible, because the  difference of phases of the 

exponential function in the sum/integral at points '' xx ∆+  and x’ ,  yxikxxxx /')'()''( ∆−=−∆+ ϕϕ , 

does  not depend on x’.  

 

Appendix 2: MATLAB program for evaluation of intensity distribution behind a 

single slit 
 
clear all; close all; format long e; 

a=3e-3; % slit width in m 

lambda=660e-9; % wavelength in m 

k=2*pi/lambda; % wave number 

y=0.656; %distance from the slit in m 

x=linspace(-5e-3,5e-3,200); %x coordinates of points at the observation screen in m 

for ix=1:length(x) 

fun=@(xp)exp(i*k*sqrt(y^2+(x(ix)-xp).^2))./sqrt(sqrt(y^2+(x(ix)-xp).^2)); %cylindrical wave emitted 

from a line source (integrand in eq.(4)) 

psi(ix)=integral(fun,-a/2,a/2); %evaluation of the integral in eq. (4) (superposition of cylindrical waves) 

end  

I=(abs(psi)).^2; % intensity from  eq.(5) 

plot(x,I/max(I), 'Linewidth', 2); % plot of the normalized intensity 

xlabel('x[m]','FontSize',20); % size of x label 

ylabel('I/I_0','FontSize',20); % size of y label 

set(gca,'FontSize',20); % size of tick marks on both axes 

title(['y=',num2str(y)]); 
  

At the Wayant
15

 and Wolfram
16

 sites students may get intensity curves choosing various values of 

λ , a  and y . We believe that it would be useful for students  either to write by themselves the numerical 

program for the evaluation of the Fresnel-Kirchhoff integral (4), to use the above written program or to 

use program written by  Möller
12

. Then they could compare the results of their evaluation with ready 

results at the Wayant and Wolfram websites. 
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