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Broadcasting in vehicular networks has attracted great interest in research community and industry. Broadcasting on disseminating
information to individual vehicle beyond the transmission range is based on inter-vehicle communication systems. It is crucial to
broadcastmessages to other vehicles as fast as possible because themessages in vehicle communication systems are often emergency
messages such as accident warning or alarm. In many current approaches, the message initiator or sender selects the node among
its neighbors that is farthest away from it in the broadcasting direction and then assigns the node to rebroadcast the message once
the node gets out of its range or after a particular time slot. However, this approach may select a nonoptimal candidate because
it does not consider the moving status of vehicles including their moving directions and speeds. In this paper, we develop a new
approach based on prediction of future velocity and selective forwarding. The current message sender selects the best candidate
that will rebroadcast the message to other vehicles as fast as possible. Key to the decision making is to consider the candidates’
previous moving status and predict the future moving trends of the candidates so that the message is spread out faster. In addition,
this approach generates very low overhead. Simulations demonstrate that our approach significantly decreases end-to-end delay
and improves message delivery ratio.

1. Introduction

Vehicular ad hoc networks (VANETs) are mobile ad hoc
networks (MANETs) between road-bound vehicles such as
cars and trucks. Vehicles play important roles in our daily life.
Nowadays, vehicles are becoming more and more intelligent.
Smart vehicles integrate environment-aware, route-planning,
decision-making and drive-assistant technologies. The tech-
nologies contain computers, sensors, communication, arti-
ficial intelligence, and control technology [1]. VANET has
attracted considerable attention from both research com-
munity and automotive industry. Many automobile manu-
facturers started planning to build communication devices
into their vehicles for purposes of security, convenience, and
comfort. In addition, the increasing importance of VANET
has been recognized by the governmental organizations. The
Federal Communications Commission (FCC) has allocated
particular spectrum for intervehicle communications.

Many attractive applications have emerged [2] with the
development of the VANET.The first application is “Collision

Avoidance.” About 40 thousand deaths occur every year in
USA [3]. Many of them are resulted from vehicles leaving
the road or traveling unsafely through intersections. Com-
munications between vehicles and between vehicles and the
roads can save many lives and prevent injuries. Some of the
worst traffic accidents involve many vehicles striking each
other after a single accident suddenly halts traffic. In the
application of “Collision Avoidance,” once a vehicle reduces
its speed significantly, it will broadcast its location to its
neighbor vehicles. The second one is “Cooperative Driving,”
such as violation warning, turning conflict warning, curve
warning, lanemergingwarning and [4, 5].These servicesmay
dramatically reduce the accidents. As a matter of fact, many
of the accidents come from the lack of cooperation between
drivers. Good communications are able to prevent them.The
third one is “Traffic Optimization.” Traffic delays continue
to increase, wasting a great deal of time for the drivers. A
significant reduction in these numbers is achieved through
vehicular networks. Vehicles serve as data collectors and
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transmit the traffic condition information over the vehicular
networks. In addition, transportation agencies utilize this
information to actively relieve traffic congestion. In particu-
lar, each vehicle detects the number of its neighbor vehicles
and their averages speeds and then relays this information
to vehicles in order to prevent other vehicles approaching
the busy location. In some scenario, the information can
be relayed by vehicles moving in the other direction so
that it may be propagated faster to the vehicles toward
the congestion location. Vehicles can also collect the data
about weather, road surface, construction zones, highway rail
intersection, and emergency vehicle signal and relay them to
other vehicles [6, 7]. Other applications related to vehicles are
also emerged to VANET nowadays such as payment services
like toll collection. It is very convenient and desirable to
pass a toll collection without having to decelerate your car,
waiting in line, looking for some coins or something like
that. Moreover, services such as Location-based Services like
finding the closest fuel station, restaurant, lodge, and so forth
are not specific to the vehicular networks. Many GPS systems
have such kinds of services already. But vehicular networks
may not rely on the satellite like GPS and are able to update
the most recent scenarios of the services. The scenario is
geographic routing. Key to this kind of routing is regarding
circumvention of holes [8].

Message dissemination is essential in support of the appli-
cations of VANET. Researchers are developing broadcasting
approaches to disseminate messages to other vehicles. The
design of effective vehicular broadcasting approaches poses
a number of challenges. Similar to MANET, VANET has
no fixed infrastructure and instead it relies on ordinary
nodes to perform routing of messages. However, vehicular
ad hoc networks behave in different ways than traditional
MANETs. Vehicles move at a fast rate, moving in and out
of the reception area of other vehicles participating in the
network [9]. As a matter of fact, a pair of vehicles commu-
nicate for a limited amount of time. It is also expected that
communication between nodes that have never interacted
before and will never interact again will be the norm. Thus
vehicular networks are very different from existing mobile
ad-hoc networks. These characteristics imply that traditional
ad-hoc protocols cannot be ruled effectively in the vehicular
networking setting [2, 10]. Vehicle-based networks are the
high-speed, driving rules-constrained, and road topology-
limited mobility of their nodes [9]. The motion of cars in
everyday traffic is very different from that of nodes partic-
ipating in other kinds of mobile networks and influences
the physical topology of vehicular networks in a unique
way. Because communication protocols are strongly affected
by the underlying connectivity structure, the study of the
topological properties of a network built overmoving vehicles
is a basic step toward a full understanding of the behavior of
networking techniques. In addition, the mobility constraints
and high dynamics are unique characteristics of VANETs.
Velocities are also restricted according to speed limits, traffic
control mechanisms such as stop sign and traffic light, and
the scenario of the road. Furthermore, VANETs encounter a
major routing issue, that is, the broadcast storm problem.The
broadcast storm problem occurs when mobile nodes send

messages by flooding causing frequent link layer contention
with other nearby broadcasting nodes and result in packet
loss due to collisions. Therefore, it is extremely difficult to
design a soundmessage broadcasting approach, especially the
one that can broadcast the messages to other vehicles as fast
as possible.

Current approaches focus on employing distance-based
mechanism. In these schemes, the sender node tries to
select the farthest node in the broadcasting direction and
assign it the duty of forwarding the messages. However,
these approaches may not select the best candidate that
can forward the message to other nodes fastest. In this
paper, we develop a prediction and selective forwarding
based broadcasting algorithm. In this algorithm, each node
maintains the acceleration and the variance of acceleration
that can represent its historical mobility status. In addition,
each node is able to predict its future mobility trend by
considering the two parameters and their current velocity. In
the broadcasting process, the sender disseminates a message
to all its neighbors in the broadcasting direction. Then
it selects the fastest candidate based on considering its
neighbors’ future mobility and then designates this candidate
to rebroadcast the message. Moreover, because each node
only needs to maintain two parameters, the overhead is very
low. Our simulation results indicate that our approach can
significantly decrease the end-to-end delay and improve the
message delivery ratio, compared with existing approaches.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related research on this topic. Section 3 proposes a
novel method to broadcast messages to other vehicles as fast
as possible.We evaluate the proposed schemes by simulations
and describe the performance results in Section 4. Section 5
concludes the paper.

2. Related Work

The recent message broadcast protocols on vehicular net-
works are reviewed in this section. Unlike other forms of
MANETs, applications developed for VANET have a very
specific and clear goal of providing an intelligent and safe
transport system. Emergency warning for public safety is
one of many applications that is highly time-critical and
requires a more intelligent broadcast mechanism than just
blind flooding. In [11], the authors proposed a spatially
aware packet routing algorithm to disseminate the message
in VANETs. This algorithm predicts the permanent topology
holes. Then, the geographic forwarding is conducted when
the messages are disseminated to other nodes.

Ding et al. proposed SADV, a static-node assisted adaptive
data dissemination protocol for vehicular networks [12],
which employs mechanisms that enable the packet to wait at
an intersection until the best path is available. To achieve this,
they add static nodes at intersections that store and forward
the packet when appropriate. In addition, to get a more
accurate delay estimation of forwarding packets along each
road, they let the static nodes measure the packet forwarding
delay in real time. Therefore, the routing decision in each
static node adapts to changing vehicle densities on the roads.
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They also study how multipath routing can help decrease the
packet delivery delay by increasing the probability of hitting
the optimal trajectory under inaccurate delay estimation of
each road.

Fazio et al. proposed an interference aware routing
scheme for multiradio vehicular networks, in which each
node is equipped with a multichannel radio interface [13].
Transmission channels are switched on the basis of a period-
ical signal-to-interference ratio (SIR) evaluation in order to
relieve the effects of the cochannel interference perceived by
mobile nodes. Anewmetric is also proposed in this approach,
which maximizes the average SIR level of the connection
between source and destination.

Bai et al. [14] study the impact of nodes mobility on
the topology of ad-hoc networks, by means of a protocol-
independent characterization of connectivity. However, their
contribution in that sense is part of a larger framework aimed
at explaining the performance of routing protocols in mobile
ad-hoc networks and thus suffers from a low level of detail.
Also, these works only consider completely random motion
representations and very approximated vehicular mobility
models, inducing results hardly applicable to real world
vehicular networks.

Perkins and Royer proposed a broadcasting algorithm
for VANET called FROV [15]. This algorithm is applied in
the scenario that the cars have heterogeneous transmission
ranges. In addition, the transmission of a car varies while
traveling, due to changes of environmental conditions, such
as the humidity of the air, rain, snow, and fog. Moreover,
topological conditions, such as tunnels, sharp curves, sur-
rounding trees, and buildings, could further influence the
transmission ranges. The main idea of FROV is that the
node that is selected to rebroadcast a message is the one
whose retransmission spans further than other nodes. To
accomplish this task, FROV considers both the position and
the transmission range, in the direction of the broadcast, for
all the receivers of a message. This algorithm handles the
scenarios with extreme weather or poor conditions, but it
does not consider the mobility status of the vehicles that is
essential in VANETs.

A multihop broadcast protocol for intervehicle commu-
nication was proposed in [16]. This protocol assigns the duty
of forwarding and acknowledging the broadcast packet to
only one vehicle by dividing the road portion inside the
transmission range into segments and choosing the vehicle
in the farthest nonempty segment without a priori topology
information. When there is an intersection in the path of
the message dissemination, new directional broadcasts are
initiated by the repeaters located at the intersections. This
protocol considers the longest distance factor when selecting
the best rebroadcasting node.

Ni et al. proposed several threshold-based techniques in
[17], the counter-based, distance-based, and location-based
schemes. Depending on the scheme considered, a node
receiving the broadcast packet compares the predetermined
threshold value with its local information, that is, the number
of duplicate packets received, the relative distance between
itself and the sender, or the additional area that can be covered
if it rebroadcasts themessage.The criteria to adaptively adjust

C2
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Figure 1: The basic broadcasting scenario.

the thresholds according to the number of neighbors were
also presented by Tseng et al. in [18].The results show that the
location-based scheme may offer good performance in terms
of the packet penetration rate and the link load.

An approach that considers the mobilities of the vehicles
was proposed in [19]. In this algorithm, vehicles are divided
into several clusters. Each cluster header maintains the
moving status and density of the vehicles in its cluster. This
approach takes mobility into consideration, but it is very
difficult to maintain clusters in VANETs.

3. Broadcasting Protocol with Prediction and
Selective Forwarding

3.1. The Basic Idea. We illustrate our approach with a simple
example in this section (Figure 1). We assume that all the
vehicles (nodes) are distributed in a two-dimensional space
and they are in the moving status. Each node has the same
transmission range. In addition, errors of measurement for
the mobility exist because of environmental conditions [15].

Figure 1 gives an example in which 𝐴 is the message
sender. Node 𝐴 broadcasts the message to all of its neighbors
in the broadcasting direction. 𝐴󸀠𝑠 neighbors 𝐶

1
, 𝐶
2
, and

𝐶
3
receive this message. Then, 𝐴 will select one of them to

rebroadcast the messages. A simple strategy lets 𝐴 select the
one that is the farthest away from 𝐴 in the broadcasting
direction. In this case, 𝐴 selects 𝐶

1
. However, this may not

necessarily be the best choice.
Let us assume that node 𝐶

1
is moving at a much

lower speed than 𝐶
2
and 𝐶

3
. Further we assume that the

historical velocities up to this moment of node 𝐶
2
are

[. . . , 50, 55, 59, 63] (miles/hour) and the velocities of node𝐶
3

are [. . . , 75, 71, 66, 64]. Our goal is to select a node that can
rebroadcast themessage fast to other nodes. Considering that
𝐶
2
and𝐶

3
aremovingmuch faster than𝐶

1
, they are obviously

better choices for carrying the message farther down the
broadcast direction. If we only consider the current speed,
𝐴 should choose 𝐶

3
. However, we want to select the one

that gets out of the transmission range of 𝐴 and conduct
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Figure 2: Simplified basic broadcasting scenario.

the rebroadcasting first. This achieves the goal of the fastest
rebroadcast of the message. We predict future velocities of
these nodes based on their historical and current velocities
and then figure out which node is the first one that will get
out of𝐴’s range. In this example, our strategywill let𝐴 choose
𝐶
2
.

3.2. Prediction Based Mechanism. The transmission range of
the wireless network for vehicles is normally 300–400 meters
long. It is much longer than the width of the road containing
multiple lanes. Thus we use a line to represent the road as
in Figure 2. Here 𝑙 is a partial arc of the transmission range
crossing the road. In addition, point 𝑃 is the intersection of 𝑙
and the road.

We need to compute which node is the first one that
gets out of 𝐴’s range. The moving trend obviously must be
considered.The normal approach to find the moving trend is
to let each node save all its history and current velocities and
then each node represents its moving trend by curve-fitting
approach that approximates its mobility trend. Apparently,
this method costs too much.We come up with a model based
on Kalman filtering method [20]. In this model, each node
only maintains two parameters, its potential acceleration
and variance of acceleration, to represent its mobility trend.
Then its future velocity can be computed. Thus, node 𝐴
can figure out the best node to be assigned to conduct the
rebroadcasting subsequently.

We observe the discrete moving status with every period
Δ𝑡. Suppose we are investigating the nodes at current time 𝑘.
Node𝐴wants to find the node that will reach 𝑃 first and then
assign it as the rebroadcasting node. We want to compute 𝑐

𝑖
’s

potential ability about how fast it can get out of𝐴’s range. We
mark the transmission range of 𝐴 as 𝑅, the velocity of node
𝐶
𝑖
measured at time 𝑘 as V

𝑖𝑘
, and the distance from𝐴 to 𝐶

𝑖
as

|𝐴𝐶
𝑖
|. Then the time to reach 𝑃 is 𝑇

𝑖
= (𝑅 − |𝐴𝐶

𝑖
|)/|V̂
𝑖𝑘
− V
𝐴
|.

Here V̂
𝑖𝑘
is the predicted velocity of 𝐶

𝑖
at time 𝑘. It indicates

the potential ability to get out of 𝐴’s range. The prediction is
based on considering both𝐶

𝑖
’s historical and currentmobility

status. In our approach, we predict 𝐶
𝑖
’s velocity for time 𝑘 + 1

to compute 𝑇
𝑖
. Once we know each V̂

𝑖𝑘
, we will figure out the

node with the smallest 𝑇
𝑖
. So our objective is to compute V̂

𝑖𝑘
.

The naive method of predicting the velocity of time 𝑘 + 1
is as follows. Let node 𝐶

𝑖
save all its historical and current

(time 𝑘) velocities V
𝑖0
, V
𝑖1
, . . . , V

𝑖𝑘
. Then it predicts its velocity

for time 𝑘 + 1 by the curve-fitting method that approximates
its moving trend. The problem with this method is that it

Table 1: Notations for the mobility status.

Notation Meaning
V
𝑖𝑘

Themeasured velocity at time 𝑘.
V̂
𝑖𝑘

The velocity predicted at time 𝑘.
𝑎
𝑖𝑘

The acceleration measured at time 𝑘.
𝑎
𝑖𝑘

The acceleration at time 𝑘 evolved from time 𝑘 − 1.
𝑎
𝑖𝑘

The potential acceleration at time 𝑘.
𝑝
𝑖𝑘

The variance of acceleration updated at time 𝑘.

𝑝
𝑖𝑘

The variance of acceleration at time 𝑘 evolved
from time 𝑘 − 1.

𝑄 The error or noise in the process.
𝐾𝑔
𝑖𝑘

The blending factor at time 𝑘.

costs too much. So we devise a model based on stochastic
filtering approach, particularly, Kalman filtering method. In
our model, each node only needs to maintain values of two
parameters, the potential acceleration, and the variance of
acceleration at time 𝑘 − 1 and measure the status at time 𝑘.

We define the following notations to represent the mobil-
ity status for node 𝐶

𝑖
in Table 1. Note that all the notations of

acceleration and velocity are vectors.
At time 𝑘, 𝐶

𝑖
measures its velocity V

𝑖𝑘
. And then it

computes 𝑎
𝑖𝑘
as its measured acceleration by

𝑎
𝑖𝑘
=

(V
𝑖𝑘
− V
𝑖𝑘−1
)

Δ𝑡
. (1)

Node 𝐶
𝑖
updates 𝑎−

𝑖𝑘
and 𝑝−

𝑖𝑘
in order to keep its historical

moving trend to predict its future velocity. Therefore,

𝑎
−

𝑖𝑘
= 𝑎
𝑖𝑘−1

𝑝
−

𝑖𝑘
= 𝑝
𝑖𝑘−1
+ 𝑄.

(2)

Node 𝐶
𝑖
also computes the blending factor 𝐾𝑔

𝑖𝑘
, which

indicates how much the acceleration changes from last time
to this time. Therefore,

𝐾𝑔
𝑖𝑘
= 𝑝
−

𝑖𝑘
(𝑝
−

𝑖𝑘
+ 𝑄)
−1

=

𝑝
−

𝑖𝑘

(𝑝
−

𝑖𝑘
+ 𝑄)

. (3)

Once 𝐶
𝑖
obtains the blending factor 𝐾𝑔

𝑖𝑘
and the evolved

acceleration 𝑎−
𝑖𝑘
, it knows howmuch the acceleration changes

and how much the acceleration evolves. Additionally, 𝐶
𝑖

considers the measured acceleration 𝑎
𝑖𝑘
. Then it computes its

potential acceleration 𝑎
𝑖𝑘
. This acceleration will be used to

predict its velocity for time 𝑘 + 1. Therefore,

𝑎
𝑖𝑘
= 𝑎
−

𝑖𝑘
+ 𝐾𝑔
𝑖𝑘
(𝑎
𝑖𝑘
− 𝑎
−

𝑖𝑘
) . (4)

𝐶
𝑖
updates the variance of acceleration for future utilization.

So,

𝑝
𝑖𝑘
= (1 − 𝐾𝑔

𝑖𝑘
) 𝑝
−

𝑖𝑘
. (5)
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Figure 4: Case 1.

Finally, the velocity predicted for time 𝑘 + 1 is

V
𝑖𝑘+1
= V
𝑖𝑘
+ 𝑎
𝑖𝑘
Δ𝑡. (6)

In the entire computation process at time 𝑘, 𝐶
𝑖
only needs

to measure its velocity V
𝑖𝑘
and record two parameters 𝑎−

𝑖𝑘−1

and 𝑝
𝑖𝑘−1

. Then it can predict its velocity at time 𝑘 + 1 by the
calculation.

The direction of the road may not be parallel or per-
pendicular to the coordinate axes. Moreover, a vehicle may
suddenly change its moving direction or speed. So we
decompose the velocity into two velocities parallel to the axes
of the coordinate plane (Figure 3) to take care of the general
scenarios.

In the general scenario, node 𝐶
𝑖
computes its velocity

V̂
𝑖𝑘+1𝑥

in𝑋 direction and V̂
𝑖𝑘+1𝑦

in 𝑌 direction at time 𝑘 + 1 and

then computes V̂
𝑖𝑘+1

=√V̂𝑖𝑘+1𝑥
2
+ V̂
𝑖𝑘+1𝑦

2. It further computes 𝑇
𝑖

by 𝑇
𝑖
= (𝑅 − |𝐴𝐶

𝑖
|)/|V̂
𝑖𝑘+1
− V
𝐴
|, the time that node 𝐶

𝑖
gets out

of the range of𝐴.Then𝐴 figures out the desired node𝐶
𝑖
with

minimal 𝑇
𝑖
.

From node 𝐴’s perspective, the moving direction of
the vehicles and the message broadcasting direction can be
identical or opposite. In addition, the message may need to
be broadcast to the nodes in its same moving direction, such
as siren in its back area that came from the emergency truck
in its same moving direction, or to be broadcast to the nodes
in its opposite moving direction, such as a car accident in its

Moving direction

Moving direction

Propagation direction from left to right
Broadcasting area

Rebroadcasting candidates

ACD

E

F

B

Figure 5: Case 2.

back area of opposite lanes, or to be broadcast to the nodes in
both directions, such as warning of extreme weather. Node𝐴
should apply different broadcasting strategies under different
cases. In order to describe the cases, we divide message
propagation directions to two types. When the message
propagation direction is the same as𝐴’smoving direction, it is
type 1. Otherwise it is type 0.We further define themessage in
three types based on the intended broadcasting nodes. Type
“𝑆” is the message to be delivered to the nodes in 𝐴’s same
moving direction. Type “𝑂” is the message to be delivered
to the nodes in 𝐴’s opposite moving direction. And type
“𝐵” is the message to be delivered to nodes of both moving
directions. Node 𝐴 performs six strategies to broadcast the
message and then selects next rebroadcasting node. We use
𝑃 to represent propagation direction and 𝐼 to represent the
message type based on the intended nodes to be delivered.
For example, when the emergency truckwith alarm ismoving
behind 𝐴 and in the same direction of 𝐴, 𝑃 is 1 because the
propagation is the same as 𝐴’s moving direction and 𝐼 is 𝑆
because themessagewill be delivered to the nodes in the lanes
of 𝐴’s same moving direction. The cases are as follows.

Case 1 (𝑃 is 1 and 𝐼 is “𝑆”). Node 𝐴 broadcasts the message
to its neighbors in its samemoving direction and then selects
the rebroadcasting node 𝐶

𝑖
of minimal 𝑇

𝑖
from the nodes in

its same moving direction (Figure 4).

Case 2 (𝑃 is 1 and 𝐼 is “𝑂”). Node𝐴 broadcasts themessage to
its neighbors in its oppositemoving direction and then selects
the rebroadcasting node 𝐶

𝑖
of minimal 𝑇

𝑖
from the nodes in

its same moving direction (Figure 5).

Case 3 (𝑃 is 1 and 𝐼 is “𝐵”). Node 𝐴 broadcasts the message
to its neighbors in both moving directions and then selects
two rebroadcasting nodes 𝐶

𝑖
and 𝐶

𝑗
of both directions. 𝐶

𝑖
is

the one with minimal 𝑇
𝑖
from the nodes in its same moving

direction.𝐶
𝑗
is the one with minimal 𝑇

𝑗
from the nodes in its

opposite moving direction. (Figure 6).

Case 4 (𝑃 is 0 and 𝐼 is “𝑆”). Node 𝐴 broadcasts the message
to its neighbors in its samemoving direction and then selects
the rebroadcasting node 𝐶

𝑖
of minimal 𝑇

𝑖
from the nodes in

its opposite moving direction (Figure 7).
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SFBB()
if it is the initiator

Call Handle msg.
elseif the distance to the initiator is greater than the threshold

Stop re-broadcasting;
else Carry the message;

Call Handle msg right after it gets out of the sender’s range.

Algorithm 1: SFBB algorithm.
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Figure 6: Case 3.
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Figure 7: Case 4.

Case 5 (𝑃 is 0 and 𝐼 is “𝑂”). Node𝐴 broadcasts themessage to
its neighbors in its oppositemoving direction and then selects
the rebroadcasting node 𝐶

𝑖
of minimal 𝑇

𝑖
from the nodes in

its opposite moving direction (Figure 8).

Case 6 (𝑃 is 0 and 𝐼 is “𝐵”). Node 𝐴 broadcasts the message
to its neighbors in both moving directions and then selects
two rebroadcasting nodes 𝐶

𝑖
and 𝐶

𝑗
of both directions. 𝐶

𝑖
is

the one with minimal 𝑇
𝑖
from the nodes in its same moving

direction.𝐶
𝑗
is the one with minimal 𝑇

𝑗
from the nodes in its

opposite moving direction (Figure 9).

3.3. Algorithm Description. In the broadcasting process, the
location of the initiator is included in the broadcasting
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Figure 8: Case 5.
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Figure 9: Case 6.

message. Once a node receives a broadcasting message, it
computes the distance to the initiator. In order to avoid
infinite broadcasting from the initiator, we define a distance
threshold. The messages are only broadcast within this
threshold. Rebroadcasting terminates out of the distance.The
algorithms are shown in Algorithms 1 and 2.

We did experimentation to find the distance threshold by
considering ratio of packet delivery and end-to-end delay.We
derive that 1200 meters, is a good value. We then apply 1200
to the algorithm SFBB().When initiating a broadcastingmes-
sage or upon receiving a rebroadcasting signal, a node calls
the algorithm SFBB(). The node handles different scenarios
by the algorithm Handle msg.
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Handle msg()
if𝑃 == 1 and 𝐼 == “𝑆”

Broadcast the message to its neighbors in its same moving direction;
Select the re-broadcasting node 𝐶

𝑖
of minimal 𝑇

𝑖
from the nodes in its same moving direction.

if𝑃 == 1 and 𝐼 == “𝑂”
Broadcast the message to its neighbors in its opposite moving direction;
Select the re-broadcasting node 𝐶

𝑖
of minimal 𝑇

𝑖
from the nodes in its same moving direction.

if𝑃 == 1 and 𝐼 == “𝐵”
Broadcast the message to its neighbors in both moving direction;
Select two re-broadcasting nodes 𝐶

𝑖
and 𝐶

𝑗
of minimal 𝑇

𝑖
and 𝑇

𝑗
from both moving direction.

if𝑃 == 0 and 𝐼 == “𝑆”
Broadcast the message to its neighbors in its same moving direction;
Select the re-broadcasting node 𝐶

𝑖
of minimal 𝑇

𝑖
from the nodes in its opposite moving direction.

if𝑃 == 0 and 𝐼 == “𝑂”
Broadcast the message to its neighbors in its opposite moving direction;
Select the re-broadcasting node 𝐶

𝑖
of minimal 𝑇

𝑖
from the nodes in its opposite moving direction.

if𝑃 == 0 and 𝐼 == “𝐵”
Broadcast the message to its neighbors in both moving direction;
Select two re-broadcasting nodes 𝐶

𝑖
and 𝐶

𝑗
of minimal 𝑇

𝑖
and 𝑇

𝑗
from both moving direction.

Send a re-broadcasting signal to the node(s) selected.

Algorithm 2: Handle msg algorithm.
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Figure 10: The packet delivery ratio.

4. Performance Evaluation

Several simulators on VANETs were introduced [21]. We
conduct simulations using the GloMoSim wireless network
simulator [22]. We use the tool BonnMotion [23] to generate
the mobile nodes. We set the size as Terrain-dimensions
(2000, 2000). The MAC layer was 802.11 and the transport
layer was UDP. The noise figure we set was 10.0 and the
temperature was 290.0. The average speed of the nodes was
25m/s (about 55 miles/hour). The number of vehicles varies
from 50 to 300 with an increment of 50. We set the average
packet generation rate from 0.1 to 0.9 per second, which
represents the number of packets generated by a node per
second.
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Figure 11: The end-to-end delay.

Many broadcasting protocols are based on the idea that
the current sender selects the node that is farthest away from
itself to conduct the rebroadcast task. This method is called
“DIST” in the comparison. We compare our statistical filter
based broadcast protocol “SFBB” with the “DIST” method
using two metrics. The first one is the package delivery ratio,
which is the ratio of the number of vehicles that receive
the broadcasting message over the total number of vehicles.
The second metric is the end-to-end delay. It is the time
elapsed from the packet generated until the packet reaches
the receiver in the desired area. We also compare our “SFBB”
with two other approaches. One is geographic based for-
warding mechanism in vehicular networks [24] represented
as “GEOG” in Figures 10, 11, and 12. The second one is
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probabilistic based protocol [25] represented as “PROB” in
Figures 10, 11, and 12.

Figure 10 shows the average ratio of packet delivery when
the number of nodes changes from 50 to 300 and the
average packet generation rate is fixed as 0.5. The delivery
ratio decreases when the number of nodes increases. This is
because 802.11 protocol performs poorlywithmore nodes due
to the packet collision. This figure indicates that the delivery
ratios of SFBB and GEOG are close. They are higher than
those of the other two mechanisms. That is because both
SFBB and GEOG guarantee a high ratio of packet delivery
while partial packets get lost in DIST and PROB.

Figure 11 shows the average end-to-end delay with the
same configuration as Figure 10. It illustrates those the end-
to-end delays of SFBB and PROB are close. They are lower
than that of DIST and GEOG. DIST are GEOG are focused
on distance rather than considering broadcasting speed.They

even need to handle void areas. So the delays of the two are
higher.

Figure 12 presents the ratio of packet delivery when the
rate of packet generation varies from 0.1 to 0.9 and the
number of nodes is fixed as 150. Similar to Figure 10, the ratios
of SFBB and GEOG are higher because SFBB and GEOG
guarantee a high ratio of packet delivery. Figure 13 shows the
end-to-end delay of the approaches.This figure also indicates
that SFBB andPROBhave lower end-to-enddelays than those
of DIST and GEOG methods.

5. Conclusion

In this paper, we presented a new message broadcasting
algorithm for vehicular networks. In this algorithm, a mes-
sage sender selects the best node among its neighbors that
rebroadcast the message fast to other nodes. Each node only
keeps values of two parameters to record its moving trend.
Together with the current velocity of each node, the sender
determines which node is the best candidate.The simulations
demonstrate that our approach improves the delivery ratio
and decrease the end-to-end delay over distance based and
probabilistic based algorithms.

Security is another very important issue in VANETs. We
would apply our approach to WAVE [26] to achieve a more
robust approach in the near future.
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