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Abstract 13 

 Enzymatic hydrolysis is the unit operation in the lignocellulose conversion process that 14 

utilizes enzymes to depolymerize lignocellulosic biomass.  The saccharide components released 15 

are the feedstock for fermentation.  When performed at high-solids loadings (≥15% solids, w/w), 16 

enzymatic hydrolysis potentially offers many advantages over conversions performed at low- or 17 

moderate-solids loadings, including increased sugar and ethanol concentrations and decreased 18 

capital and operating costs.           19 

The goal of this review is to provide a consolidated source of information on studies 20 

using high-solids loadings in enzymatic hydrolysis.  Included in this review is a brief discussion 21 

of the limitations, such as a lack of available water, difficulty with mixing and handling, 22 

insufficient mass and heat transfer, and increased concentration of inhibitors, associated with the 23 

use of high solids, as well as descriptions and findings of studies that performed enzymatic 24 

hydrolysis at high-solids loadings.  Reactors designed and/or equipped for improved handling of 25 

high-solids slurries are also discussed.  Lastly, this review includes a brief discussion of some of 26 

the operations that have successfully scaled-up and implemented high-solids enzymatic 27 

hydrolysis at pilot- and demonstration-scale facilities.   28 

 29 

Keywords: High-solids loadings; enzymatic hydrolysis; lignocellulose conversion; reactor 30 

design; corn stover; straw; woody biomass  31 
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1. Introduction 32 

 Lignocellulose is the largest renewable source of carbon on the planet, as it is the main 33 

structural component of plants.  Energy from lignocellulosic biomass has been tapped as one 34 

possible solution to decrease the United States’ foreign dependence on petroleum, as well as 35 

serve as a more environmentally friendly source of energy.  Lignocellulose can either be 36 

processed thermochemically or biochemically, depending on the desired product.  The 37 

biorefinery concept is thought to be the desired model for biomass processing, where all of the 38 

biomass is exploited.  The suite of products would be dictated by the market and selected to 39 

extract the greatest value possible out of lignocellulose (Figure 1).     40 

Enzymatic hydrolysis of lignocellulose has long been studied as a method to 41 

depolymerize the biomass into fermentable sugars for conversion to biofuels and biochemicals, 42 

with a more recent focus on operating at high-solids loadings.  It has been suggested that 43 

enzymatic hydrolysis conducted at high-solids loadings will be necessary to render the 44 

lignocellulosic conversion process more economically feasible.  A process is considered “high 45 

solids” if the ratio of solids/liquid is such that very little to no free water is present in the slurry 46 

[1] or roughly a solids loadings ≥15% (w/w).      47 

 Enzymatic hydrolysis performed at high-solids loadings offers several advantages over 48 

low- and moderate-solids loadings, the main one being final sugar concentrations are higher [2, 49 

3].  In theory, higher sugar concentrations translate into higher ethanol concentrations, which 50 

could reduce energy use and costs associated with the distillation process [4, 5].  For the purpose 51 

of this paper, the term “concentration” refers to the amount of a component dissolved in a given 52 

volume of liquid, while the terms “yield” and “conversion” refer to the quantity of a product 53 

obtained expressed as a percentage of the theoretical maximum.  Distillation is most economical 54 
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when the ethanol concentration is ≥4% (w/w).  In order to obtain this ethanol yield, glucose 55 

yields must be at least 8% (w/w), which translated into a lignocellulose loading of ≥20% (w/w) 56 

for enzymatic hydrolysis [6].  These estimates only account for conversion of cellulose; 57 

however, as improvements are made to hemicellulose conversion (hydrolysis and fermentation) 58 

technologies that work in combination with cellulose conversion, this initial solids loadings 59 

estimate may decrease.  Another potential advantage is the reduction of capital and production 60 

costs.  Smaller equipment and/or fewer reactors can be utilized to produce an equivalent output 61 

[7, 8].  Fewer reactors also translate into reduced energy demands for heating, cooling and 62 

mixing [3, 5], although the latter aspect may be a point of contention as increased solids makes 63 

effective mixing more difficult.  Additionally, less water is needed, which reduces the cost of 64 

disposal or treatment of process water.  65 

 The goal for this review is to provide a consolidated source of information for the latest 66 

technological advances for managing enzymatic hydrolysis at high-solids loadings.  Following a 67 

brief discussion of the factors limiting enzymatic hydrolysis at high solids, various aspects and 68 

approaches pertaining to hydrolysis operating conditions are detailed.  Additionally, reactors 69 

designed to overcome some of the limitations associated with high-solids hydrolysis, as well as 70 

pilot- and demonstration-scale plants operating at high-solids loadings are discussed.  Lastly, the 71 

authors comment on the envisioned direction for high-solids hydrolysis research, as well as the 72 

necessary advances this technology must make to become commercially viable. 73 

 74 

2. Factors Limiting High-Solids Enzymatic Hydrolysis 75 

As solids loading increases, challenges that were negligible in low-solid systems become 76 

more prominent, which has also been noted in high solids pretreatment [9].  One of the major 77 
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challenges for enzymatic hydrolysis at high solids loading is the lack of available water in the 78 

reactor.  Water is essential to effective hydrolysis for two reasons: mass transfer and lubricity.  79 

Water increases the effectiveness of the enzymatic and chemical reactions, mainly by providing a 80 

medium for solubilizing and aiding in the mass transfer of products.  Water also reduces the 81 

viscosity of the slurry by increasing the lubricity of the particles, which decreases the required 82 

shear stress necessary to produce a given shear rate, allowing lower power input for mixing [1, 83 

10].  The physical and chemical properties of the specific biomass affect the way biomass 84 

absorbs water.  As solids loadings approach 20% (w/w), the liquid fraction becomes fully 85 

absorbed into the biomass leaving little free water [1].  With lower amounts of free water, the 86 

apparent viscosity of the mixture increases, and consequently mixing and handling of material 87 

become more difficult.   88 

Gervais, Benoussan and Grajek [11] investigated the relationship between water content 89 

and water activity on microorganisms in a high-solids cellulose environment.  No free water 90 

occurs when the matric potential of the substrate holds the water more tightly within its pores 91 

than the gravitational force acts on it.  The water potential (= osmotic potential + matric 92 

potential) of the system is such that content affects mass transfer by limiting diffusion of 93 

products away from enzyme [11].  Not only can the enzymes release compounds from the 94 

biomass that are inhibitory to the organisms used in the fermentation step, but the sugar products 95 

they produce are known inhibitors in the enzymatic feedback mechanism [2, 12, 13].  For 96 

example, cellobiose inhibits the cellulase.  Typically, cellulase is supplemented with β-97 

glucosidase to reduce the inhibition by cellobiose.  However, it has recently been shown that 98 

hydrolysis rates of cellulase and β-glucosidase are greatly impacted by hemicellulose-derived 99 

products, like xylose, xylan and xylo-oligomers [14-16].  Pretreatment methods that do not 100 
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remove these products or enzyme cocktails that include xylanases may have detrimental effects 101 

on glucose yields.  While inhibition occurs at low solids, as well as at high solids, the increased 102 

concentration of inhibitors, in addition to the reduced mass transfer rate away from the enzyme, 103 

makes inhibition more apparent at high-solids loadings. 104 

The challenges apparent at high solids are interrelated, so a less-than-ideal condition in 105 

one property exacerbates the negative effects of another property.  For example, the substrates’ 106 

physio/chemical properties affect the water retention value (WRV) of the biomass.  A high WRV 107 

(due to high-solids content and the specific properties of the substrate) reduces the diffusion of 108 

inhibitors away from the enzymatic reaction, and increases the apparent viscosity of the mixture, 109 

thereby increasing the difficulty of stirring the mixture to assist with diffusion.  Zhang et al. [17] 110 

found that the energy required to mix increased one order of magnitude when they increased the 111 

solids loading of pretreated corn stover from 15% to 30% w/w (79.5 MJ/t slurry to 1009.2 MJ/t 112 

slurry, respectively) to produce 854.9 and 1723.2 MJ/t slurry of ethanol respectively.  The higher 113 

solids loading did indeed achieve the goal of producing a higher concentration of ethanol in the 114 

broth; however, over half of the energy produced in the ethanol was consumed in the mixing to 115 

achieve the higher concentration of ethanol (compared to 9% of the energy needed to mix the 116 

system producing the lower concentration of ethanol.   117 

While it is widely recognized that increasing the solids content in a conversion process 118 

increases product concentration [18], it is also widely recognized that the increase in yield is not 119 

linear with increasing initial solids content because yield (percent conversion) decreases with 120 

initial solids content (slope is a function of substrate type, pretreatment, and enzyme loading, 121 

among other things) [10].   In fact, this well-recognized challenge was observed so often that 122 

Kristensen et al. [10] coined the term solids effect to describe the persistence of a measured 123 
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reduction in conversion when solids loadings are increased.  The scientific community has yet to 124 

come to agreement as to the cause of the solids effect; however, theories include substrate 125 

effects, product inhibition, water content and enzyme adsorption characteristics, just to name a 126 

few [10]. 127 

Other challenges specific to high-solids enzymatic hydrolysis include long hydrolysis 128 

times.  Enzymatic hydrolysis is typically thought to be the bottleneck of the entire conversion 129 

process in terms of both time and money, since the reaction time needed for most enzymes to 130 

convert lignocellulose into sufficient glucose concentrations for fermentation is on the order of 131 

days (usually ≥3 days).  Long hydrolysis times can only be reduced so much by increasing 132 

enzyme loading.  Recent studies have suggested that enzymes can overcrowd accessible 133 

cellulose sites, thus not reaching the full hydrolytic potential for the given enzyme loading [19, 134 

20].  Adjacent cellulose chains are ~4-6 Å apart, whereas the diameter of the cellulases is about 135 

10-fold larger at about 45 Å (Figure 2).  Furthermore, as in low-solids hydrolysis, the cost of the 136 

enzyme is also a limiting factor.  Enzyme is typically added on a per weight of substrate basis.  137 

As the solids loading increases so must the amount of enzyme.  While the cost of enzymes has 138 

decreased drastically over the years due to intense research developing cheaper production 139 

schemes, the cost is still at a level that makes this step in the conversion process one of the most 140 

expensive.  Finding or developing enzymes with a high activity and inexpensive method of 141 

production would greatly benefit the entire conversion process.  Moreover, it is also important to 142 

evaluate the economics when determining the balance between the loadings applied to the 143 

lignocellulose and the amount of time needed to reach sufficient glucose concentrations.    144 

 145 
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3. Impacting Rheology of High-Solids Mixtures 146 

 Rheology is the branch of physics that deals with the deformation and flow of matter.  At 147 

higher lignocellulose loadings, fundamental understanding of the rheology of these suspensions 148 

becomes a powerful tool in designing conversion equipment and processes [21-24].  Factors 149 

which contribute to the rheological properties of a suspension include particle size distribution, 150 

particle aspect ratio, fiber flexibility [22, 25] and physio/chemical properties of the substrate.  151 

Water retention value (WRV) of the substrate directly impacts the apparent viscosity of a 152 

suspension, affecting mixing and handling of the slurries [26].  For example, pretreated corn 153 

stover (PCS) slurries are considered “pourable” when yield stresses are at or below ~10 Pa or 154 

~10% insoluble solids [3, 23].  Dilute acid PCS at 20% insoluble solids is a thick, paste-like 155 

substance that can be molded and formed into shapes that remain even after the applied forces 156 

are removed [23].  At even higher solids loadings (>30%), particles are not as lubricated because 157 

of the lack of free water, resulting in increased friction due to particles interacting with both 158 

water and other particles.  At this point, the mixture can no longer be called a slurry because it is 159 

unsaturated and acts more like a wet, granular substance.   Substances with these varied 160 

rheological properties present many unique challenges in materials handling throughout a 161 

conversion process, particularly when continuous, industrial-scale processes are desired. 162 

 Several rheological models of interest, like the Bingham, Herschel-Buckley, Power Law, 163 

Wildemuth-Williams and Casson models [3, 8, 21, 24, 27], have been developed to describe the 164 

non-Newtonian behavior of these types of systems , but discussion of these models is beyond the 165 

scope of this paper. 166 

 Um and Hanley [8] analyzed rheological properties of high-solids (10-20% w/v) 167 

enzymatically hydrolyzed slurries of the model cellulose feedstock Solka Floc, a delignified 168 
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spruce pulp.  Commercially-available Trichoderma longibrachiatum–sourced enzymes (30 169 

FPU/g cellulose supplemented with β-glucosidase) were evaluated at 10, 15 and 20% solids 170 

loadings.  The enzymatic suspensions exhibited a pseudoplastic behavior overall, with viscosities 171 

ranging from 0.04 to 0.01, 0.23 to 0.03, and 0.29 to 0.04 Pa∙s for substrate concentrations of 10, 172 

15 and 20% (respectively) initial solids measured at 50 °C.  As the hydrolysis progressed, a 173 

decrease in viscosity was observed for all solids loadings (dropping by approximately half in 3 174 

hours).  Zhang et al. [18] showed the same trend with high-solids steam exploded corn stover.  175 

Several studies using dilute acid-pretreated corn stover also observed a reduction in yield stress 176 

(and therefore viscosity) as solids loadings in enzymatic hydrolysis decreased (Figure 3) [3, 21, 177 

22, 24, 27].  178 

 Additionally, Roche et al. [3] found that at 20% solids, >40% conversion was necessary 179 

for the slurry to become pourable.  They also reported a distinct difference between PCS that was 180 

enzymatically hydrolyzed as compared to PCS that was just diluted.  The yield stress for diluted 181 

PCS is higher by a full order of magnitude than that of hydrolyzed PCS at corresponding particle 182 

volume fractions.  Although specific mechanisms for this difference were not investigated, one 183 

theory is that the enzymes alter the particles during hydrolysis, converting them from complex 184 

networks of material with distinct liquid and solid phases, to a homogeneous slurry as the liquid 185 

and solid phases become indistinguishable.   186 

Particle size affects the rheological properties of the suspensions, directly impacting 187 

mixing and pumping costs [27].  Viamajala et al. [24] found that smaller particle sizes resulted in 188 

smaller apparent viscosities under equivalent conditions.  Mechanical pretreatment is often 189 

utilized to reduce particle size to make the rheological properties more favorable for other steps 190 

downstream in the process.  However, temperature and acid concentration in dilute acid 191 
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pretreatment directly affect yield stress of a slurry, possibly as a result of a reduction in particle 192 

size, as well as enhancing enzymatic hydrolysis due to the modification of the surface chemistry 193 

of the particles [21, 27].  While a reduction in particle size lowers viscosity, as well as increases 194 

conversion efficiency, the manner in which the size reduction occurs is also important.  Size 195 

reduction via pretreatment provides better digestibility and a reduced yield stress as compared to 196 

mechanical size reduction, which did not significantly impact either property [27].  In some 197 

cases, the pretreatment, like dilute acid pretreatment, hydrothermal pretreatment or SPORL 198 

(sulfite pretreatment to overcome recalcitrance of lignocelluloses) performed prior to the 199 

hydrolysis step alters the structure of the biomass significantly so that liquefaction occurs 200 

quickly upon addition of the enzymes and mixing can resume [28, 29].  However, in most cases, 201 

the solid fraction is still a complex network of fibrous material [21, 24, 30].  Sufficient mixing is 202 

required for timely hydrolysis of the biomass, and traditional mixing methods like stirred-tank 203 

reactors with impellers require excessive power and shaking does not provide adequate mixing.  204 

Several mixing alternatives are discussed in a later section. 205 

 The pulp and paper industry has long used additives to modify rheological properties of 206 

lignocellulosic slurries [25].  Knutsen and Liberatore [31] found that the most effective additive 207 

groups (in descending order) to reduce yield stress were surfactants, additives with polar head 208 

groups, additives with hydrophobic tails, unmodified protein and polymers.  CTAB (cetyl 209 

trimethylammonium bromide) and CPCl (cetylpyridinium chloride), both surfactants, were two 210 

of the most effective additives for reducing yield stress.  Samaniuk et al. [25] used water soluble 211 

polymers (WSPs) like carboxymethyl cellulose (CMC), polyethylene oxide (PEO) and 212 

polyacrylamide (PAM), to modify rheological properties of lignocellulosic slurries.  Additives 213 

like CMC reduced the friction between cellulose surfaces, making it easier to mix high-solids 214 
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suspensions.  The addition of 2% CMC reduced the yield stress by ~67% from 55 kPa to ~18 215 

kPa.  A four-fold increase in CMC resulted in reducing by another 50%.  They also found that a 216 

lower degree of substitution for CMC had a positive impact on the yield stress; however, this 217 

trend was more apparent at higher CMC loadings.  Furthermore, a reduction in yield stress was 218 

observed as the molecular weights of the WSPs increased up to a certain point.  For example, 219 

yield stress decreased with the addition of 600 kDa, as well as 2000 kDa, PEO, but no further 220 

change in yield stress was observed with the addition of 7000 kDa PEO.  Several other additives 221 

were screened by monitoring the reduction in torque as measured by a torque rheometer to 222 

determine whether they warranted further investigation.  Fly ash and microcrystalline cellulose 223 

were evaluated as possible additives, but their impact was limited.  The surfactant Polysorbate 80 224 

reduced the yield stress by 36% but required high concentrations (10%).  Guar gum, 225 

hydroxypropyl methyl cellulose (HPMC), a guar gum-xanthan gum mixture and a guar gum-226 

HPMC mixture were all more effective than CMC, where guar gum and the two mixtures 227 

containing guar gum resulted in the highest reduction in torque (~80%).  The addition of 228 

additives may be costly, but like the pulp and paper industry, it may become economically 229 

feasible to utilize such methods of modification for high-solids conversion processes.  It is 230 

important, however, that these additives be as inexpensive as possible and do not negatively 231 

impact the conversion process by inhibiting the hydrolytic enzymes or fermentative organisms.                 232 

      233 

4. Impacting Enzymatic Hydrolysis Rate and Extent 234 

 The term “lignocellulosic biomass” refers to many different types of biomass, including 235 

forestry and agricultural residues (woody biomass, straw, stover), fermentation by-products 236 

(DDGS) and dedicated energy crops (grasses), just to name a few.  Each type of lignocellulosic 237 
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material is slightly different in regards to composition, resulting in unique challenges in the 238 

enzymatic hydrolysis step of the conversion process.  The following sections are organized based 239 

on various aspects in need of consideration during the conversion of lignocellulose and highlight 240 

some of the challenges and breakthroughs associated with enzymatic hydrolysis performed at 241 

high-solids loadings for different types of biomass.  It is important to note that while each of 242 

these processing approaches are discussed individually, it is often difficult to separate out the 243 

combined effects of multiple process conditions.  244 

 Furthermore, when determining cellulose conversion, it is important to note that the 245 

standard method of calculating conversions as described by [32] can grossly overestimate actual 246 

conversion for high-solids systems.  In some instances, conversions can be overestimated by up 247 

to 36% [5].  Determining cellulose conversion in high-solids systems can become very 248 

complicated, but several studies have proposed new methods for determining cellulose 249 

conversion [5, 33, 34] under these high solids operating conditions.  The standard method for 250 

conversion calculations typically compares the amount of glucose measured in the hydrolyzate 251 

(the liquid fraction) to the potential glucose found in the biomass (the solid fraction).  This 252 

method requires the assumption that all components have a consistent density throughout the 253 

reaction and that it is approximately equal to that of water.  As solids loadings increase, this 254 

assumption no longer remains valid, resulting in overestimated conversions. 255 

 256 

4.1 Biomass Processing 257 

Enzymatic hydrolysis is an intermediate step in the conversion process, and while 258 

producing high sugar yields is favorable, the resulting hydrolyzate must be subsequently capable 259 

of supporting fermentative organisms while they produce biofuels.  Some of the more expensive 260 



13 

 

steps in substrate preparation are washing the substrate following pretreatment and detoxifying 261 

the hydrolyzate produced during enzymatic hydrolysis.  It is likely that for industrial processes 262 

unwashed, whole slurries (liquid + solids) from pretreatment will be used in enzymatic 263 

hydrolysis [2], indicating a need for robust enzymes capable of maintaining their activity in the 264 

presence of possible inhibitors and degradation products or developing pretreatments that do not 265 

produce such products.  Furthermore, the cost of hydrolyzate detoxification alone can be up to 266 

22% of the total ethanol production cost [35].   267 

Several studies have investigated the effects of eliminating washing and/or detoxifying 268 

steps in the lignocellulose conversion process, with some promising results.  Hodge et al. [2] 269 

studied the effects of soluble and insoluble inhibitors on enzymatic hydrolysis by comparing the 270 

glucose yields produced from a washed pretreated substrate (which introduces only potentially 271 

insoluble inhibitors into the hydrolysis reaction since all soluble inhibitors are washed away) and 272 

an unwashed whole slurry substrate (which introduces both potentially soluble and insoluble 273 

inhibitors to the hydrolysis reaction).  However, to maintain the high-solids loading and modify 274 

the pH, the solid and liquid fractions were separated, the liquid fraction pH was adjusted, and the 275 

two fractions were combined.  Should the whole slurry be used at the industrial scale (as this 276 

study states in its rationalization for this work), this method of pH modification may not be 277 

feasible.  This challenge is just one of many that must be solved prior to implementing a 278 

complete conversion process.  Regardless, this study utilized an insoluble solids loading of 5-279 

13% (~9-24% total solids loading) and relatively low enzyme loadings (<20 FPU/g cellulose).  280 

Based on the glucose production from hydrolysis, the authors suggested that the limitations due 281 

to mass diffusion are more prevalent than the sugar inhibition beyond a specific solid content.  282 

For instance, sugar inhibition would result in a “leveling-off” of the hydrolysis rate, much like 283 
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what would be seen in a typical hydrolysis curve.  However, a sharp decrease in the hydrolysis 284 

rate was reported here.  Using the washed substrate, this decrease is not prevalent until ~20% 285 

insoluble solids loadings are reached, where convective mixing and available water are 286 

negligible, likely indicating the point of mass transfer limitations.  This decrease occurs at much 287 

lower solids loadings (<10% insoluble solids) for unwashed substrate, indicating that the soluble 288 

components contributed to a higher rate of enzyme inhibition or limited mass transfer by 289 

reducing the amount of water available for reaction.  (Further discussion on the restriction of 290 

water can be found in Section 4.4 Solids Effects.) 291 

Pristavka et al. [36] also conducted enzymatic hydrolysis studies with SO2-catalyzed 292 

steam exploded willow.  These studies were concerned with simplifying the conversion process 293 

by neglecting to wash the pretreated willow between the pretreatment and hydrolysis steps and 294 

eliminating mechanical stirring of the biomass slurry.  The reason for eliminating the washing 295 

step was two-fold.  First, less water would be used in the conversion process, making the process 296 

more economical and more environmentally friendly.  Secondly, washing usually leads to the 297 

solubilization and removal of a significant portion of sugars.  These sugars ultimately end up 298 

accumulating in wastewater, resulting in an expensive processing step to recover them and/or 299 

treating the water.  The high-solids loadings (up to 25% ODM (organic dry matter)) used in this 300 

study would make mechanical stirring of the slurry extremely energy intensive, so it was 301 

removed.  With these process modifications, a lower degree of conversion was observed as 302 

compared to biomass that was washed prior to hydrolysis (53% vs. 74%).  However, the degree 303 

of cellulose conversion increased to >95% when the pH of the unwashed, pretreated willow was 304 

adjusted with solid NaOH to the optimal pH of the enzymes.  The significant increase in 305 

conversion following pH adjustment highlights the importance of maintaining optimal hydrolysis 306 
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conditions for the enzymes, even if that means finding new, inexpensive and less resource-307 

intensive methods of doing so. 308 

Lu et al. [37] investigated the effects (post-pretreatment) washed substrate had on 309 

enzymatic hydrolysis and fermentation.  Using steam-exploded corn stover, substantial 310 

differences in conversion efficiencies were not observed for washed and unwashed substrates up 311 

to a solids loading of 30% (w/w).  However, closer examination of the conversion calculations 312 

revealed differences between washed and unwashed substrates, since conversions were based on 313 

water insoluble solids and not total solids content.  (Essentially the denominators were different 314 

for the two treatments.)  Additionally, the pH of the unwashed corn stover was not adjusted prior 315 

to addition of enzymes and buffer at pH 4.8.   Cellulose conversion remained fairly consistent 316 

(70-75%) for all solids loadings, although glucose content was higher for the washed substrate 317 

than the unwashed substrate.  Ethanol production was also independent of solids loading (up to 318 

30% w/w) for the water-washed corn stover, reaching 92-94% of theoretical yield.  However, the 319 

results were quite different for the unwashed substrate.  At the lower solids loadings studied (10-320 

15% w/w), ethanol production fell to 88% and 86%, respectively, and decreased as the solids 321 

loading increased, until no ethanol could be measured (≥25% solids loading).  The levels of 322 

acetic acid and furfural measured at the higher solids loading reached inhibitory concentrations.  323 

Inclusion of the water-washing step following pretreatment appears to eliminate the need for 324 

another costly detoxification step following enzymatic hydrolysis for steam-exploded corn 325 

stover.  326 

 In contrast to this study, others report contradicting results regarding the wash step [35, 327 

38].  Lau et al. [35] reported that when AFEX-pretreated corn stover was fermented following 328 

enzymatic hydrolysis at 18% (w/w) solids loading, the ethanol yield of ~93%, even though the 329 
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solids loading during hydrolysis and glucose concentration before fermentation were similar to 330 

those reported in Lu et al. [37] who reported a 68% ethanol yield.  While these results are so 331 

different, it should be noted that different pretreatments, as well as fermentative organisms were 332 

used (E. coli vs. S. cerevisiae, respectively), making it difficult to directly compare these 333 

fermentation results.  However, Lau and Dale [38] achieved higher ethanol production rates 334 

fermenting unwashed substrates (~0.17 g/L/hr as compared to 0.12 g/L/hr for washed substrate) 335 

with S. cerevisiae 424A (LNH-ST) (a genetically modified strain for improved xylose 336 

fermentation), suggesting that the elimination of the washing step following pretreatment, and 337 

with no adjustments made to the pH prior to hydrolysis, is beneficial for fermentation under the 338 

conditions examined in this study.  Ethanol concentration from unwashed substrate was 40 g/L 339 

(no data given for washed substrate).  Xylose metabolism from the genetically modified strain is 340 

likely the largest contributing factor to the discrepancy in reported ethanol yields, but it was also 341 

reported that the this strain of S. cerevisiae performed similarly on washed substrate as compared 342 

to unwashed substrate.  This study suggests that the washing step can be eliminated without any 343 

loss in ethanol yield.  Contradictory results indicate the need for further study of this issue, or at 344 

the very least, optimization studies under specific process conditions. 345 

 In another study, LHW-pretreated sweet sorghum bagasse was hydrolyzed at 15-30% 346 

solids (w/v) with either 20 or 30 FPU/g glucan cellulase [39].  Washing the substrate prior to 347 

hydrolysis also did not improve the conversion rates.  Washed substrate yielded 63.2 g/L of 348 

sugar, whereas the unwashed substrate resulted in a sugar concentration of 66.1 g/L.  It was 349 

suggested, although not verified, that the washing step actually removed some of the smaller 350 

cellulose particles that may have been easier to hydrolyze than larger cellulose particles. 351 
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 The inconclusive results of these studies illustrate the complexity of defining appropriate 352 

processing conditions that work in all situations.  Operating conditions must be chosen carefully 353 

in order to realize the full potential of using lignocellulose as a valuable energy source.   Table I 354 

illustrates the wide variety of operating conditions that have been studied with regards to high-355 

solids loadings enzymatic hydrolysis.  Depending on various factors, like substrate choice, 356 

pretreatment conditions and hydrolysis conditions, it may be possible to eliminate certain steps 357 

like washing pretreated substrate or detoxifying hydrolyzate prior to fermentation, thus 358 

simplifying the overall conversion process.  However, elimination of these steps may present 359 

new problems that must be solved.  For instance, should the washing step following pretreatment 360 

be eliminated, it may be necessary to adjust the pH in another manner so the hydrolytic enzymes 361 

can work most effectively.     362 

 363 

4.2 Feeding Strategies 364 

Fed-batch feeding schemes have been investigated as an alternative method of achieving 365 

high-solids loadings in enzymatic hydrolysis [1, 26, 45, 46] because of some of the advantages it 366 

offers over single feeding schemes.  For instance, the initial viscosity is lower, so diffusion and 367 

mixing limitations can be minimized or altogether avoided.  A fed-batch feeding regime also 368 

allows time for the slurry to liquefy before adding additional solids, which maintains a level of 369 

free water that is available for the reaction process and for diffusion (away from the enzymes) of 370 

potentially inhibitory products that result from the hydrolysis reaction.  However, when a fed-371 

batch approach is selected, one must consider how and when to add substrate, as well as 372 

enzymes, to the reaction in order to maintain high rates of conversion.  Table II illustrates the 373 

variety of substrate and enzyme application rates used in fed-batch studies. 374 
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 Hodge et al. [1] conducted a study in which the fed-batch approach was utilized in order 375 

to achieve a final insoluble solids content of 15% (w/w) (equivalent to a 25% (w/w) initial solids 376 

loading).  This solids loading was the upper limit of unhydrolyzed pretreated corn stover that 377 

could be effectively mixed in the stirred tank reactors (STRs) available to the researchers.  High 378 

cellulose conversion (>80% cellulose conversion) was reported; however, the reaction time was 379 

more than double the typical hydrolysis reaction time (168 hrs vs. 72 hrs).  The extended time 380 

problem may be overcome through the use of higher enzyme loadings or enzymes that can 381 

tolerate higher sugar concentrations. The enzyme loading used in this study was 10.7 FPU/g 382 

cellulose, a relatively low loading, and it was applied proportionally with each addition of 383 

substrate.  A study conducted by Yang et al. [46] obtained a similar cellulose conversion 384 

(70.6%), with a higher solids loading (30%), an enzyme loading almost twice (20 FPU/g 385 

cellulose) that used in the former study and with a much shorter reaction time (30 hrs).  Both 386 

studies attribute the high conversion rate, at least in part, to the fact that the substrates were 387 

washed prior to hydrolysis, possibly eliminating any potential inhibitory products that resulted 388 

from the pretreatments.  The latter study also supplemented fresh enzyme with each addition of 389 

new biomass, which increased the final enzyme loading from 10 to 15 FPU/g cellulose.  The 390 

fresh enzyme may have also enhanced the glucose yield, replacing the enzyme that may be non-391 

productively bound to the lignin or deactivated by extended hydrolysis times. 392 

 Zhang et al. [52] studied another fed-batch approach for the conversion of NaOH-393 

pretreated sugarcane bagasse and wheat straw.  Pretreated biomass was fed into the reactor at 394 

9%, 8%, 7%, and 6% solids over the course of 48 hrs to achieve a final solids loading of 30% 395 

(w/v).  All enzymes were added with the first addition of lignocellulose.  Glucose conversion 396 

from wheat straw reached a maximum (~60%) after the first feeding, but decreased with each 397 
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successive feeding.  The higher rate of conversion was likely due to the low solids loading and 398 

high enzyme loading at the beginning of the reaction.  With each successive feeding, the 399 

enzyme: substrate ratio decreased.  After 72 hr of hydrolysis, the conversion began to level off, 400 

resulting in a final glucose conversion of 39%.  A slightly different conversion profile was 401 

observed with the bagasse.  The conversion continued to increase over the course of the 402 

hydrolysis reaction, with the exception of the last feeding time (6% solids at 48 hr).  The final 403 

feeding resulted in a sharp decrease in conversion, but it recovered within 24 hr following the 404 

feeding, leading to an increase in conversion over the batch.  The final glucose conversion of the 405 

sugarcane bagasse was 55%.  Differences in the way the pretreatment affected the lignocellulose 406 

may have led to the different glucose yields between the two substrates.  It was reported that the 407 

pretreatment caused the surface of the two substrates to become rough and fragmented as lignin 408 

was removed, allowing for better access to the cellulose; however, the bagasse appeared to have 409 

a rougher, more fragmented surface than the wheat straw.  Following 144 hr of hydrolysis, the 410 

surfaces were relatively smooth as compared to the start of the hydrolysis. 411 

 Wang et al. [39] considered the use of a fed-batch feeding scheme.  Initially, the reactors 412 

were charged with half of the final solids loading, followed by two additional feedings at 24 and 413 

48 hr of one-fourth of the final solids loading.  The system containing 30% solids achieved the 414 

highest final sugar concentration with nearly 115 g/L.  Even with the fed-batch system, the 415 

conversion decreased with increasing solids loadings; however, the conversion of the 30% solids 416 

reaction was only 5% less than the systems at 15% and 20% solids (55% vs. ~60%, 417 

respectively).  418 

 Fed-batch was utilized by Ma et al. [55] to achieve a 25% (w/v) solids loading.  Enzymes 419 

were added either all at once at the beginning of the reaction or with each addition of the dilute 420 
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acid pretreated cassava bagasse.  At this solids loading, the batch reaction reached ~50% 421 

conversion, whereas the fed-batches with a single enzyme addition and multiple enzyme 422 

additions achieved ~75% and 84% conversion, respectively.  These results are similar to those 423 

reported in other fed-batch studies [1, 46], indicating that under the right conditions fed-batch 424 

systems may be a plausible solution for achieving higher conversion rates for hydrolysis 425 

performed at high-solids loadings.   426 

 Rosgaard et al. [26] investigated several different regimes for batch and fed-batch 427 

hydrolysis, including variations of sequential addition of substrate as well as substrate plus fresh 428 

enzyme.  The addition of fresh enzyme with each substrate addition maintained a constant 429 

enzyme:substrate ratio throughout the whole reaction, as opposed to the other fed-batch feeding 430 

schemes where all the enzyme was added in one application.  In these cases, the effective 431 

enzyme:substrate ratio decreased with each subsequent addition of substrate.  Not surprisingly, 432 

the fed-batch schemes that received the full enzyme application at the start of the reaction 433 

produced higher glucose yields during the first few hours as compared to the fed-batch reactions 434 

that received fresh enzyme with each substrate addition.  However, the extent of the hydrolysis 435 

reaction was not affected by the method of enzyme application as the final glucose 436 

concentrations were not different for the fed-batch reactions with and without additional enzyme 437 

applications (62-67 g/L).  Furthermore, lower viscosity is often touted as an advantage of fed-438 

batch systems over batch systems because mixing becomes easier as viscosity decreases.  The 439 

viscosities of the fed-batch systems in this study were lower than in the batch systems, but no 440 

benefits were observed in regards to glucose production as the batch system at 15% solids 441 

resulted in higher glucose production (78 g/L) after 72 hr hydrolysis.  Final glucose 442 

concentrations of the fed-batch systems, though, were impacted by each addition of substrate.  443 
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Hydrolysis rates decreased and never fully recovered, resulting in lower final yields than the 444 

batch systems.   445 

 Additionally, Chandra et al. [45] reported on a fed-batch approach at a moderate solids 446 

loading that did not perform as well as a single stage feeding approach.  The total solids loadings 447 

achieved for both feeding schemes was 10%.  Two enzyme loadings were tested (5 and 60 448 

FPU/g cellulose), and at both loadings, the batch reaction produced the higher yields, 449 

approximately 66% and 90% for steam-pretreated corn stover, respectively.  However, when the 450 

solids are fed at 24 hr intervals, the respective yields are lower (approximately 55% and 80%) 451 

and the hydrolysis rates slower.  The authors suggest these reductions in yields and rates are the 452 

result of non-productive binding of enzyme to xylan or lignin fractions of the substrate or the 453 

inability of the enzyme to desorb from partially hydrolyzed substrate and find accessible 454 

cellulose sites in the fresh substrate.  Free protein measurements taken at 72 hr indicate that 50-455 

70% of the cellulase was still adsorbed to the substrate for both enzyme loadings, while the 456 

cellulose conversion ceased.  The lower hydrolysis rate at the higher enzyme loading seems to 457 

indicate that the enzymes are saturating the accessible cellulose sites, thus reaching a maximum 458 

hydrolysis rate that is lower than that of the batch reaction when all the accessible cellulose sites 459 

are available at once. 460 

 The results of fed-batch feeding schemes are currently still inconclusive, as indicated by 461 

the preceding studies, making the decision to use a fed-batch approach unclear.  Many 462 

advantages are realized regarding the use of fed-batch systems, but questions persist.  For 463 

instance, at what point in the reaction should subsequent additions of substrate be applied to 464 

maintain a high rate of conversion?  Should enzymes be added in a single application, as a 465 

supplement to the original application, or proportionally to the substrate?  Does the benefit of 466 
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reduced viscosity make a difference in energy consumption during the conversion process to 467 

overcome the potentially reduced sugar yield that may result from the fed-batch as compared to 468 

the batch system? 469 

  470 

4.3 Effects of Enzyme Synergism 471 

 Enzymatic hydrolysis, especially at high-solids loading, has been identified as the largest 472 

impediment to achieving high yields in a timely manner in the lignocellulose to ethanol 473 

conversion process, mainly because a significant portion of sugars produced are in oligomeric or 474 

polymeric form, which cannot be used in the fermentation process.  Several studies have 475 

investigated this issue from the perspective of the enzyme (Table I), experimenting with enzyme 476 

supplementation (in addition to cellulase) and alternative organism sources for cellulase [38, 47-477 

49].  Supplementing cellulase with β-glucosidase has long been used to minimize end-product 478 

inhibition of the cellulase and achieve higher conversions.  Lau et al. [48] investigated the use of 479 

several different enzymes other than cellulase and β-glucosidase to enhance the conversion of 480 

lignocellulose.  Their enzyme cocktail included xylanase and pectinase to target the 481 

hemicellulose that acts as a barrier to cellulose if not removed during pretreatment.  The focus of 482 

this work was on the fermentation step, so the details regarding the enzymatic hydrolysis are 483 

limited.  However, the hydrolyzates produced from AFEX-pretreated corn stover with these 484 

enzyme cocktails were able to produce 40 g/L (5.1% v/v) of ethanol with Saccharomyces 485 

cerevisiae.   486 

 Another study investigated the effects of supplementing the typical cellulase and β-487 

glucosidase enzyme cocktail with xylanase on the hydrolysis of steam-exploded barley straw 488 

[50].  The addition of the xylanase to the enzyme mixture enhanced the conversion rate of the 489 
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cellulose, especially at low solids loading and early in the hydrolysis reaction.  Conversion at 490 

higher solids loadings may be reduced by the higher concentration of xylooligomers produced 491 

with the addition of xylanases, as has recently been shown [15].  However, the xylanase used in 492 

the supplementation study did contain some β-xylosidase activity, which, if present, might 493 

counteract the inhibition caused by xylooligomers.  The positive effects of the xylanase addition 494 

reported in this study support the idea that overall enzyme loadings could be reduced if better 495 

conversion is achieved by incorporating an array of different enzymes.  However, a different 496 

study conducted by Di Risio [44] also evaluated various enzyme cocktails made from 497 

commercially-available enzyme solutions.  All three cocktails assessed consisted of the same 498 

base solution: cellulase and β-glucosidase.  Each solution was supplemented with a third 499 

commercial enzyme solution with different active components: cellulase + xylanase, cellulase + 500 

xylanase + β-glucosidase, and xylanase.  The highest glucose yields (44%) resulted from the 501 

enzyme cocktail consisting of the base solution supplemented with the commercial solution 502 

containing cellulase + xylanase + β-glucosidase activity.  Surprisingly, the enzyme solution 503 

supplemented with the enzyme promoted as a “xylanase” actually yielded significantly less 504 

xylose than the other two enzyme solutions (39% as compared with 54% and 85%).  However, 505 

there is no indication that the xylanase activity of this commercial product was independently 506 

verified prior to use.  Glucose yields ranged from 32%-42%.      507 

 Taking it a step further, another group studied the effects of various addition schemes and 508 

enzyme loadings using an enzyme cocktail containing cellulase, β-glucosidase and xylanase on 509 

the hydrolysis of mixed hardwood chip pulps [42].  The enzyme cocktails consisted of fungal 510 

cellulase (C), xylanases (X) and β-glucosidase (B) solutions mixed in the ratio of 10:3:3 (by 511 

volume).  The mixtures were added to the substrate in the following manners: (1) cellulase, 512 
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xylanases and β-glucosidase was mixed with substrate at the desired solids loading (CXB); (2) 513 

cellulase was added to 5% solids, pressed or filtered to obtain the desired solids loading, and 514 

hydrolyzed for a period of time before the xylanases and β-glucosidase mixture was added 515 

(C+XB); and (3) half of the cellulase was added to 5% solids, pressed or filtered to obtain the 516 

desired solids loading, and hydrolyzed for a period of time before the cellulase (half dose), 517 

xylanases and β-glucosidase mixture was added (C+CXB).  With the CXB mixture, a decrease in 518 

conversion was observed with an increase in solids loading.  Enzyme loading also plays an 519 

important role in the optimization of biomass conversion.  For example, with the CXB enzyme 520 

mixture, the difference in sugar yields decreased with increased enzyme loadings.  At 40 FPU/g 521 

solids, conversion decreased from 70% to 68% for 5% and 20% solids loading, respectively, 522 

which represents no significant difference in conversion.  However, at 5 FPU/g solids, 523 

conversion decreased from 40% to 19% for 5% and 20% solids loadings, respectively.  The 524 

authors hypothesized the decreased conversion was the result of ineffective mixing of the 525 

enzyme mixture with the substrate as the solids loadings increased.  Based on this hypothesis, the 526 

authors added the enzyme to a low solids mixture, allowing time for the enzymes to adsorb to the 527 

substrate, before filtering off 80% of the liquid to obtain 20% solids loadings.  Enzyme activity 528 

was tested following filtration to determine whether any enzyme was lost during this process.  529 

Cellulase activity registered at 80% of the original activity, whereas only 20% of the xylanases 530 

activity was retained.  This observation resulted in the modified application of the enzyme 531 

mixture (C+XB).  At 20% solids and 20 FPU/g solids, sugar conversion increased from 44% for 532 

the CXB mixture to 59% for the C+XB mixture.  Sugar concentrations increased from 84 g/L to 533 

114 g/L.  This modified enzyme application process was also beneficial at low solids loadings 534 

(5%), increasing conversion from 19% with CXB to 38% with C+XB.  Taking this enzyme 535 
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application process one step further, additional cellulase was added with the xylanases and β-536 

glucosidase mixture (C+CXB).  In this instance, although the sugar concentration increased to 537 

121 g/L glucose (63% conversion), the conversion at 20% solids was similar to that at 5% solids 538 

at all enzyme loadings tested.  These experiments indicate the importance of determining enzyme 539 

mixtures and application schemes that provide the optimal sugar yields and concentrations for 540 

the conversion process. 541 

 Along with the feeding scheme and the enzyme loading, the type of enzyme used can 542 

have a significant impact on the liquefaction of biomass.  The term “cellulase” can refer to a 543 

wide variety of enzymes, and commercially available enzymes can often be a crude mixture of 544 

enzymes (i.e. T. reesei cellulase that is commonly used in hydrolysis studies).  To be more 545 

specific, for example, the T. reesei “cellulase” can refer to a mixture of cellobiohydrolases 546 

(CBH), endoglucanases (EG), xylanases (XYLs), and β-glucosidase, among other enzyme 547 

components.  Using an array of CBHs, EGs, XYLs and a β-glucosidase, both individually and in 548 

combination, Sjizarto et al. [30] assessed the enzymes on their ability to liquefy hydrothermally 549 

pretreated wheat straw.  For the T. reesei components, it was determined that the EGs (especially 550 

Cel5A) were the most important in liquefying lignocellulose.  This enzyme alone reduced the 551 

viscosity of the slurry by nearly 90%.  The CBHs and XYLs had little to no effect on the 552 

viscosity, even though the sugar production was similar to that of some of the EGs.  553 

Furthermore, a mixture of enzymes produced the highest sugar yields, even though the viscosity 554 

was reduced by only about 82%, indicating that the amount of sugar hydrolyzed is not the main 555 

factor in reducing viscosity, but that the sites at which the polysaccharides are cleaved is more 556 

important.   557 
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 Since enzymes play such a vital role in the conversion of lignocellulose, much of the 558 

process integration depends on these biological catalysts.  For instance, a balance must be struck 559 

between the enzyme loading used and enzyme cost.  High enzyme loadings not only increase the 560 

total cost, but as discussed in the introduction, studies suggest that enzymes are overcrowding 561 

accessible cellulose chains, thus reducing the rate at which cellulose is hydrolyzed.  One such 562 

study was conducted by Olsen et al. [58].  At a solids loading of 29% (w/w) pretreated corn 563 

stover, a range of enzyme loadings (5-83 FPU/g cellulose) were evaluated for hydrolysis yields.  564 

At enzyme loadings >66 FPU/g cellulose, the hydrolysis curves started to coincide.  It was 565 

suggested that the lack of improvement in hydrolysis rate and conversion was due to the 566 

substrate being completely saturated with enzymes bound to all the accessible sites.  High 567 

enzyme loadings also do not make sense economically.  Based on a techno-economic model of 568 

the bioethanol conversion process, an optimum total solids loading of about 20% with an enzyme 569 

loading of 20 mg/g solids (8.8 FPU/g solids) was determined to produce the minimum ethanol 570 

selling price with currently available, commercial enzymes [4].  This model evaluated the cost of 571 

production at 2007 enzyme production costs ($0.35/gal), as well as the enzyme production cost 572 

projected by the Multi-Year Program Plan (MYPP) from the DOE’s Office of Biomass Program 573 

for 2012 ($0.12/gal) [59].  At the lower enzyme production cost, solids loadings could 574 

potentially be increased up to 26% and remain economically viable.  In the time since this study 575 

was published, the MYPP re-evaluated the cost of enzyme production and the current projection 576 

for 2012 was fairly consistent with the “high” cost of enzyme production reported in the study at 577 

$0.34/gal of ethanol (2007$). Under the assumptions made constructing this model, 20% solids 578 

loading remains the maximum that is economically feasible for the ethanol production process. 579 
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 Zhang et al. [43] evaluated enzyme loading to determine the effect it had on glucose 580 

concentration.  A 50% reduction in enzyme loading decreased the glucose concentration by only 581 

21%.  The implication of this observation is that enzyme loading can be optimized to provide the 582 

maximum concentration at the lowest unit cost.  For example, it may not be worth converting an 583 

extra 5% of glucose if it accounts for ~15% of the total enzyme cost unless the return on the 584 

extra glucose recovers the cost of the additional enzyme. 585 

 While the cellulase system of T. reesei is one of the most commonly studied enzyme 586 

systems, other organisms also produce cellulolytic enzymes that could potentially impart 587 

superior activity under certain conditions.  Ingram et al. [53] compared the conversion 588 

efficiencies of enzymes from two different organisms, T. reesei and a genetically-modified (for 589 

increased cellulase production) strain of Penicillium janthinellum.  Enzyme mixtures from both 590 

organisms contained cellulases, β-glucosidases and xylanase activity.  With the cellulase from T. 591 

reesei, an increase in glucose concentration as biomass loading increased was observed for the 592 

organosolv and the LHW-pretreated rye straw.  After 48 hrs of hydrolysis at 17.5% solids, the P. 593 

janthinellum cellulase converted 72% of the soda-pretreated rye straw.  Higher enzyme loadings 594 

of P. janthinellum cellulase were necessary to achieve the same level of conversion produced by 595 

the T. reesei cellulase (27 FPU/g cellulose vs. 13 FPU/g cellulose); however, the P. janthinellum 596 

cellulase appeared to be more tolerant to changes in pH.  This study highlights the fact that the 597 

conversion process is dependent on many factors, including, but not limited to, the type of 598 

biomass, the conditions of the pretreatment, and the source of enzymes. 599 

In another study partially purified cellulase from the thermostable Geobacillus R7 was 600 

evaluated as an alternative cellulase source [47].  For short hydrolysis times (36 hr), the 601 

Geobacillus cellulase was comparable to a commercial enzyme preparation.  However, for 602 
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hydrolysis of pretreated prairie cord grass using this cellulase, the glucose recovery at 96 hrs for 603 

solids loadings ≥10% was between 46.2% and 48.7%.  It does not appear that the solids loading 604 

had much of an impact on conversion of the prairie cord grass; although the conversion of 605 

cellulose into glucose utilizing the Geobacillus R7 cellulase was better than the conversion of the 606 

pretreated corn stover at 27%-31%.  Geobacillus R7 also has the added benefit of being 607 

ethanologenic.  During the hydrolysis, Geobacillus R7 produced a small amount of ethanol 608 

(0.035 g/L) from the pretreated prairie cord grass, which has possible implications for 609 

consolidated bioprocessing of lignocellulose materials.  Subsequent fermentation of the 610 

hydrolyzate with S. cerevisiae resulted in an ethanol production of 7.8 g/L (or 0.47 g ethanol/g 611 

glucose) for the 20% solids loading of prairie cord grass. 612 

 Lastly, Matano et al. [60] engineered fermentative yeast to express three different types 613 

of cellulase on its surface.  This yeast was subsequently evaluated in SSF processes utilizing 614 

25% (w/v) pretreated rice straw.  Initially, a control yeast strain was supplemented with a 615 

commercial cellulase (100 FPU/g biomass).  This combination resulted in an ethanol yield of 616 

80% and liquefaction after 72 hr.  When combined with the modified yeast strain, the 617 

commercial cellulase loading could be reduced to 10 FPU/g biomass and produce the same 618 

ethanol yield (79%).  Further study showed that a maximum ethanol concentration (43.1 g/L) 619 

was obtained following a 2 hr liquefaction period prior to the addition of the modified yeast, 620 

corresponding to an ethanol yield of 89%.  Residual glucose was reduced by an order of 621 

magnitude with the modified strain (16 g/L to 1.6 g/L).  The authors hypothesized that the close 622 

proximity of the cellulases on the surface of the yeast provided a synergistic effect that resulted 623 

in an increased hydrolysis of cellulose.  As commercial enzymes are still a relatively large 624 

portion of the overall cost of the conversion process, the ability to reduce the commercial 625 
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enzyme loading and replace it with an organism capable of both the hydrolysis and fermentation 626 

is very attractive. 627 

 628 

4.4 Solids Effect 629 

 For conversion of lignocellulose into usable and valuable products, it makes economical 630 

sense to utilize locally-available biomass, as shipping biomass over long distances greatly 631 

reduces the beneficial impacts.  Cara et al. [41] studied the conversion of olive tree pruning 632 

biomass (consisting of leaves and thin branches) up to 30% (w/v) solids loadings.  The final 633 

glucose concentrations increased with increasing solids loading, achieving 61 g/L and 52 g/L 634 

glucose at 30% solids loading of the liquid hot water (LWH) pretreated biomass and steam 635 

exploded biomass, respectively.   However, the conversions of the LHW-pretreated biomass 636 

decreased nearly linearly from 76.2% at 2% solids to 49.9% at 30% solids.  Conversions of the 637 

SE-pretreated biomass held steady between 60% and 63% up to 10% solids loading before 638 

decreasing to 39.6% at 30% solids.  In a different study, the researchers also observed that the 639 

glucose concentration decreased as the solids loading was increased beyond 10% solids for the 640 

soda pretreated rye straw [53].  The overall conversion of cellulose decreased from ~65% to 40% 641 

as solids loadings increased from ~10% to 17.5%.  This result is not unusual, as most studies 642 

performed at high-solids loadings sacrifice conversion for a more concentrated glucose product 643 

[10, 29, 41]. 644 

 Kristensen et al. [10] also studied four mechanisms that possibly contribute to the so-645 

called solids effect: (1) compositional and substrate effects, (2) product inhibition, (3) water 646 

concentration, and (4) cellulase adsorption.  These mechanisms were studied with filter paper, 647 

which is essentially a pure cellulose substrate.  The researchers observed the same decreasing 648 
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trend in conversion as solids increased using the filter paper, much like that observed with 649 

lignocellulose.  Therefore, it was concluded that lignin, which is absent in filter paper, is likely 650 

not the reason for the solids effect.    Study of the second mechanism, product inhibition, resulted 651 

in significantly different conversions after 48 hours of hydrolysis for 5% DM and 20% DM 652 

(64.5% vs. 38.6% or 30 g/L vs. 86 g/L, respectively).  However, the final conversions for these 653 

solids loadings with an additional 50 g/L glucose added resulted in fairly similar conversions 654 

(29.7% and 26.3% or 64 g/L vs. 109 g/L for 5% DM + 50 g/L glucose and 20% DM + 50 g/L 655 

glucose, respectively).  This experiment did not elucidate the exact reason for the observed 656 

similar conversions, but two hypotheses were offered.  It was suggested that other components in 657 

the hydrolysis mask the product inhibition or that enzymes are inhibited similarly once a certain 658 

glucose concentration is reached.   659 

 Kristensen et al. [10] next attempted to quantify the effects of water on the hydrolysis 660 

reaction.  Water content was decreased by 25% and replaced by oleyl alcohol. The alcohol 661 

allowed the viscosity of the slurry to remain constant, thus removing the effects of the viscosity, 662 

while the water to solids (or enzyme) ratio was altered.  With this decrease in water, a 5% 663 

decrease in glucose yield was observed.  However, increasing the solids content from 20% to 664 

25% (which is essentially equivalent to a 25% reduction in water), typically decreases glucose 665 

yields by ≥12%.  The authors argue this discrepancy in glucose reduction indicates that lower 666 

water content is apparently not the limiting factor responsible for the solids effect. 667 

Lastly, cellulase adsorption was investigated as a possible source of the solids effect [10].  668 

Cellulase adsorption to filter paper was determined by measuring the total nitrogen content of the 669 

biomass after 24 hr of hydrolysis.  The amount of adsorbed cellulase measured was halved (40% 670 

to 17%) as solids loading increased from 5% to 25%.  At the same time, conversion was reduced 671 
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from ~60% to <50%.  A strong correlation between decreasing adsorption and conversion was 672 

observed, indicating that cellulase is not effectively adsorbing onto cellulose causing a decrease 673 

in yield.  The authors hypothesize that increasing concentrations of glucose and cellobiose inhibit 674 

the adsorption of enzymes.  Knowledge of the mechanisms of high-solids product inhibition and 675 

the mechanisms of high-solids enzyme adsorption inhibition can provide the key to improving 676 

the overall conversion process, thus unlocking the full potential of high-solids conversions. 677 

 In contrast to the previous study, Roberts et al. [56] investigated the interactions of water 678 

with biomass at high-solids loading without maintaining a constant viscosity.  Time domain 679 

NMR was used to measure the transverse (or spin-spin) relaxation times (T2) of protons in water 680 

molecules to indicate the extent of water constraint (or degree to which water is tightly bound to 681 

biomass).  Essentially, the nuclei of water molecules that are tightly bound have a shorter 682 

relaxation time than nuclei that are less tightly bound.  By measuring these relaxation times, 683 

constraint can be determined.  It was found that water was more tightly bound as solids loadings 684 

increased, suggesting that an indirect relationship between water constraint and yield exists.  685 

However, the relaxation time of the primary bound water (water that interacts directly with the 686 

surface of the cellulose) was constant regardless of the solids loading.  Interactions at the water-687 

solids interface appear to remain constant, suggesting the chemistry at the surface of the 688 

cellulose does not change as water content changes.  These results further suggest that the water 689 

primarily interacts with the cellulose, and the impact of the solute is minimized.  However, these 690 

studies were conducted with bacterial cellulose, a substrate that is essentially pure cellulose.  It is 691 

unclear whether cellulose derived from pretreated lignocellulose would interact with water in a 692 

similar manner or to what extent the type of pretreatment may affect these cellulose-water 693 

interactions.  With the addition of excess glucose or mannose to 5% solids, the hydrolysis rate 694 
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reduced to one similar to 15% solids loading.  The authors hypothesize that the negative effects 695 

on the hydrolysis rate are caused by water constraint as opposed to the monosaccharides 696 

impacting the enzyme activity.  It is also possible that the lack of available water limited the 697 

uniform distribution of synergistic enzymes, thus hindering the hydrolysis rate.  Also, in contrast 698 

to the previous study, the results presented in this study indicate that water (or the lack of it) has 699 

a great impact on the overall hydrolysis rate.  Even though the addition of oleyl alcohol in the 700 

former study reduced the water content in the reaction, the constant viscosity helped maintain 701 

adequate mixing and therefore did not limit the diffusion of enzymes throughout the suspension.  702 

While these studies draw conflicting conclusions on the effect of water on lignocellulose 703 

conversion, they do highlight the need for effective mixing.  Adequate mixing was provided in 704 

the former study, even with a low water: substrate ratio because of the low viscosity afforded by 705 

the addition of alcohol, whereas the latter study simply reduced the water: substrate ratio without 706 

regard for the viscosity.  These studies also highlight the difficulty of quantifying and assigning 707 

the challenges of operating at high solids to any one factor (lack of water, high viscosity, 708 

adequate mixing, etc.) when all these factors are so interrelated. 709 

 710 

4.5 Effect of Viscosity on Mixing 711 

High viscosity of high-solids slurries is another hurdle that must be overcome.  Much of 712 

the previous discussion (i.e. effects of enzymes on liquefaction and solids loadings) also affects 713 

the rheology, but this section discusses specific viscosity modifiers and their effects on 714 

enzymatic hydrolysis.  Ineffective mixing increases the limitations associated with mass transfer, 715 

including removal of local inhibitors and hydrolysis products and transfer of heat throughout the 716 

reactor.  The pulp and paper industry has long been using viscosity modifiers to enhance the 717 
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processability of fibrous slurries [31], much like the types of slurries produced by lignocellulose 718 

materials prevalent in the conversion to biofuels and biochemicals.  One study [31] investigated 719 

the use of 18 different chemical additives and evaluated the effects on the slurry rheology and 720 

hydrolysis rates.  Several surfactants added to lignocellulosic slurries at 2% (w/w), including 721 

CPCl, CTAB, sodium dodecylbenzene sulfonate (NaDBS) and sodium dodecyl sulfonate (SDS), 722 

positively affected the rheological properties of the slurry by reducing the viscosity by nearly 723 

four-fold as compared to the viscosity of the unmodified slurry.  Although slight decreases in the 724 

extent of the hydrolysis reactions were observed, only the CPCl and the CTAB did not reduce 725 

hydrolysis rates.  Additionally, Ma et al. [55] tested the surfactant Tween-80 and found that it did 726 

not produce a significant increase in conversion at a 10% solids loading to warrant its use.  727 

However, at 25% solids loading, the addition of the surfactant (2 g/L) increased cellulose 728 

conversion by 30%.  Contrary to what Kristensen et al. [10] said, the inhibition caused by non-729 

productive binding of the enzyme to lignin does not seem to have as large of an effect at low 730 

solids as it does at high solids.  These results show some promise in modifying viscosity 731 

properties of lignocellulose slurries; however, more work is warranted to understand the 732 

mechanism by which these surfactants work, as well as determining the economical value of the 733 

use of such additives.  734 

 Another approach to reducing viscosity is to raise the temperature at which the hydrolysis 735 

reaction takes place [61].  In order to work at higher temperatures, enzymes that can tolerate the 736 

increased temperatures must be used.  It has been shown that EGs from more thermotolerant 737 

organisms worked better at reducing the viscosity of a lignocellulose slurry, while other types of 738 

enzymes appeared to have little effect [61].  T. aurantiacus proved to be more thermotolerant 739 

than A. thermophilum, as the T. aurantiacus EG continued to reduce the viscosity at temperatures 740 
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up to 75ºC.  A. thermophilum enzymes were less active above 65ºC, resulting in a reduced effect 741 

on the viscosity.  The ability to use alternate sources of cellulase enzymes illustrates the number 742 

of reaction condition variables (i.e. temperature, components in enzyme cocktail, and solids 743 

content in slurry) open to modification. 744 

 The method of mixing the slurry can also have a substantial impact on the conversion of 745 

lignocellulose.  For example, Zhang et al. [43] observed a significantly reduced liquefaction time 746 

when comparing hydrolysis at high solids (17-20% w/w) performed in shake flasks with a lab-747 

scale peg mixer.  Peg mixers are commonly used in the pulp and paper industry, which routinely 748 

utilizes solids loadings up to 35% [43].  (Readers are referred to the section entitled “Reactor 749 

design for enzymatic hydrolysis at high solids” for more details on the peg mixer.)  Liquefaction 750 

occurred after 1 hr of hydrolysis in the peg mixer, whereas the shake flask required 40 hr.  The 751 

decrease in liquefaction time can most likely be attributed to the effective mixing provided by 752 

the peg mixer and the breaking down of the large fiber network that tends to occur as solids 753 

loadings surpass 8%.  At 20% (w/w) solids loadings, hydrolysis performed in the peg mixer 754 

resulted in 144 g/L and 158 g/L of glucose from unbleached hardwood and Organosolv 755 

pretreated poplar, respectively.  These concentrations are the highest glucose concentrations 756 

achieved known to the authors at the time of writing this review. 757 

One of the highest solids loadings in enzymatic hydrolysis reported to date is 40% (w/w) 758 

[29, 51].  A horizontally-oriented rotating drum was utilized as the reactor in these studies in 759 

order to effectively mix the solids.  The studies found that cellulose and hemicellulose 760 

conversion decreased from ~90% to ~33% and ~70% to 35%, respectively, with the increase in 761 

solids loading from 2% to 40%, but the reactor was providing adequate mixing as evidenced by 762 

the conversion of lignocellulose into fermentable saccharides (86 g glucose/kg at 40% solids) 763 
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[29].  At 40% solids, liquefaction occurred after only 4 hrs.  The viscosity was still high, as the 764 

slurry turned into a thick, clay-like paste and remained as a thick paste following 96 hrs of 765 

hydrolysis.  Additionally, the reactor was a very energy efficient solution to the mixing problem.  766 

Mixing speed did not affect the liquefaction time, so relatively low speeds (6.6 rpm) could be 767 

used.  It was also shown that ethanol could be produced in the same rotating drum reactor from 768 

the resulting slurries, where the highest ethanol yield (48 g/kg DM) reported was from the slurry 769 

at 35% solids.  Even at reduced enzyme loadings (5 FPU/g DM supplemented with β-glucosidase 770 

at a 5:1 loading), ~40% conversion for both cellulose and hemicellulose can be achieved at 30% 771 

solids loading [51].  These results suggest using one reactor for all processing steps in the 772 

conversion of lignocellulose, with the implication that capital and equipment costs can 773 

potentially be greatly reduced as both the number of reactors and amount of enzyme used 774 

decreases.  However, with the yield penalty for conversion at higher solids loadings being high, a 775 

full techno-economic analysis would be needed to fully validate such a system operating under 776 

the given conditions. 777 

 778 

4.6 Tools and Methods for Measuring the Progress of Enzymatic Hydrolysis at High-Solids 779 

Loadings 780 

 As more and more interest is expressed in the use of high-solids loadings in the 781 

conversion of lignocellulose, it is also important that tools are available to properly measure and 782 

study the progress of the hydrolysis reaction.  Calorimetry has been studied as a new tool for 783 

determining enzymatic kinetics of high-solids loadings in hydrolysis [58].  It provides higher 784 

sensitivity than HPLC in the early stages of the hydrolysis, making calorimetry a useful tool to 785 

evaluate initial rates of hydrolysis.  Avicel showed that enzyme hydrolysis slowed when enzyme 786 
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loading of >30 FPU/g cellulose were used.  It is believed that this reduction in rate is due to the 787 

lack of available binding sites on the cellulose, as illustrated by the heat-flow curves converging 788 

upon a single value, regardless of the enzyme loading.  789 

 Lavenson et al. [57] also implemented the use of new tools to monitor liquefaction and 790 

the extent of hydrolysis of cellulose.  Liquefaction and the spatial homogeneity of the enzyme 791 

distribution in Solka-Floc suspensions (28% w/w) were monitored with magnetic resonance 792 

imaging (MRI).  The MRI signal is proportional to the amount of free water in the reaction, 793 

which correlates to the degree of liquefaction in the system.  Additionally, a penetrometer was 794 

used to monitor the mechanical strength of the suspension.  Measurements were taken on two 795 

hydrolysis systems, where one contained a mixed Solka-Floc and enzyme suspension and the 796 

other contained a Solka-Floc suspension that received an application of enzyme but no mixing.  797 

Mechanical strength of the mixed suspension decreased by 20% of the initial strength after ~30 798 

hrs, as compared to ~170 hrs for the unmixed suspension.  Based on the MRI results, the mixed 799 

samples did not show a spatial gradient, indicating uniform liquefaction when the enzyme and 800 

substrate are initially well-mixed.  The unmixed samples showed a slow change in spatial 801 

gradients, which were attributed to ineffective diffusion of the enzyme to the substrate.  Since 802 

liquefaction occurs nearly six times faster for the mixed samples, it is not surprising that higher 803 

final glucose concentrations are also obtained as compared to the unmixed samples and in much 804 

less time.  For example, the mixed suspension reached ~75 g/L glucose in only ~120 hrs, 805 

whereas the unmixed suspension produced only ~50 g/L in 300 hrs.  Furthermore, adequate 806 

initial mixing of the enzyme and substrate resulted in an initial rate of hydrolysis an order of 807 

magnitude higher (1.8 g/L/hr as compared to 0.21 g/L/hr).      808 

 809 
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5. Reactor Design for Enzymatic Hydrolysis at High Solids 810 

 Several groups studying the use of high-solids loadings for enzymatic hydrolysis have 811 

embraced a horizontal orientation of the reactor [6, 29, 62, 63].  Gravitational or free-fall mixing 812 

provides many advantages over typical vertical stirred tank reactors and are used in other 813 

industrial processes that require mixing highly viscous slurries, like peanut butter, ketchup and 814 

concrete [62, 63].  The horizontal orientation minimizes particle settling and local accumulation 815 

of reaction products within the reactor, as well as ensuring better enzyme distribution.  These 816 

types of reactors are also easily scalable from bench-scale to pilot-scale and larger.  Power 817 

requirements are lower for horizontal reactors equipped with paddles over vertical stirred tank 818 

reactors that provide the same level of effective mixing [62].          819 

 Roche et al. [63] employed free-fall mixing in their design for bench-scale reactors for 820 

enzymatic hydrolysis.  Polypropylene bottles (125 mL and 250 mL) were placed on a roller 821 

apparatus in a horizontal orientation.  The roller apparatus and bottles were placed in an 822 

incubator for temperature control during enzymatic hydrolysis.  This roller-bottle system 823 

produced results comparable to shake flasks when utilizing intermittent hand mixing, especially 824 

following enzyme addition and prior to sampling, for up to 30% solids (data not shown).  At 825 

20% solids loading, these two mixing schemes resulted in 80-85% cellulose conversion.  The 826 

roller-bottle reactors eliminated the human component of mixing, resulting in more consistent 827 

mixing and better enzyme and reaction product distribution.                    828 

 Hydrolysis studies conducted by Dasari et al. [62] utilized a horizontal reactor of 829 

intermediate capacity (8 L).  The reactor was constructed from a cylinder made of Pyrex glass 830 

with aluminum lids fitted over the ends.  An adjustable speed, rotating shaft with rubber-tipped, 831 

stainless steel blades attached was inserted into the reactor.  Three sampling ports were located 832 
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along the length of the reactor.  Hydrolysis studies comparing the horizontal reactor to shake 833 

flasks found, at 25% solids loading, approximately 10% more glucose was produced in the 834 

horizontal reactor.   835 

Jorgensen et al. [29] developed a reactor for use in pretreatment and enzymatic hydrolysis 836 

processes with a total volume of 280 L.  Several features have been implemented into the pilot-837 

scale drum reactor, as well as the smaller glass reactor, to address issues associated with high-838 

solids loadings.  The horizontal orientation of the reactors takes advantage of free-fall mixing, 839 

eliminating the need for mechanical mixing.  Evaluation of a range of mixing speeds (3.3-11.5 840 

rpm) by Jorgensen et al. [29] resulted in no significant differences in cellulose conversion over 841 

the tested range, so energy input for mixing is significantly reduced as compared to vertically 842 

oriented stirred tank reactors.  In addition to free-fall mixing, a rotating shaft affixed with 843 

paddles supplies additional mixing capabilities, as the shaft in the pilot-scale reactor can be 844 

programmed to change rotational direction two times per minute.  The paddles also provide a 845 

scraping action that removes lignocellulosic material from the reactor walls, improving heat 846 

transfer between the reactor and the biomass. 847 

 The Integrated Biomass Utilization System (IBUS) Project coordinated by DONG 848 

Energy in Denmark also utilizes free-fall reactors.  DONG Energy has free-fall reactors in a 849 

variety of sizes for research and development purposes (400 L) and has successfully scaled one 850 

up to a capacity of 11,000 L [6, 64].  These reactors routinely operate at approximately 40% 851 

solids loading.  Larger particle sizes can be used, since the mechanical work of the mixing helps 852 

tear biomass fibers and particles apart [6].  This tearing action also increases the surface area of 853 

the lignocellulose, resulting in increased enzyme accessibility to the cellulose and hemicellulose.          854 
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 While most reactors implemented for high-solids enzymatic hydrolysis have employed 855 

some form of free-fall mixing, Zhang et al. [18] investigated the effects of a helical impeller in a 856 

vertical reactor on SSF at solids loadings up to 30% (w/w) and compared it to a typical Rushton 857 

(paddle) impeller (Figure 4a-b).  Helical impellers are suggested for use in highly viscous, non-858 

Newtonian fluid agitation, which describes high-solids biomass slurries.  The helical impeller 859 

performed better than the Rushton impeller with regard to every aspect tested.  The feeding rate 860 

of lignocellulose into the reactor was adjusted so that a liquefied slurry could be maintained 861 

throughout the feeding period.  The helical impeller provided better mixing, as the feeding period 862 

was completed more than 2 hr sooner than that of the Rushton impeller. The helical impeller also 863 

resulted in higher ethanol concentration (51.0 g/L vs. 43.9 g/L) and productivity, as well as 864 

consuming less power.  At 30% solids (prior to inoculation with the fermentative organism), the 865 

Rushton impeller required nearly 40 W/kg corn stover (CS) before decreasing to ~29 W/kg CS 866 

after 72 hr of saccharification and fermentation.  The helical impeller required ~8 W/kg CS and 867 

~1 W/kg CS prior to inoculation and after 72 hr, respectively.  (It should be noted that the 868 

stirring rates for the two impellers were different; however, the power requirements were 869 

normalized based on the “no-load” power consumption for each impeller.)  Lastly, the mixing 870 

efficiency of the helical impeller was superior to the Rushton impeller.  The geometry of the 871 

impeller can play a significant role in effectively mixing biomass slurries.  Other geometries 872 

tested by Wang et al. include a plate-and-frame impeller and a double-curved-blade impeller 873 

(Figure 4c-d).  The impellers were tested at various speeds and 100 rpm resulted in the best 874 

conversion efficiencies for both geometries.  However, the plate-and-frame impeller achieved a 875 

higher conversion than the double-curved-blade impeller by nearly 18%, indicating that the 876 

geometry of the impeller can have an effect on the hydrolysis.  The authors suggested that the 877 
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plate-and-frame impeller provides a more consistent mixing regime at every depth in the reactor, 878 

whereas the axial flow induced by the double-curved-blade impeller is a function of the distance 879 

from the blades.   880 

 Another study investigated the use of a peg mixer (Figure 4e) for enzymatic hydrolysis at 881 

high-solids loadings [43].  The mixer used in this study was a 9 L reactor fitted with a rotating 882 

shaft with pegs extending out radially.  The time for liquefaction of 20% (w/w) of unbleached 883 

hardwood pulp was significantly reduced when comparing shake flasks to the peg mixer (40 hr 884 

vs. 1 hr).  The benefit of this mixer is that it has been proven effective with lignocellulosic 885 

material.  High-solids enzymatic hydrolysis is just another application for the peg mixer.    886 

 From the various aforementioned reactors utilized with high-solids enzymatic hydrolysis 887 

reactions, there are several suggestions to improve the mixing of highly viscous slurries.  Free-888 

fall mixing relies on gravity to effectively mix the slurry, which consumes less energy than a 889 

stirred tank reactor providing a similar degree of mixing.  An effective mixing regime can greatly 890 

depend on the impeller geometry, as the shape of an impeller can cause large differences in 891 

speed and shear effects at various impeller-slurry interfaces throughout the reactor.  High shear 892 

rates have been shown to disrupt the adsorption of cellulase onto biomass or to even cause the 893 

denaturation of cellulase [65, 66].  Lastly, technology should be borrowed from other 894 

applications, where possible.  For instance, peg mixers are a “tried-and-true” technology that is 895 

commonly used in the long-established pulp and paper industry.  All of these ideas have shown 896 

some promise but require more study and fine-tuning before being implemented into the 897 

lignocellulose conversion process.    898 

 899 
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6. Pilot and Demonstration-Scale Operations 900 

 Several plants operating at pilot- and demonstration -scale level have recently come 901 

online.  These installations will help the industry gain valuable insights and improve upon the 902 

challenges and limitations that are not recognized at the laboratory scale. 903 

 One such pilot plant constructed in Denmark is operated by Inbicon (a subsidiary of 904 

DONG Energy), with a distillation capacity of ~1 ton fermentation broth/hr.  Additionally, in 905 

2010, Inbicon opened its demonstration-scale plant that is capable of producing 5.3 million liters 906 

of ethanol each year.  Enzymatic hydrolysis is performed here at 25-30% (w/w) solids content 907 

with a relatively low enzyme loading of 3-6 FPU/g DM.  However, the plant is capable of 908 

handling up to 40% (w/w) solids in any of its process streams [6, 64].  Since this operation is 909 

also used for developmental purposes, they have reactors that range from 400 L up to 11,000 L.  910 

Additionally, pretreatment and fermentation are performed at high-solids loadings, 20-40% and 911 

~18% DM, respectively.  At the end of the conversion process, the remaining lignin-rich material 912 

(40-95% DM) is burned to produce heat and electricity that can be cycled back into the 913 

conversion operation.  914 

 The National Renewable Energy Laboratory (Golden, CO, USA) recently expanded their 915 

lignocellulose processing facilities to achieve a capacity of 4,000 L and to operate at solids 916 

loading of ≥20% (w/w) [67].  The conversion process is designed as a semi-continuous operation 917 

with pretreatment occurring in horizontal reactors with paddles, taking advantage of the reduced 918 

energy inputs required with free-fall mixing of lignocellulose.  Following liquefaction at ~24-30 919 

hrs, the slurry is pumped into vertical, stirred tank reactors to complete the enzymatic hydrolysis 920 

of the material.  This operation is capable of processing about 0.5 to 1 ton dry biomass into 921 

ethanol each day.   922 
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 923 

7. Direction of future work 924 

 In order to fully realize the benefits of operating enzymatic hydrolysis at high-solids, 925 

several issues must be addressed.  There are many variables associated with enzymatic 926 

hydrolysis that can affect the efficiency of the conversion, including (but not limited to) biomass 927 

source, pretreatment method, enzyme source and enzyme mixture.  Each of these components 928 

must be considered when designing a process for lignocellulose conversion, which makes 929 

optimal processing conditions difficult to devise.  Further study for the optimization of glucose 930 

yields, especially in regards to the use of fed-batch systems, enzyme supplementation, washing 931 

and detoxification steps, and additives, both individually and in combination, is still very much 932 

needed.  It is also important that a better understanding of some of the mechanisms that seem to 933 

have the greatest impacts on the conversion process is achieved.  Robust reactors capable of 934 

effectively mixing biomass slurries to minimize end-product inhibition and heat and mass 935 

transfer limitations are needed.  Additionally, the cost of enzymes, biomass and any necessary 936 

specialty equipment, as well as the best uses for any potential by-products produced in the 937 

conversion process, should be considered in the design stages.                938 

 939 

8. Conclusions 940 

 Recent national and international focus on producing biofuels and chemicals from 941 

lignocellulose has led to significant research on the development and optimization of effective 942 

conversion processes.  Several definitive conclusions regarding enzymatic hydrolysis performed 943 

at high-solids loadings can be made following a thorough review of the available literature on 944 

this topic: 945 
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 946 

 Free-fall mixing is effective.  The advantages of this type of mixing system are 947 

numerous, and it has been employed successfully in other industrial processes. 948 

 The solids effect is real.  Although, the exact cause of this phenomenon has not been 949 

determined, there are several hypotheses that have been suggested, including 950 

o lower cellulase adsorption (increased concentrations of glucose and cellobiose 951 

have been shown to inhibit the adsorption of enzymes onto cellulose); 952 

o product inhibition of enzymes occurs earlier because of the higher concentration 953 

of products; 954 

o inadequate mixing, which can emphasize diffusional limitations exacerbating 955 

product inhibition and access of enzyme to substrate; 956 

o interaction of water with substrate (water has been shown to be more tightly 957 

bound to lignocellulose as the solids loadings increase, thus less water is 958 

available to the enzymes to perform the hydrolysis reaction). 959 

 Contradictory evidence continues to raise questions regarding the lignocellulose 960 

conversion process.  For example, some studies have shown that washing solids 961 

following pretreatment can enhance sugar production and fermentation, while others 962 

have found the opposite to be true.  Additionally, arguments persist regarding the effects 963 

water has on the overall conversion process.  Lastly, as long as enzyme cost remains a 964 

large portion of the overall conversion cost, enzymes also demand further attention, 965 

especially with regards to proper loadings and combinations. 966 



44 

 

 Fed-batch systems are worth investigating.  While there have been some conflicting 967 

results, many studies show overwhelming support for conducting high-solids operations 968 

as a fed-batch system. 969 

 The use of additives to reduce slurry viscosity has achieved some success at the lab-970 

scale.  However, the economics of the use of additives on an industrial-scale should be 971 

validated prior to implementation at that level.        972 

The use of high-solids operations would make biofuels produced from the conversion of 973 

lignocellulose more economical and more price-competitive with petroleum.  Increasing sugar 974 

and ethanol yields while reducing capital and production costs, lowering energy demands and 975 

lowering water requirements will contribute to a more economically feasible process as 976 

compared to one operated at low- or moderate-solids loadings.  Despite all the benefits of 977 

operating at high solids, the process remains restricted due primarily to the lack of available 978 

water within the culture, high viscosities, which translate to difficulties with mixing and 979 

handling, and increased concentration of inhibitors, which extends reaction times and increases 980 

enzyme costs.  Researchers are attacking these issues from many angles, experimenting with 981 

different pretreatment methods and various enzyme sources and cocktails, while modifying 982 

operating conditions and slurry properties.  Although there has been some success at performing 983 

enzymatic hydrolysis at high solids at the pilot and demonstration scale, many questions must be 984 

resolved before the full potential of high-solids lignocellulose conversion will be realized.          985 
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