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Abstract 

 

Plastic is one of the most demanded materials in the modern world as it is durable and long lasting. 

However, that which makes it so commercially appealing also makes it environmentally 

degrading. Anthropogenic waste and specifically microplastics have been identified in natural 

habitats globally, with particular interest placed on marine ecosystems.  This research aims to add 

to this pool by comparing microplastic concentrations in beach, mangrove, and shallow ocean 

sediment in Bahía Almirante, Bocas del Toro, Panama. Sediment samples were collected from 

each habitat type, processed, and then analyzed to obtain the number of microplastic particles per 

gram of dry weight. Ocean sediments were found to have significantly higher concentrations of 

microplastics than beach and mangrove sediments, however beach and mangrove sediments were 

not statistically different from each other. This implies that microplastics are more likely to be 

found in ocean sediment then in beach sediment, and that mangroves are not likely to act as filters 

for microplastics in coastal zones. Secondary microplastics and microfibers were the most 

prevalent type of microplastic found, which is consistent with previous research. It also points to 

plastic degradation rather than direct inputs as main sources of contamination. This study 

confirms the presence of microplastics in coastal zones in the Bocas del Toro Archipelago, 

concentrations of which will only stop increasing if plastic use and consumption are reduced.   
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Often, when people throw away an item, they cease thinking about it. However, waste has a long 

journey ahead of it once it reaches a trash can, and if not handled properly, waste can end up in 

ecosystems and cause environmental and public health issues. One large source of waste is plastics 

– it is one of the most demanded materials today (Zabkov and Esiukova, 2016) and demand is 

increasing alongside population and consumption (Claessens et al., 2013). In 2015 alone, the 

United States generated 34.5 million tons of plastic, only 9.1% of which was recycled (U.S. 

Environmental Protection Agency, 2018). The majority of plastics produced are single use 

products that are thrown away a year or less after creation (Thompson et al., 2009). 

Plastic’s durability is both what makes it so appealing as a commercial material and what 

makes it so environmentally harmful. Plastics can take anywhere from years to centuries to break 

down (Thompson, 2015) – in fact, it is widely believed that every single piece of plastic ever 

created (that has not been incinerated) still exists on the planet today (Thompson et al., 2005). 

Never truly biodegrading, they simply fragment into smaller and smaller pieces until they are 

invisible to the naked eye (Kathiresan, 2003). These broken-down pieces are referred to as 

microplastics, generally defined as a piece of plastic that is 5 mm in size or smaller (Gross, 2015) 

and specifically defined in this research as plastic sized 5 mm – 0.25 mm.  

Microplastics are mainly divided into four categories: microbeads, microfilms, 

microfibers, and microfragments. They are also classified into two types: primary microplastics 

and secondary microplastics (Cole et al., 2011; Startain et al., 2018). Primary microplastics are 

those manufactured to be smaller than 5 mm. These are often found in the form of packing 

materials or plastic pellets, called ‘nibs’ or ‘nurdles,’ which are resin granules used as raw 

materials for larger plastic products. Primary microplastics can also be found as exfoliants in face 

wash, in toothpaste, deodorant, or make up. As of July 2018, it is no longer legal to sell cosmetic 

products containing microbeads in the United States (Startain et al., 2018), however this will not 

prevent other sources of primary plastics from entering the environment. Secondary microplastics 

are those particles that have been degraded down from larger plastic sources due to physical, 

biological, and/or chemical processes (Cole et al., 2011). This can include processes such as wave 

action, ultraviolet radiation, heat, and pressure (Startain et al., 2018).  

 

From Land to Marine Environments 

This breaking down of material becomes an issue for organisms (including humans) when plastics 

enter the natural environment. Of the over 34 million tons of plastic produced in the U.S. in 2015, 

75.4% was sent to landfills rather than recycled or reused (U.S. Environmental Protection Agency, 

2018). However, a growing issue is that plastic waste often escapes waste processing streams and 

ends up in marine ecosystems. For example, synthetic clothing fibers may become detached during 

washing and enter waste water. These microfibers are unlikely to be adequately removed by 

treatment plants  and therefore end up in marine ecosystems (Thompson, 2015).  Most bulk and 

commercial plastics like polyethylene and polypropylene are buoyant and will float into the open 

ocean, often accumulating into oceanic gyres or garbage patches due to currents (Gross, 2015). 

Additionally, this statistic does not account for plastic litter that never makes it into waste 

processing systems in the first place. 

 It is estimated that about 10% of all produced plastics end up in oceanic ecosystems 

(Thompson, 2006), and about 80% of plastic waste present in these ecosystems comes from land 

(Andrady, 2011). Terrestrial inputs are not limited solely to coastal anthropogenic activities. 

Plastics can enter oceans through any freshwater system; these systems flow into oceans and thus 

are a main driver of oceanic plastic debris. Plastic pollution that does not come indirectly from 
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land is deposited directly into oceans. Fishing gear is one of the main and most common types of 

marine sourced plastic (Cole et al., 2011). It is estimated that about 640,000 tons of fishing gear 

are discarded into oceans yearly, both from recreational and commercial fishing activities (Good 

et al., 2010). 

 

Impacts of Microplastics on Coastal Zone Ecosystems 

Primary and secondary plastics are found all over oceanic ecosystems, from shores to surface level 

to deep-ocean benthic zones (Startain et al., 2018). They are very hard to remove from the 

environment once present and because of this, they can easily work their way into food webs, 

contaminating both animals and human diets (Stolte, 2014). As of 2013, over 250 marine species 

worldwide were shown to have ingested microplastics, and this number has likely risen since then 

as concentrations worsen (Wright et al., 2013).  

Anthropogenic waste such as food wrappers, cans, bottles and other single use items can 

pose both physical and chemical threats to marine wildlife. Physical harm can be caused when 

animals such as birds, fish, turtles, or other marine mammals become entangled in or consume 

waste. Entangled animals can drown or become injured or impaired, making them unable to escape 

predators. Similarly, plastics and trash mistaken as food and ingested can lead to suffocation or 

organ blockages that may then lead to death (Thompson, 2006). The degradation of plastics means 

that these particles can be ingested by animals as big as whales or as small as barnacles (Thompson 

et al., 2004).  

This degradation can also create chemical hazards for marine wildlife. As ultraviolet 

radiation beaks down plastics, additives that make plastic more durable are caused to leach out 

into the environment (Chin Li, 2018). Paradoxically, plastics are an issue because they absorb 

pollutants as well. Particles concentrate hydrophobic contaminants that are already present in 

seawater from other sources onto their surfaces. Gut conditions may cause these contaminants to 

be released, transferring chemicals into the organism (Teuten et al., 2009). Once ingested and 

digested the organism would be exposed to much higher quantities of toxic materials since it is 

shown that these chemicals are multiple times more concentrated on plastic surfaces then in 

surrounding water (Thompson, 2015). 

Microplastics can also alter the properties of sediments along shore lines. It has been shown 

that high concentrations can increase permeability as well as decrease heat absorption. Higher 

permeability can make organisms living in the sediment more likely to desiccate or dry out, and 

lower maximal temperatures can impact organisms such as sea turtles by affecting the sex-

determination of eggs (Carson et al., 2011) 

 

Global Concentrations of Microplastics and Waste 

As global populations increase it becomes more relevant and important to study the spread and 

influence of microplastics, especially in oceanic ecosystems. Coastal zones are specific areas of 

interest to study because they are home to several different types of habitats – shore lines, coral 

reefs, seagrass, mangroves, lagoons, shallows, etc. – and they are important to separate from open 

ocean ecosystems because particles flow differently and are affected by different environmental 

factors (Chubarenko et al., 2018). So many types of organisms live in coastal zones, all of which 

are at risk to be harmed by the hydrophobic and heavy metal contaminants that microplastics carry, 

that it is necessary to locate hotspots for microplastic concentrations in order to further study their 

impacts (Chin Li, 2018). 

Much research has already been done to identify such locations. One hotspot is the South 

Pacific Gyre. Oceanic plastics and other anthropogenic waste often accumulate in gyres because 
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the majority of currents, drifts, and eddies lead into them (Martinez et al., 2009). Plastic zonation 

is also dependent on the density and size of plastic particles. Some sink, some are neutrally 

buoyant, and some float, thus distributing plastics to all parts of the water column (Cole et al., 

2011). Additionally, biofouling or adherence to sediments can cause naturally buoyant plastic 

particles to sink (Zabkov and Esiukova, 2016). 

Microplastic concentrations have been confirmed in the Atlantic Ocean and Caribbean Sea 

(Law et al., 2010), the Pacific Ocean (Moore et al., 2001), the Indian Ocean (Ng and Obbard, 

2006), the Baltic Sea (Zabkov and Esiukova, 2016), the Gulf of Mexico (Wessel et al., 2016), and 

even the Arctic Sea (Obbard et al., 2014). However, the highest concentrations globally were found 

in the East Asian Sea. For example, in seas surrounding Japan, concentrations of 1.7 million 

pieces/km2 were reported (Jambeck et al., 2015). This is in comparison to the North Atlantic Gyre 

with over 20,000 pieces/km2 reported (Law et al., 2010) and the North Pacific Gyre with over 

334,000 fragments/km2 reported (Moore et al., 2001). 

Plastics and plastic particles also concentrate along shore lines, which have waste inputs 

from both land and sea. Terrestrial sources are most prevalent in places with high human impacts 

and density, while oceanic sourced waste is deposited when caught in near-shore currents (Ryan 

et al., 2009). Studies have found microplastics on beaches in the United Kingdom (Browne et al., 

2010; Thompson et al., 2004; Stolte et al., 2015), in the U.S. (Doyle et al., 2011; Carson et al., 

2011), in South America (Ivar do Sul et al., 2009; Costa et al., 2010), Central America (Wessel et 

al., 2016), the Mediterranean (Turner and Holmes, 2011), Asia (Ng and Obbard, 2006; Fok and 

Cheung, 2015), and in Africa (Nel et al., 2017), to name a few places. While it is hard to compare 

concentrations due to a lack of standardization in reporting, some of the highest concentrations 

found were in Hong Kong with an average abundance of 5595 items/m2 reported (Fok and Cheung, 

2015), in Brazil with 200 items/0.01 m2 reported (Costa et al., 2010), and in Germany with a 

maximum of 50,000 particles/kg reported (Liebezeit and Dubaish, 2012). 

While comparatively much less research has been done on these ecosystems, for the 

purposes of this research it is important to note that microplastics have also been found in 

mangrove forests. Average concentrations of 9.2 particles/250 g were reported in Singapore (Nor 

and Obbard, 2017), 418 particles were found in a mangrove forest in Malaysia (Barasarathi et al., 

2014), and mangroves in Ecuador were found to have higher microplastic concentrations in 

surrounding water than in intertidal and bed sediment (Domínguez et al., 2017). Mangroves can 

serve as a dumping ground, accumulating waste and debris that tides bring in (Kathiresan, 2003) 

from fish farms, coastal development, or recreational areas (Nor and Obbard, 2017). It has been 

shown that more microplastics are found in mangrove sediment where there is higher adjacent 

human activity (Nor and Obbard, 2017), however, microplastics have also been found in 

mangroves isolated from human activity (Barasarathi et al., 2014). 

 

Research Objectives 

Clearly a substantial amount of research has been done on microplastic concentrations in beach 

sediments and in the oceanic water column both separately and comparatively (as cited above), 

however there is much less research on mangrove plastic concentrations and little to no research 

systematically comparing all three habitat types. Mangroves are important ecosystems within 

coastal zones as they provide habitats, nurseries, and feeding grounds for countless organisms. 

They also act as a buffer between land and sea, protecting communities from natural disasters and 

erosion, and preventing pollutants and waste from entering waterways (Barbier, 2016). Because 

of this, the flow of debris between these ecosystems is fundamental to study in order to form a 

baseline of information for future studies on how microplastics affect coastal zone organisms.  
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This research attempts to compare all three habitats by collecting sediment samples from 

two different sites within each ecosystem type and analyzing them to find out what, if any, is the 

difference between microplastic concentrations in beach, mangrove, and shallow ocean sediments 

in Bahía Almirante, Bocas del Toro, Panama. This was done with the goal of discovering if there 

is a difference in the amount of microplastics present in these ecosystems to then identify if 

microplastics get trapped in a specific habitat within larger coastal zones. 

 

Methods 

 

Ethics 

Care was taken at each step of the methodology to reduce the use of plastic and the creation of 

waste while reusing as many materials as possible. While this was difficult due to lack of resources 

it was still a primary concern. Additionally, all sample collection sites were disturbed as minimally 

as possible by taking care during collection to leave no trace. Only 6 L of sediment were 

collectively removed from each beach and mangrove site and any organisms accidently collected 

were returned to nature. The traps used to collect oceanic sediment were attached to thin pieces of 

rebar that were placed in sandy sediment as often as possible to reduce their cumulative impact on 

organisms such as seagrass or coral. It was not found that any of the sediment collection processes 

impacted the research sites past the time of collection.  

 

Site Description 

The Bocas del Toro province of Panama is located 

in the most southwestern corner of the country 

along the Caribbean coast. To the northwest lies 

Costa Rica and to the east is the province of 

Veraguas. Bahía Almirante and the Laguna de 

Chiriqui ́combine to create the largest estuary on 

the Caribbean coast of Central America. This 

estuary contains the six major islands of the Bocas 

del Toro Archipelago, several smaller islands, 

numerous mangrove cays, and a narrow 

continental shelf, making it home to many 

important habitat and organisms (Meylan et al., 

2013). Bahía Almirante is relatively isolated from 

oceanic influences as it is enclosed by the 

mainland, islands, and mangroves, and contains no 

significant passageways into the Caribbean Sea or 

the Laguna de Chiriquí (Kaufmann and 

Thompson, 2005). This is an interesting place to study microplastics not only because of this 

separation and the unique ecosystems and biodiversity, but also because of the complex 

interactions between humans and the environment here. There is a recently instated plastic bag ban 

and a current movement to ban plastic bottles, however there is also a high presence of 

consumption and therefore waste due to the large tourism industry. Additionally, many studies 

have shown that there is not necessarily a direct correlation between higher human populations 

and higher plastic concentrations (Alomar et al., 2016; Laglbauer et al., 2014; Reisser et al., 2013). 

Based on this, even areas within the Bocas Archipelago with low human impacts are still likely to 

have plastic contamination.  

Figure 1: Map of sample collection sites in the Bocas del 

Toro Archipelago. Beach sites are marked in yellow, 

mangrove sites in green, and ocean sites in purple. 
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Beach Sediment Sampling 

The beach sediment samples were collected at La Playita and Punto Carenero. Both are located 

along the Isla Carenero Trail on Isla Carenero. La Playita is a small beach 45 meters long and 2 

meters deep on the eastern side of Carenero about 500 meters from the Vista Azul Resort. The 

sediment was course sand and the beach was covered with mossy green and white algae. At the 

time of sample collecting, the water was calm with few waves and only 1-3 pieces of trash were 

noticed. Punto Carenero is also located on the eastern side of Carenero and is 60 meters long and 

4 meters deep. The sediment was fine sand and during sample collection the water was rough. 

Countless pieces of trash were noted at the top of the beach along the Isla Carenero Trail and on 

surrounding beaches.  

At each beach, three samples were taken 

on two separate days for a total of six samples 

per site. Specific sampling locations for each 

beach were chosen by running a transect along 

the entire length of the beach and dividing it into 

equal segments. On the first day of sample 

collecting, the beach was divided into four equal 

parts, with samples taken at the first, second, 

and third quarter markings. The second day of 

collection the beach was divided into six parts, 

with samples taken from the first, third, and fifth 

markings. This was done to eliminate the 

possibility of sampling the same exact spot on 

the beach twice. A sample area of 25 cm x 10 

cm x 4 cm (1 L) was taken from the wrack line, 

as this is the highest point of high tide and where microplastics should be most dense (Startain et 

al., 2018).  

Each sample was then sifted through a stacked arrangement of 5 mm and 0.25 mm metal 

sieves, using water to ensure all solids were transferred through. Any solid larger than 5 mm and 

smaller than 0.25 mm was discarded while the remaining materials were placed in an aluminum 

tray and dried in a 90oC drying oven for 17 hours. Once dried, each sample was weighed and then 

transferred into a covered container (Masura et al., 2015). 

A flotation method to remove sediments was applied by adding a 300 g/L saline solution 

(Masura et al., 2015) to each sample to create a 1:2 ratio of sample to solution (Ng & Obbard, 

2006). The sample was agitated using a metal spoon for two minutes and then left to settle for 6 

hours (Ng & Obbard, 2006). As many of the floating solids as possible were removed and saved, 

while the remaining sediments and solution were placed in a pot. The materials in the pot were 

stirred and allowed to settle for one hour, and any remaining floating materials were removed, 

saved as a 13th sample, and all non-floating solids were discarded. This was done as a precaution 

to make sure that no floating materials were missed, as it was difficult to remove floating solids 

from each sample while in their containers.  

 Once all floating solids were collected, 20 mL of one molar NaOH solution and 20 mL of 

5% acetic acid solution were added to each sample to hydrolyze any remaining organic and 

carbonate materials. Each sample was checked after 4 hours. If natural materials were still visible, 

an additional 20 mL of 2-molar NaOH solution was added and the samples were left to sit 

overnight for 14 hours. If natural materials were still present after 14 hours, water was added to 

Figure 2: Transect line along the wrack line at Punto Carenero 

during the first day of sample collection 
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these samples to equalize their volume and pure NaOH was added to bring the concentration to 

2.4 g/20 mL to create a 3-molar solution. These samples were left to sit for a final 2 hours. 

 Next, a second flotation was implemented in order to float all microplastics to the top of 

the sample. To increase the salinity, 6 g of salt per 20 mL volume was added to each sample. The 

samples were stirred to dissolve the salt and then allowed to sit for 24 hours. After 24 hours, all 

floating materials were removed using a metal spoon and tweezers as needed and drained through 

a coffee filter. Each filter was placed on a petri dish and allowed to air dry overnight, loosely 

covered in aluminum foil (Masura et al., 2015). 

 Each sample was examined under a light microscope at 40x magnification to identify any 

microplastics present. Particles were identified as plastic based on the following criteria (Nor & 

Obbard, 2014): 

1. Size is between 5 mm – 0.25 mm 

2. No visible cellular or organic structures 

3. Fibers are equally thick throughout their entire length and are not tapered or frayed at ends 

4. Particles are homogenously colored 

5. Particles are not segmented, or appear as twisted flat ribbons 

Potential microplastics were visually verified under 100x and 400x as needed. The number of 

microplastics as well as their length (0.25 – 1 mm, 1 – 3 mm, or 3 – 5 mm), color, and type (primary 

plastic, microfiber, or microfragment) were recorded.  

 

Mangrove Sediment Sampling 

Mangrove sediment samples were collected on two separate mangrove islands in Cayo Coral, 

located southwest of Isla Bastimentos. Both were islands comprised of Rhizomorpha mangle, the 

first about 150 m x 500 m in size, and the second about 75 m x 200 m. The first site was not muddy, 

had ankle deep water, and abundant new growth. Only four pieces of trash were noted, and leaf 

litter covered most of the ground making it easy to walk on. The second site had knee deep water 

and was slightly muddier than the first. In the center of the island was a patch of grass about 7 m 

in diameter. There was also a dock built into the island, however it did not seem to be in use. This 

Figure 3: (Left) Mangrove sediment sample collection process; (Right) A mangrove sample during the first flotation process to 

remove sediments 
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second site exhibited less new growth than the first, however more trash was noticed, especially 

on the second day of sample collecting. 

 In each mangrove location, three samples were taken each day over two days for a total of 

six samples per site. Specific sampling locations were chosen by walking away from the drop off 

point in a randomly chosen cardinal direction for 10 m, then 10 m in another randomly selected 

direction, and repeated one more time. A sample area of 25 cm x 10 cm x 4 cm (1 L) was taken 

from each point using a knife to cut through any roots and a spoon to scoop up any water above 

the hole.  

 Each sample was then drained through a stacked system of 5 mm and 0.25 mm sieves. 

Water was used to remove any sediment trapped in the roots and to transfer all solids through the 

sieves. All solids larger than 5 mm and smaller than 0.25 mm were discarded. The remaining solids 

were placed in an aluminum tray and dried for 17 hours in a 90oC drying oven. Once dried, the 

samples were transferred into a covered container and weighed.  

 After this, the same series of sediment removal, hydrolyzation, microplastic flotation, and 

analyzation as applied to the beach sediment samples was applied to the mangrove sediment 

samples.  

 

Oceanic Sediment Sampling 

Passive sediment traps, rather than active manual 

sediment sampling, was used to collect shallow oceanic 

sediments. Each sediment trap consisted of a 40 cm x 2 

in PVC tube with a cap on the bottom end tied to a 1 yd 

long rebar. The first set of sediment traps was placed at 

Punto Hospitál, located on the northwestern tip of Isla 

Solarte, about 200 m off shore. The ocean habitat and 

floor consisted mainly of dead coral, with a few large 

brain corals and a reef on the northwestern end. The 

southeastern end was shallower and sandier. On both 

the sediment trap placement and collection days, there 

were strong currents and large swells with low visibility 

of about 2-4 m. The second site was La Playita, located 

on the eastern side of Isla Carenero. The sediment traps were placed about 200 m off shore in 

between two seagrass meadows on sandy sediment. On the day the traps were placed, the current 

was light and there was high visibility. On the collection day there was low visibility of about 1 – 

2 m.  

 At each site, six sediment traps were hammered into the ocean floor at an average depth of 

2 m. The traps were placed 10 m apart from each other, parallel to shore to reduce depth variability. 

The traps were collected three days after placement. Each trap was capped underwater before 

removal to keep any sediment kicked up during the removal process from entering the trap.  

 The contents of each trap were then poured through a stacked system of 5 mm and 0.25 

mm sieves. Water was used to rinse out each trap to ensure no sediments were left and to transfer 

all solids through the sieves. Anything larger than 5 mm and smaller than 0.25 mm was discarded, 

and the remaining solids were put into an aluminum tray and dried at 90oC in a drying oven for 17 

hours. The dried solids were then transferred into a covered petri dish and weighed.  

 The same processes of hydrolyzation, microplastic flotation, and analyzation as applied to 

the beach and mangrove sediment samples were then applied to the oceanic sediment samples. 

 

Figure 4: A closed, full sediment trap moments 

before removal 
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Results 

 

Of the beach sediment samples and ocean sediment samples 100% contained microplastics, while 

91.67% of mangrove sediment samples contained microplastics. The single mangrove sample in 

which no plastics were found contained very high levels of organic material that were 

unsuccessfully hydrolyzed during 

processing, thus making it possible that 

plastics were present but not able to be found.  

 In total, 187 microplastic particles 

were identified across all three habitat types. 

Out of the 187, 26.2% were found in beach 

sediment, 26.74% were from mangrove 

sediment, and 47.06% were from oceanic 

sediment.  

 Secondary microfibers were the most 

prevalent type of microplastic found. In the 

beach sediment, 65.31% of microplastics 

were fibers, while 80% of mangrove 

microplastics and 63.64% of ocean 

microplastics were fibers. In total, 68.45% of all microplastics identified were microfibers and 

31.55% were microfragments. No primary microplastics were found. 

 Overall, microplastics sized between 0.25 – 1 mm were the most common, however this 

was only specifically true for the beach and ocean sediments, which contained 45.83% and 47.13% 

microplastics within this range, 

respectively. Mangrove sediment mainly 

contained microplastics in the category of 3 

– 5 mm, with 80% of identified plastics 

falling within this size range. 

 The average number of microplastic 

particles per gram of dry weight was also 

calculated per habitat type. Beach sediment samples contained an average of 0.0054 ± 0.0063 

particles/g, mangrove sediment samples contained an average of 0.69 ± 1.22 particles/g, and ocean 

sediment contained an average of 72.71 ± 114.97 particles/g.  

 

Statistical Analysis 

A one-way analysis of variance (ANOVA) was 

run to compare the microplastic concentrations 

between beach, mangrove, and ocean sediment 

to determine overall significance; a p-value of 

0.018 was reported for α = 0.05.  

When the ANOVA results showed 

significant difference, a post hoc Tukey HSD test was calculated to compare all possible pairs of 

habitats to reveal specific points of statistically significant differences, the results of which can be 

found in Figure 7.  

 

 

 

Mangrove
26.74%

Beach
26.20%

Ocean
47.06%

RELATIVE PERCENTAGES OF 
MICROPLASTICS

Figure 5: Percent of microplastics per habitat of the total number 

of microplastics found 

Figure 6: Table showing the percentages of microplastics found per 

habitat type in each of three size range categories 

Figure 7: Results from post hoc Tukey HSD test with 

significant comparisons noted in yellow 
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Discussion 

 

Interpretation of Statistical Analysis 

The ANOVA showed that there was 

a significant difference between 

microplastic concentrations at the       

p < 0.05 level for the three conditions 

[F(2, 30) = 4.604, p = 0.018]. Since 

this significance was found, the post 

hoc Tukey HSD test was run to 

determine which concentrations 

were significantly different. The 

Tukey test showed that the mean 

concentrations in beach (M = 0.0054, 

SD = 0.0063) and mangrove (M = 

0.69, SD = 1.22) sediments were 

significantly different from water 

sediment (M = 72.71, SD = 114.97). 

However, there was no significant 

difference between the beach and 

mangrove microplastic 

concentrations. Taken together, 

these results suggest that one would 

expect to find higher concentrations 

of microplastics in oceanic sediment 

than in beach or mangrove sediment in Bahía Almirante. 

 

Larger Implications 

One of the main objectives of this research was to identify if one or more habitat exists within 

coastal zones in Bahía Almirante and the Bocas del Toro Archipelago that microplastics get 

trapped in. Based on the statistical analysis, it seems as though microplastics centralize in the ocean 

rather than on land since oceanic sediment had significantly more particles/g than beach sediment. 

Additionally, mangrove islands do not appear to act as a filter for microparticles, for if they did it 

would be expected that mangrove concentrations would be higher or at least equal to that of 

surrounding water.  

It is also interesting to note that despite direct anthropogenic inputs of trash and plastic on 

land, beaches did not have significantly more microplastics than mangrove islands. This may imply 

that the main sources of plastic contamination on beaches are larger or whole, undegraded plastics 

rather than microplastics. Observations of several pieces of trash at La Playita and large amounts 

of trash at Punto Carenero support this theory. Trash included plastic bottles, plastic and metal 

lids, cans, and food wrappers. Similarly, no noted oceanic trash (apart from one floating diaper) 

was noticed at either sediment trap site, which, coupled with the significant difference in plastic 

particle concentrations between beaches and ocean sediment, may imply that microplastics are the 

main source of plastic debris in the ocean.  

However, looking only at microplastics, the statistic that 100% of particles identified were 

secondary microplastics shows that the dominant source of microplastics across all habitat types 

is due to plastic degradation rather than direct deposits. This is consistent with previous research 

Figure 8: Comparison of microplastic particles per gram of dry weight 

between the three habitat types. A log scale was used to prevent the graph 

from being skewed towards outlying large values 
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in the Western Tropical Atlantic Ocean and in the Gulf of Mexico where the majority of 

microplastics identified in beach samples were secondary (Ivar do Sul et al., 2014), and 100% of 

microplastics in beach sediment were secondary (Wessel et al., 2016), respectively. This 

prevalence is common in tropical areas as plastics and other waste are exposed to higher 

temperatures and more extreme degradation conditions (Andrady, 2011).  

  

The findings of this research are congruent with reports from similar parts of the world in 

terms of types of microplastics found, however, when comparing concentrations found in beach 

samples from these studies, the concentrations in Bahía Almirante are much lower. In the 

Equatorial Western Atlantic Ocean, 194 plastic particles were found across 13,708 g of beach 

samples, leading to a concentration of 99 particles/g, over 18,000 times higher than those found 

on the Bocas del Toro beaches (Ivar do Sul et al., 2009). In the Gulf of Mexico, sampled beaches 

along the ocean contained 50.6 ± 9.96 particles/m2 (Wessel et al., 2016). Our data is reported in 

particles/g, however Wessel et al. took sample areas of 25 cm x 25 cm x 3-6 cm, while our sample 

areas were 25 cm x 10 cm x 4 cm. Wessel et al. disregarded depth and reported in m2, so doing the 

same for our data (since they are approximately the same depth) we found 150.78 ± 88.17 

particles/m2. This is about 3 times larger than concentrations found in the Gulf of Mexico.  

 A study of environmental matrices in mangrove ecosystems in Ecuador found similar 

microparticle distributions to this study. Their research concluded that 76.9% of microplastic 

contamination found was from water, versus 11.2% from intertidal sediment and 11.9% from bed 

sediment (Domínguez et al., 2017). This aligns with our findings that water in coastal zones 

contains significantly more microplastics than near-by mangrove bed sediment. 

 Alternatively, compared to previous research, mangrove concentrations were much higher 

than those found in mangrove sediment in Singapore where concentrations of 9.2 ± 5.9 

particles/250 g dry weight were reported (Nor and Obbard, 2013). Converting the data found in 

Bocas del Toro mangrove islands in Cayo Coral to particles/250 g shows concentrations of 171.49 

± 305.34 particles/250 g; this is about 19 times larger than in Singapore. This is even more 

interesting when it is considered that the Singaporean study looked at a much larger size range – 

from 0.04 - 5 mm versus the 0.25 - 5 mm range in our study – and that 58% of microplastics found 

were smaller than 0.04 mm. On the other hand, there is a point of congruity with this research in 

the types of microplastics. In Cayo Coral, 80% of microplastics found were microfibers, and in 

Singapore, 72% were microfibers, both representing the majority of particles identified.  

Figure 9: (From left to right) A blue microfiber; a pink microfragment; and a clear, biofouled microfragment attached to a 

piece of organic material 
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 Comparing the concentrations in ocean sediment to past studies is a bit more difficult, as 

most of the research found analyzes plankton net drags and water concentrations instead of 

sediment concentrations, and thus reports findings in particles/km2 instead of by mass. While the 

beach sediment samples could be converted to m2 and then if needed, km2, the same cannot be 

done with the ocean sediment samples, as they were collected in 1 L sediment traps, only small 

portions of which were sediment that was analyzed. However, one study with congruent units was 

found analyzing bottom sediments in the Baltic Sea. There, concentrations of 34 ± 10 items/kg 

were reported, which is over 2,000 times smaller than Bahía Almirante concentrations when 

converted from particles/g to per kg. However, microfibers were the most prominent type of 

microplastic found in both locations. The researchers in the Baltic Sea explain that this dominance 

may be due to the physical properties of microfibers in comparison to different types of 

microplastics (such as fragments or films) and the way in which these properties interact with 

currents and sedimentation. In the Baltic Sea, more microfibers than microfragments were found 

closer to shore. This is potentially because higher current velocities, like those found in deeper 

water, are required to transport microfragments, versus shallow water’s slightly slower velocities 

required to transport microfibers (Zabkov and Esiukova, 2016).  

Additionally, it should be noted that concentrations of 1414 ± 112 pieces/km2 were found 

in a study that compiled 22 years’ worth of data from ship tows in the Caribbean Sea. This was 

similar to concentrations in other areas close to land, such as the Gulf of Maine (1534 ± 200 

pieces/km2), whereas concentrations farther from land were higher, like at 30oN (along the same 

latitude as Florida) where 20,328 ± 2324 pieces/km2 were found (Law et al., 2010). If this trend is 

consistent, it could be concluded that microplastic concentrations in Bahía Almirante are generally 

lower in comparison to other open ocean locations, as the bay is largely enclosed. This again 

highlights the need for standardized reporting in the world of microplastic research in order to 

facilitate meaningful and accurate comparisons and conclusions. 

  Overall, when comparing this research’s findings to reports from similar parts of the world 

or similar habitats, it seems as though the types of microplastics most prominent (secondary and 

microfibers) are comparable, whereas the actual concentrations of microplastics per habitat differ, 

sometimes with large orders of magnitude. These differences can potentially be explained by the 

geography of Bahía Almirante. The bay is bounded by a coastal swamp and mangroves to the 

northwest, the Panama mainland to the southwest, and the Bocas del Toro Archipelago on the 

north and southwestern sides. Because of this, there is restricted watershed and limited circulation 

from the Caribbean Sea or even with the adjacent Laguna de Chiriquí (Kaufmann and Thompson, 

2005). Overall, these factors create a relatively closed system with low oceanic influence, 

potentially altering the flow of microplastics and thus making concentrations within the bay 

different from concentrations in similar areas and habitats, be in on beaches, in mangroves, or in 

water.  

 

Possible Sources of Error 

Due to the nature of ecology, the natural world, and science in general, there was absolutely room 

for both environmental and human error. On both beach sample collection days it was raining, 

which not only could have altered the contents of the samples but made it difficult to standardize 

the sample sizes. Additionally, a few samples were lost to the ocean – one sediment trap quite 

literally disappeared in the days between placement and removal, while another spilled in transport 

– and another mangrove sample’s container shattered during processing. This could have affected 

concentration averages as some data was not able to be collected.  
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 Human error was present during the research process as well. Due to a lack of equipment 

and lab access, it was difficult to follow previously tested and confirmed methodologies (i.e. 

NOAA’s Laboratory Methods for the Analysis of Microplastics in the Marine Environment). This 

meant that methods had to be adjusted in real time because it was impossible to anticipate before 

hand what materials would be available, meaning that some steps of sample processing – mainly 

organic material hydrolyzation and microplastic flotation – may not have been executed as 

precisely or worked as well as they could have with unlimited resources.  

 Similarly, a lack of experience with microplastics could have led to the misidentification 

of particles as microplastics or, alternatively, some particles that were plastic could have been 

overlooked. The methodologies being followed relied on visual inspection of floating solids to 

ensure that nothing was missed, however, microplastics are microscopic and therefore it is possible 

that not all plastics were removed from the original samples. Some plastic particles may not have 

even floated to the surface in the first place if they were excessively biofouled or if they were 

attached to more dense sediment. 

 Finally, contamination was an issue 

across all habitats’ samples. The culprit: a 

pink hand towel, bought in a time of need, 

now infamous for shedding its brightly 

colored fibers everywhere. Samples were 

covered for as much of the processing time as 

possible, however this was clearly not 

enough, as 69.32% of samples contained 

microfibers that most likely were sourced 

from said towel. Overall, 50 of these pink 

fibers were found, and while it was 

impossible to confirm which came from the 

towel and which were in the samples 

originally, anything that resembled a towel 

fiber (in comparison to a fiber taken directly 

from the towel and viewed under the 

microscope) was not counted towards the particles/g average per habitat. Other, less certain 

sources of contamination could have come from the plastic containers and petri dishes that had to 

be used since glass was not available, and from other microparticles floating in the air or from 

human contact.  

 

Recommendations and Future Research 

The main recommendation on which to improve this research would be to conduct it while having 

access to a laboratory and to unlimited use of equipment. Plastic containers and other plastic 

products had to be used at several points during the sample collecting and processing, which may 

have resulted in contamination, because there was not access to the correct quantity or size of glass 

containers. Additionally, a better hydrolyzing agent would have been useful (such as 30% 

hydrogen peroxide, as recommended by NOAA), as the hydrolyzation methods that were created 

on site did not fully remove all organic and carbonite materials.  

 Future research should include a confirmation of this study with more ideal conditions. 

Along with that, these findings will hopefully lead to further direct comparisons within coastal 

zone and between larger marine habitats to continue to identify specific ecosystems in which 

microplastics are most prevalent. More research should particularly be conducted in mangrove 

Figure 10: An example of a pink microfiber that was most likely 

a piece of contamination from a shedding hand towel 
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ecosystems, as there is currently very little information on microplastic concentrations within them 

and as they are important ecological hotspots; microplastics in these habitats have the potential to 

have high ecological impacts.  

 Finally, as most answers do, the findings of this research only lead to further questions. 

What are the main sources of microplastics on land? In oceans? In mangroves? Are there 

differences in microplastic concentrations between mangrove islands and land-locked mangroves? 

Are there differences in microplastic concentration in oceanic sediment versus the water itself? 

How are microplastic concentrations in Bocas del Toro and in the Caribbean changing over time? 

How are these concentrations affecting marine organisms of all types and sizes? How are 

individual habitat types within larger marine ecosystems connected to each other and to 

ecosystems around the world? Finding the answers to these questions will not be easy but will be 

integral to the continual study of microplastics and their greater impacts over time and space. 

 

Conclusion 

 

This research undoubtably proves the existence of microplastics in beach, mangrove, and ocean 

sediments in Bahía Almirante and in the Bocas del Toro Archipelago, Panama. When comparing 

microplastic concentrations between habitat types, ocean sediments contain significantly more 

microplastics than the beach or mangrove sediments, whereas beaches and mangrove islands 

contain statistically similar concentrations. Secondary microplastics and microfibers are the most 

prevalent types of microplastics found, which is consistent with previous research on beach and 

mangrove microplastic concentrations. The prevalence of secondary microplastics points to plastic 

degradation as a main source of contamination, rather than direct plastic inputs. Differences in 

microplastic concentrations in habitat types in Bahía Almirante when compared to past studies are 

potentially explained by the bay’s geography as a relatively closed system, separated from large 

oceanic influences.  

These findings are important as they emphasize that marine organisms, especially those 

living directly in water, are at risk of being harmed by the mal-effects microplastics can cause. 

These include, and are not limited to, organ blockages by ingestion, entanglement leading to injury 

or death, and illness or death from ingesting toxins either present in plastics or that have been 

concentrated on plastic surfaces from surrounding water. Due to the small size of microplastics, 

they are essentially impossible to effectively eliminate from any habitat type. While some larger 

pieces of plastic and trash can be removed to prevent them from degrading into micro sizes, the 

impacts of contamination will still exist. It would be a cop out to say that the take away from this 

research is that removal methods must me improved upon. Instead, it is vital to reduce plastic use 

and consumption and to find biodegradable but still commercially viable alternatives to plastic. 

This anthropogenic creation should not exist in natural habitats, but it is too late to reverse this 

action. The next best option is to halt the increase of marine microplastics and waste contamination 

by emphasizing reduce and reuse over recycle and refuse, and by minimizing the creation of waste 

in all aspects of life.  

  



18 
 

References 

 

Alomar, C., Estarellas, F., Deudero, S., (2016). Microplastics in the Mediterranean Sea: deposition 

in coastal shallow sediments, spatial variation and preferential grain size. Marine 

Environmental Research 115, 1–10 

Andrady, A.L., (2011). Microplastics in the marine environment. Marine Pollution Bulletin 62, 

1596–1605. 

Barasarathi, J., Agamuthu, P., Emenike, C. U., & Fauziah, S. H. (2014). Microplastic Abundance 

in Selected Mangrove Forest in Malaysia. Proceeding of The ASEAN Conference on Science 

and Technology. doi:10.7717/peerj.591/supp-1 

Barbier, E. B. (2016). The protective service of mangrove ecosystems: A review of valuation 

methods. Marine Pollution Bulletin,109(2), 676-681. doi:10.1016/j.marpolbul.2016.01.033 

Browne, M.A., Galloway, T.S., Thompson, R.C., (2010). Spatial patterns of plastic debris along 

estuarine shorelines. Environmental Science & Technology 44, 3404–3409. 

Carson, H.S., Colbert, S.L., Kaylor, M.J., McDermid, K.J., (2011). Small plastic debris changes 

water movement and heat transfer through beach sediments. Marine Pollution Bulletin 62, 

1708–1713. 

Chin Li, W. (2018). The Occurrence, Fate, and Effects of Microplastics in the Marine 

Environment. In Microplastic Contamination in Aquatic Environments An Emerging Matter of 

Environmental Urgency(pp. 133-173). doi:https://doi-org.oca.ucsc.edu/10.1016/C2016-0-

04784-8 

Chubarenko, I., Esiukova, E., Bagaev, A., Isachenko, I., Demchenko, N., Zobkov, M., . . . 

Khatmullina, L. (2018). Behavior of Microplastics in Coastal Zones. In Microplastic 

Contamination in Aquatic Environments An Emerging Matter of Environmental Urgency(pp. 

175-223). doi:https://doi-org.oca.ucsc.edu/10.1016/C2016-0-04784-8 

Claessens, M., Cauwenberghe, L. V., Vandegehuchte, M. B., & Janssen, C. R. (2013). New 

techniques for the detection of microplastics in sediments and field collected organisms. Marine 

Pollution Bulletin,70(1-2), 227-233. doi:10.1016/j.marpolbul.2013.03.009 

Costa, M.F., Ivar do Sul, J.A., Silva-Cavalcanti, J.S., Arau´ja, M.C.B., Spengler, A., Tourinho, 

P.S., (2010). On the importance of size of plastic fragments and pellets on the strandline: a 

snapshot of a Brazilian beach. Environ. Monit. Assess. 168, 299–304. 

https://doi.org/10.1007/s10661-009-1113-4. 

De Jesus, Alexander, “Sediment deposition within two Thalassia testudinum seagrass sites in Boca 

del Drago, Bocas del Toro Archipelago, Panamá” (2018). Independent Study Project (ISP) 

Collection 

Domínguez, G., Calle, M., Tirape, A., Calle, P., Noel, M., Ross, P., & Alava, J. (2017). Occurrence 

of Microplastics in the Mangrove Ecosystem of the Gulf of Guayaquil, Ecuador(Rep.). 

Doyle, M.J., Watson, W., Bowlin, N.M., Sheavly, S.B., (2011). Plastic particles in coastal pelagic 

ecosystems of the Northeast Pacific ocean. Marine Environmental Research 71, 41–52 

Fok, L., Cheung, P.K., (2015). Hong Kong at the Pearl River Estuary: a hotspot of microplastic 

pollution. Marine Pollution Bulletin 99(1–2), 112–118. 

Good, T. P., June, J. A., Etnier, M. A., & Broadhurst, G. (2010). Derelict fishing nets in Puget 

Sound and the Northwest Straits: Patterns and threats to marine fauna. Marine Pollution 

Bulletin, 60(1), 39-50. doi:10.1016/j.marpolbul.2009.09.005 

Gross, M. (2015, February 2). Oceans of Plastic Waste. Current Biology, 25(3), 93-96. Retrieved 

from https://www.cell.com/current-biology/pdf/S0960-9822(15)00070-6.pdf 



19 
 

Ivar do Sul, J. A., Costa, M. F., & Fillmann, G. (2014). Microplastics in the pelagic environment 

around oceanic islands of the Western Tropical Atlantic Ocean. Water, Air, & Soil 

Pollution,225(7). doi:10.1007/s11270-014-2004-z 

Ivar do Sul, J. A., Spengler, A., Costa, M.F., (2009). Here, there and everywhere, small plastic 

fragments and pellets on beaches of Fernando de Noronha (Equatorial Western Atlantic). 

Marine Pollution Bulletin 58, 1236–1238. 

Kathiresan, K. (2003). Polythene and Plastics-degrading microbes from the mangrove soil. Revista 

De Biologial Tropical,51(3), 629-633. 

Kaufmann, K. W., & Thompson, R. C. (2005). Water Temperature Variation and the 

Meteorological and Hydrographic Environment of Bocas del Toro, Panama. Caribbean Journal 

of Science,41(3), 392-413. 

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, 

K.L., (2015). Plastic waste inputs from land into the ocean. Science 347, 768–771. 

Laglbauer, B.J.L., Franco-Santos, R.M., Andreu-Cazenave, M., Brunelli, L., Papadatou, M., 

Palatinus, A., Grego, M., Deprez, T., (2014). Macrodebris and microplastics from beaches in 

Slovenia. Marine Pollution Bulletin 89, 356–366. 

Law, K.L., Moret-Ferguson, S., Maximenko, N.A., Proskurowski, G., Peacock, E.E., Hafner, J., 

Reddy, C.M., (2010). Plastic accumulation in the North Atlantic subtropical gyre. Science, 

1185–1188. 

Liebezeit, G., Dubaish, F., (2012). Microplastics in beaches of the East Frisian Islands Spiekeroog 

and Kachelotplate. Bull. Environ. Contam. Toxicol. 89(1), 213–217. 

Martinez, E., Maamaatuaiahutapu, K., Taillandier, V., (2009). Floating marine debris surface drift: 

convergence and accumulation toward the South Pacific subtropical gyre. Marine Pollution 

Bulletin 58, 1347–1355. 

Masura, J., Baker, J., Foster, G., & Arthur, C. (2015). Laboratory Methods for the Analysis of 

Microplastics in the Marine Environment: Recommendations for quantifying synthetic particles 

in waters and sediments (National Oceanic and Atmospheric Administration, NOAA Marine 

Debirs Program). 

Meylan, A. B., Meylan, P. A., & Espinosa, C. O. (2013). Sea Turtles of Bocas del Toro Province 

and the Comarca Ngöbe-Buglé, Republic of Panamá. Chelonian Conservation and 

Biology,12(1), 17-33. doi:10.2744/ccb-0948.1 

Moore, C.J., Moore, S.L., Leecaster, M.K., Weisberg, S.B., (2001). A comparison of plastic 

plankton in the North Pacific Central Gyre. Marine Pollution Bulletin 42, 1297–1300. 

Nel, H., Hean, J., Noundou, X., Froneman, P., (2017). Do microplastic loads reflect the population 

demographics along the southern African coastline? Marine Pollution Bulletin 115(1-2), 115–

119. 

Nor, N., & Obbard, J. (2017). Microplastics in Singapore’s Coastal Mangrove Ecosystems. Fate 

and Impact of Microplastics in Marine Ecosystems,10. doi:10.1016/b978-0-12-812271-

6.00183-6 

Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I. & Thompson, R. C. (2014). Global 

warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future, 2, 315–320. 

Reisser, J., Shaw, J., Wilcox, C., Hardesty, B.D., Proiett, M., Thums, M., Pattiaratchi, C., (2013). 

Marine plastic pollution in waters around Australia: characteristics, concentrations, and 

pathways. PLoS One 8(11), e80466. 



20 
 

Ryan, P.G., Moore, C.J., van Franeker, J.A., Moloney, C.L., (2009). Monitoring the abundance of 

plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: 

Biological Sciences 364, 1999–2012. 

Sartain, M., Wessel, C., & Sparks, E. (2018). Microplastics Sampling and Processing Guidebook. 

Mississippi State, MS: Mississippi State University. 

Stolte, A. (2014). The detection of microplastics in beach sediments:(Unpublished master's thesis). 

Universität Rostok. 

Stolte, A., Forster, S., Gerdts, G., & Schubert, H. (2015). Microplastic concentrations in beach 

sediments along the German Baltic coast. Marine Pollution Bulletin,99(1-2), 216-229. 

doi:10.1016/j.marpolbul.2015.07.022 

Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., et al. (2009). 

Transport and release of chemicals from plastics to the environment and to wildlife. 

Philosophical Transactions of the Royal Society B, 364, 2027–2045. 

Thompson, R.C., 2006. Plastic debris in the marine environment: consequences and solutions. 

Marine Nature Conservation in Europe. Federal Agency for Nature Conservation, Stralsund, 

Germany, pp. 107–115. 

Thompson, R. C. (2015). Microplastics in the Marine Environment: Sources, Consequences and 

Solutions. In Marine Anthropogenic Litter(pp. 185-200). Springer, Cham. 

doi:https://doi.org/10.1007/978-3-319-16510-3_7  

Thompson, R. C., Moore, C., Andrady, A., Gregory, M., Takada, H., & Weisberg, S. (2005). New 

directions in plastic debris. Science, 310, 1117. 

Thompson, R. C., Moore, C., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and 

human health: Current consensus and future trends. Philosophical Transactions of the Royal 

Society B, 364, 2153–2166. 

Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., et al. 

(2004). Lost at sea: Where is all the plastic? Science, 304, 838. 

Turner, A., Holmes, L., (2011). Occurrence, distribution and characteristics of beached plastic 

production pellets on the island of Malta (central Mediterranean). Marine Pollution Bulletin 62, 

377–381. 

U.S. Environmental Protection Agency. (2018). Advancing Sustainable Materials Management: 

2015 Fact Sheet. (EPA530-F-18-004). Washington, DC. 

Wessel, C. C., Lockridge, G. R., Battiste, D., & Cebrian, J. (2016). Abundance and characteristics 

of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf 

of Mexico estuaries. Marine Pollution Bulletin,109(1), 178-183. 

doi:10.1016/j.marpolbul.2016.06.002 

Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics 

on marine organisms: A review. Environmental Pollution,178, 483-492. 

doi:10.1016/j.envpol.2013.02.031 

Zobkov, M., & Esiukova, E. (2017). Microplastics in Baltic bottom sediments: Quantification 

procedures and first results. Marine Pollution Bulletin,114(2), 724-732. 

doi:10.1016/j.marpolbul.2016.10.060 

 


	SIT Graduate Institute/SIT Study Abroad
	SIT Digital Collections
	Fall 2018

	Macro implications of microplastics: a comparative study of microplastic distribution in Bahía Almirante, Bocas del Toro, Panama
	Bonnie Feldberg
	Recommended Citation


	tmp.1552337395.pdf.QphlL

