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Military jet fuel (JP-8) is very similar to commercial jet fuel (Jet A) except for the
presence of three additives, fuel system icing inhibitor, corrosion inhibitor—
lubricity improver (CI-LI), and antistatic additive, which are added to improve
characteristics of JP-8. Of particular interest is the Cl-LI additive; the most
common active ingredient is a dimer of linoleic acid. This article focuses on
quantification of the active ingredient in the CI-LI additive by liquid
chromatography—mass spectrometry (LC—MS). This method will allow the
determination of CI-LI content in military jet fuel samples.

Aviation fuels consist primarily of a complex mixture of linear, branched, and cyclic
hydrocarbons (Cg—C1¢) (1), aromatic carbons (2) with trace amounts of polar
impurities. The polar impurities are important because their reactivity has a dramatic
effect on the formation of deposits in the fuel (3). Military aviation fuels (JP-8) are
supplemented by a series of additives including fuel system icing inhibitor (FSII),
antistatic additive (static dissipator additive, or SDA), and corrosion inhibitor—lubricity
improver (CI-LI) (4). The first two of the additives are easily analyzed by gas
chromatography (GC) or other experimental methods, but the CI-L| additive is too
high in molecular weight for GC. The only documented method for its determination
is a complex method involving a combination of extraction and gel permeation
chromatography (GPC) (5).

The typical active ingredient in several CI-L| additives is a dimer of linoleic acid. The
dimer is usually prepared by the clay catalyzed dimerization of linoleic acid, which
results in the formation of a mixture of acyclic, monocyclic, and bicyclic compounds
(6). The reaction also results in a variable number of remaining double bonds (7,8)
providing compounds with molecular weights ranging from 556 to 564 amu. The
dimer of linoleic acid has found wide applicability in a range of commercial products,
including cosmetics and industrial lubricants (9). It has been shown to reduce
corrosion (10) and improve the lubricity (11) of crude and refined oils. In military
aviation fuels, itis added to reduce the wear in roller bearings in the fuel pumps and
also reduce corrosion in the fuel system tubing. Given its important function in the
fuel system, analysis of fuels for their CI-LI content has become more important.

High performance liquid chromatography (HPLC) has been an important tool for the
analysis and characterization of fuel samples (12). The method has been shown to
group components conveniently into nonpolar and polar components. However, it
does not provide an analysis of the specific contaminants in the sample. Liquid
chromatography—electrospray ionization mass spectrometry (LC—ESI-MS) has been
used in the analysis of specific polar components in fuels (13). Electrospray
ionization is especially convenient as a soft ionization method that does notionize
the nonpolar components of the fuel sample (14). The negative ion mode is
particularly useful, because of the common polar impurities only the phenols appear
as negative ions under normal conditions. The dimer acid ionizes efficiently in
negative ion mode. In addition, the high molecular weight of the dimer acid also
separates it from the common phenols found in fuels.

In this study, we describe a simple method for the determination of CI-LI in aviation
fuels using HPLC with ESI-MS detection. The method requires no sample
preparation beyond dilution in methanol, provides a reproducible linear calibration
curve, and suffers from few interferences. The method is demonstrated for the
analysis of CI-L1in a series of fuel samples.

Samples of eight different CI-LI additives
ExperimentalFuels and Additive Samplesapproved for use in JP-8 fuels and
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Figure 1: Total ion chromatogram for a typical aviation fuel sample.
several fuel samples containing CI-L| additives were supplied by the Fuels branch at

Wright Patterson Air Force Base in Dayton, Ohio. The HPLC-ESI-MS
HPLC-ESI-MSsystem used for the current study was an Agilent 1200 series liquid
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Figure 2: Total ion chromatogram and the selected ion chromatograms for several
components of the CI-LI additive.

chromatograph with an Agilent 6210 time-of-flight (TOF) mass spectrometer and an
Agilent G3251A electrospray source. An Agilent C8, 2.1 mm i.d., 5-um particle size,
100-A pore size column was used for this study. The column was temperature
controlled at 30 °C to create a consistent, slightly above ambient temperature
condition improving the repeatability of the chromatographic separation. The
electrospray source was operated at a capillary voltage of 3500 V, using an 11-L/min
flow of nitrogen at a temperature of 325 °C as the drying gas. The nebulizer pressure
was 50 psi and the fragmentor voltage was set to 200 V. Before reaching the TOF
system, the sample loop was run through a diode-array detector to measure the UV
absorbance at 254 nm. The mobile phase consisted of methanol (Fisher Scientific
Optima LC—-MS grade), with 0.1 vol% acetic acid added. The elution was carried out
isocratically for all samples at a flow rate of 0.30 mL/min.
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Figure 3: Compounds formed from the dimerization
of linoleic acid with clay catalysis: (a) acyclic, (b)
monocyclic, and (c) bicyclic dilinoleic acid
structures. The structures may contain additional
double bonds.

HPLC chromatograms of fuel samples containing the CI-LI additive show a single
major peak at a retention time of 0.9 min with a very weak broad feature at 1.2-2.3
min (Figure 1). The majority of the polar components are contained in the sharp peak
at 0.9 min; however, the Cl-L| additive appears in the broad later peak. The principal
components observed in negative ion mode are phenols and carboxylic acids that
form negative ions by losing a hydrogen ion in electrospray ionization (15). To
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Figure 4: The mass spectrum of a CI-L| additive (top) and an expansion of the region around 560 amu (bottom).

identify the main componentin the CI-LI additive, the LC—MS chromatogram of all of
the commercial additives was examined. The total ion chromatogram (TIC) shows a
sharp peak at 0.9 min with a broad peak at 1.2—-2.3 min. The peak at 0.9 min is
because of polar components in the additive carrier. The broad feature between 1.2
and 2.3 min is because of the dilinoleic acid components in the additive. The TIC and
extracted ion chromatograms (EIC) for various components are shown in Figure 2.



The width of the second peak is consistent with the CI-LI additive being composed of
a mixture of the monocyclic and bicyclic compounds with differing numbers of
residual double bonds (Figure 3). The mass spectrum shows a cluster of peaks
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Figure 5: Calibration curves for the determination of CI-LI additive in a fuel
sample.

separated by 2 mass units centered on mass 561 amu (Figure 4). The high-
resolution mass spectrum gives a mass consistent with the structures shown in
Figure 2. The measured mass, actual mass, formula, and possible structures are
shown in Table |. To determine the amount of additive in fuel samples, a calibration

Table I: Molecular weights, structures (Figure 3) for the components of dilineleic acid

in CI-LI additives

CyHgO, | 5645118 564.5108 Acyclic 0
Acyclic 1

CacHecO, | 562.4961 562.4944 e L
Acyclic 2

CyH,0, | 560.4805 560.4795 P o ) 1
Acyclic 3

CyH,0, | 558.4648 558.4635 Monocyclic 2
Bicyclic 0

C.H..0, | 556.4492 556.4484 Nignecyetlc 3
36H6004 : : Bicyelic 2
Monocyclic 4

CyHegO, | 554.4335 554.4328 e .
CyHe0, | 552.4179 552.4162 Bicyelic 4

Table I: Molecular weights, structures (Figure 3) for the components of dilinoleic acid in CI-LI
additives

curve was prepared by measuring several known concentrations of the CI-LI active
ingredient dissolved in HPLC grade methanol. The area of the MS signal at 562.496
+ 0.004 amu was used for the determination. To ensure reproducibility of the
measured calibration curve, a second set of samples was prepared and analyzed the
next day. The calibration curves are shown in Figure 5. The calibration curve was
found to be linear over a wide range of concentrations. The curves for the two days
are nearly identical and the correlation coefficient of 0.99 indicates a good linear
relationship. Similar calibration curves prepared for other masses found in the mass
spectrum of the additive give similar results. The linear calibration curve allows the

Table II: CI-LI determination for several jet fuel samples (sample A is not formulated to

include CI-LI and is included for reference)

¥ Jet -A =0.2
B JP-8 10.2
C JP-8 12.6
D JP-8 14.3
E JP-8 1.4
F JP-8 14.9
G JP-8 15.5

Table II: CI-LI determination for several jet fuel samples (sample A is not formulated to include CI-LI
and is included for reference)

quantification of the CI-LI indicator to be achieved in a series of fuel samples. Based
on the noise in the various samples and the noise in the blank, the detection limit for
CI-Llin a fuel matrix is estimated at 0.2 mg/L. Based on a specification for JP-8 of 9—
24 mg/L of the CI-L| additive in the fuel samples (4), the method allows for accurate
quantitation of the additive in jet fuel samples. The analytical results for a series of
seven different aviation fuel samples is shown in Table Il. Each of the six JP-8
samples shows an appropriate CI-LI additive concentration, although many of the

samples are near the lower end of the specified range.
Conclusions
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