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Opinion
Challenges towards
Revitalizing Hemp: A
Multifaceted Crop
Craig Schluttenhofer1,2 and Ling Yuan1,2,3,*

Hemp has been an important crop throughout human history for food, fiber, and
medicine. Despite significant progress made by the international research
community, the basic biology of hemp plants remains insufficiently understood.
Clear objectives are needed to guide future research. As a semi-domesticated
plant, hemp has many desirable traits that require improvement, including
eliminating seed shattering, enhancing the quantity and quality of stem fiber,
and increasing the accumulation of phytocannabinoids. Methods to manipulate
the sex of hemp plants will also be important for optimizing yields of seed, fiber,
and cannabinoids. Currently, research into trait improvement is hindered by the
lack of molecular techniques adapted to hemp. Here we review how addressing
these limitations will help advance our knowledge of plant biology and enable
us to fully domesticate and maximize the agronomic potential of this promising
crop.

Hemp: A Multifaceted and Diverse Plant
The genus Cannabis (commonly classified into the species Cannabis indica, Cannabis sativa,
and Cannabis ruderalis) has been used for food, fiber, and medicine for over six millennia [1,2].
Depending upon the use, Cannabis is organized into two distinct groups – marijuana and
hemp. Marijuana, primarily used recreationally for its intoxicating properties, may have medici-
nal value [3–5]. In contrast, hemp is valued for its medicinal compounds, fiber, and seed that are
collectively used in over 25 000 known products [6]. Compared to marijuana, the medicinal
compounds of interest found in hemp are nonintoxicating, for example, cannabidiol (CBD). In
European and North American countries, to be legally classified as hemp the crop may not
contain more than 0.2% or 0.3% of the intoxicating compound D9-tetrahydrocannabinol (THC),
respectively. This level of THC in Cannabis is insufficient to induce intoxication. Differences in
cultural practices of marijuana and hemp result in minor variations in morphologies, allowing
some distinction between these two crops [6].

Traditionally, hemp is grown for either seed or fiber. Hemp seeds contain approximately 30%
protein, 25% starch, and 30% oil [7,8]. Pressed seeds release an oil that contains >90%
polyunsaturated fatty acids. With a desirable ratio of v-6 to v-3 lipids [7,8], hemp seed oil is a
valuable addition to human and animal diets [9]. Additionally, the oil can be used for cooking or
processed into cosmetics and fuels [10,11]. The residual seed cake can be used for protein rich
animal feed. Bast fibers (see Glossary) are primarily used to make high quality papers,
whereas most hurd goes into animal beddings [10]. Recent technological advances have
expanded the use of hemp fiber and hurd to include the production of carbon nanosheets,
plastics, 3D-printer filaments, oil absorbent materials, and construction concrete. Additionally,
hemp produces over 100 known cannabinoids, most notably CBD [12]. In the USA, clinical
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cannabinoids (e.g., CBD) with distinct
properties from marijuana. Dozens of
clinical studies are now investigating
anecdotal uses of CBD to treat various
medical conditions.

The last several years have seen
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trials are investigating CBD for treatment of 26 medical conditionsi (Table 1). Furthermore, CBD
has been granted orphan drug status for eleven conditions (Table 1).

Recently, hemp production has expanded beyond Eurasia and Canada to include three
additional countries: Greece, Malawi, and the USA (Figure 1A). The rapid expansion in the
USA may considerably impact the global hemp market. Several recent reviews have provided
detailed information on the biochemistry, breeding, ecology, genetics, morphology, pathology,
physiology, and production of Cannabis [13–23]. Despite recent progress, much remains to be

Glossary
Anemophilous: wind-pollinated.
Autoflowering: when flowering
occurs independently of the
photoperiod.
Bast fiber: long cellulose-rich
bundles of phloem cells located
underneath the stem epidermis.
Dioecious: male and female flowers
are found on separate plants.
Female predominant: a population
of consisting of 70–95% female
plants and with the remaining plants
being male or monoecious.
Hurd: the inner woody core of hemp
stems.
Monoecious: separate male and
female flowers are found on the
same plant.
Orphan drug status: a special
designation given by the USA Food
and Drug Administration to a drug
being investigated to treat a rare
disease or disorder that affects less
than 200 000 people in the USA, or
for larger populations where
investments are not expected to be
recovered.
Shattering: the loss of mature
seeds from the inflorescence.

Table 1. Ongoing USA Clinical Trials and Orphan Medical Conditions for Which CBD Has Been Approved

Medical conditiona Phase I Phase II Phase III Orphan drug designationb

Amphetamine addiction n.d. Yes n.d. n.d.

Anxiety n.d. Yes n.d. n.d.

Autistic disorder n.d. Yes n.d. n.d.

Cannabis use disorder n.d. Yes n.d. n.d.

Cocaine dependence n.d. Yes n.d. n.d.

Dravet syndrome n.d. n.d. Yes Designated

Drug-resistant epilepsy Yes Yes n.d. n.d.

Epileptic encephalopathy Yes n.d. n.d. n.d.

Fatty liver n.d. Yes n.d. n.d.

Fragile X syndrome n.d. n.d. n.d. Designated

Glioblastoma multiforme Yes n.d. n.d. Designated

Glioma n.d. n.d. n.d. Designated

Graft versus host disease Yes Yes n.d. Designated

Graft versus host disease – prevention n.d. n.d. n.d. Designated

Infantile spasms n.d. Yes Yes Designated

Lennox–Gastaut syndrome n.d. n.d. Yes Designated

Neonatal hypoxic ischemic encephalopathy n.d. n.d. n.d. Designated

Lung cancer Yes n.d. n.d. n.d.

Opiate addiction Yes Yes n.d. n.d.

Pain Yes Yes Yes n.d.

Parkinson disease n.d. Yes n.d. n.d.

Pediatric intractable epilepsy Yes Yes n.d. n.d.

Pediatric schizophrenia n.d. n.d. n.d. Designated

Posttraumatic stress disorder n.d. Yes n.d. n.d.

Prader–Willi Syndrome n.d. Yes n.d. n.d.

Schizophrenia Yes Yes n.d. n.d.

Solid tumor n.d. Yes n.d. n.d.

Sturge–Weber Syndrome Yes Yes n.d. n.d.

Treatment-resistant seizures Yes n.d. Yes n.d.

Tuberous sclerosis complex n.d. n.d. Yes Designated

Ulcerative colitis Yes Yes n.d. n.d.

Abbreviations;: n.d., no data.
aCurrent as of February 16th, 2017 and considers CBD-only or high CBD/low THC formulations.
bOrphan drug designation.
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Coun try
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Austria 600 – 600
Canada* n/a n/a 34262
Chile 4500 2200 6700
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Figure 1. Global Production of Hemp Fiber and Seeds. (A) Countries cultivating (green) or utilizing natural hemp populations for textiles (purple; Nepal and
Bhutan). (B) Global production of hemp for fiber and seed from 1993 to 2013. (C) Countries producing hemp. Data was collected from the FAO for the year 2013. Total
land area may be smaller depending on the quantity of dual-purpose (i.e., cultivars used for seed and fiber production) hemp planted. Annual statistics are from the FAO.
Abbreviation: ha, hectares. *Value is from Health Canada for the year 2015. yTotal production area assumes a single-purpose crop.
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learned about this multifaceted and diverse plant. Importantly, there is limited information
available about key research challenges that need addressed to improve this valuable crop.
Thus, our objectives are (i) to briefly highlight the renewed interest in hemp, and (ii) illustrate
strategic issues that should be addressed by researchers. While we focus on traits to improve
hemp yield, these target research topics, in the long term, will also reveal important information
about basic plant biology and domestication.

The Global Hemp Market
Viewed as an eco-friendly and highly sustainable crop [24], the global market for hemp is
predicted to double from the year 2016 to 2020. At present, hemp is cultivated for commercial
or research purposes in at least 47 countries, and it is utilized by indigenous populations for
textiles in another two countries (Figure 1A). Since 2011, there has been an increase in hemp
tonnage and acreage worldwide (Figures 1B and 1C). Statistics for hemp production are
available from the Food and Agriculture Organization of the United Nations (FAO) for 16
countries (Figure 1C). Canada, China, Chile, France, and North Korea are currently the largest
producers of hemp.

The USA is the largest importer of hemp products [6], obtaining most of its seed and fiber from
Canada and China, respectively. In the Agricultural Act of 2014, the USA government autho-
rized research into industrial hemp production (Figure 2A). Consequently, hemp production and
research have rapidly increased in multiple states (Figure 2B). Establishment of a USA hemp
industry may impact global commerce by reducing hemp imports from exporting countries.

As consumer demand for organic and environmentally sustainable products increases, there is
a potential for significant growth of the world hemp market. Currently, there is a major
discrepancy in crop value depending on product type; for example, the value of CBD far
exceeds that of seed or fiber (Figure 2C). Using 2015 market prices and excluding costs [25],
revenue/ha is estimated to range from $625–$25 000 (Figure 2C). To advance the industry, a
focus on developing or improving products that can penetrate multibillion dollar markets (e.g.,
livestock health, improved construction materials, or energy storage) should be encouraged.
Increasing demand for hemp-derived products will help solidify a long-term sustainable market.

Future Directions for Hemp Research
Hemp is a genetically diverse and variable crop that produces raw products in three distinct
categories: seed/oil, fiber, and metabolites. Within each category, hemp can be improved by
multiple avenues of research. We highlight key research areas which increase grower yield or
product quality for processors. These topics are not exhaustive, but are intended to guide
research to areas which are of the highest priority.

Notably, due to the diverse nature of raw products produced from hemp, research targeting
hemp yield traits will improve our understanding of basic plant biology. Seed and oil research
will enrich our comprehension of grain yield and composition. Research into hemp fiber will
enhance our knowledge of stem development and composition, genetic regulation of fiber
traits, and biofuel production. Studies targeting metabolite yield will expand insights into both
Cannabis-specific and shared plant chemistries, interaction with biotic stresses, and trichome
development. Investigations into the plasticity of hemp’s sexual phenotype will contribute to
identifying mechanisms underlying plant sex determination. Importantly, unlike previously
domesticated crops [26,27], selection for increased hemp yield provides a unique opportunity
to study plant domestication for grain, fiber, and chemistry traits. With hemp, unlike most other
crops, these valuable characteristics can be studied within a single species for which they are
essential to sustainable and profitable production.
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Grain and Oil Production
As a semi-domesticated crop [28], many traits for hemp seed and oil yield require improvement;
these include seed size consistency and improved shattering resistance. Significant advances
in hemp seed production occurred with the development of FIN-314 (‘Finola’), an autoflow-
ering grain variety with a short stature, adaptation to high latitudes, and high yield [29], resulting
in it presently being the most popular cultivar grown in Canada [30]. However, seed size is highly
variable among hemp cultivars (Figure 3A) [16] and ‘Finola’ seeds are �50% the size of many
commercial varieties (Figure 3A). Selection for genetically stable cultivars with larger seeds will
be important for increasing hemp grain yields.

12122424
4848

1112185317042841
625

6250

25000

0

5000

10000

15000

20000

25000

30000

1 
t/

ha

2 
t/

ha

4 
t/

ha

27
2 

kg
/h

a

45
4 

kg
/h

a

27
2 

kg
/h

a

45
4 

kg
/h

a

25
0 

kg
/h

a

25
0 

kg
/h

a

25
0 

kg
/h

a

Fiber Grain
(con.)

Grain
(org.)

CBD

$/
ha

(C)

Sta te Year Area planted (ha) # U niversi�es
Kentucky 2014 13.35 6

2015 373.12 8
2016 1021.83 10

Color ado 2015 930.78 1
2016 2396.35 2

Hawaii 2015 0.10 1
2016 0.00 1

India na 2015 1.62 1
2016 0.81 1

Maine 2016 0.40 0
Minnesota 2016 20.64 1
Nebraska 2016 0.00 1
Nevada 2016 87.53 1
New  York 2016 12.14 3
Nort h D akota 2015 0.08 1

2016 28.33 1
Oregon 2015 20.23 1

2016 202.34 1
Tenn ess ee 2015 283.28 2

2016 91.05 2
Vermont 2015 8.09 1

2016 24.28 1
Virginia 2016 14.97 3
West Virg inia 2016 4.05 1
Total 2014 13 .35 6
Total 2015 1617.31 16
Total 2016 3904.73 29

(A) (B)

Figure 2. Hemp Production in the USA. (A) USA states currently able (green) and those pursuing legislation (red) to grow hemp, according to the 2014 Farm Bill.
States that conducted hemp trials in 2016 are denoted with a blue star. In 2014, ten states (California, Colorado, Kentucky, Maine, Montana, North Dakota, Oregon,
Vermont, Washington, and West Virginia) had in practice the necessary distinctions between marijuana and hemp, qualifying them for hemp research. Currently, 33
states meet the qualifying criteria. (B) USA states growing hemp, number of hectares planted, and the number of participating universities and colleges. Data obtained
from VoteHempiv and state Departments of Agriculture. (C) Revenue of hemp fiber, grain (conventional and organic), and phytocannabinoid (CBD) products per hectare.
Prices are based on those paid during 2015. Fiber values assume a price of $1.21/kg of actual fiber. Assuming bast fibers make up 25% of the stem dry matter, then 1,
2, and 4 metric ton/ha are equal to 4, 8, and 16 metric ton/ha of stems, respectively. Grain production assumes a price of $1.65 and $2.54 per kilogram of conventional
conventional (con.) or organic (org.) seed, respectively. Phytocannabinoid prices were obtained from hemp producers and CBD processors. CBD prices are complex,
ranging from $2.50 to 10.00/g of pure CBD. Higher prices are paid for crops with higher percentages of CBD in flower material. Here, revenue per hectare was
calculated using $2.50/g for 1%, $5.00 for 5%, and $10.00 for 10% CBD concentration in flower material.
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(See figure legend on the bottom of the next page.)

Figure 3. Properties of Hemp Seeds and Biomass. (A) 1000-seed weights for 39 hemp varieties. ‘P. variety’ designates a proprietary variety. (B) Seeds remain
weakly attached to the plant but are susceptible to loss due to shattering. (C) Seeds shattered onto the ground prior to harvesting. (D) Seeds still partially (top) or
completely (bottom) encased in bracts and perianth. (E) Hemp seeds showing the point of disarticulation at the base. (F) Dissected immature, transitional, and mature
seeds (left to right) showing stages of seed fill. (G) Counterclockwise from upper left: immature, transitional, and mature hemp seeds. Seeds at each stage of
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During domestication, hemp has retained little resistance to shattering [14]. However, hemp
field trials have revealed that significant grain is lost due to shattering prior to and during
harvesting as a result of inconsistent inflorescence maturity (Figures 3B and 3C), particularly if
collected outside of the optimal harvest time windows. To mitigate this problem, growers
harvest seeds at 70% maturityii [31]. Hemp inflorescences are large multi-seeded heads in
which each individual seed is partially surrounded by a bract, and an abscission zone connects
the hull to the pedicle (Figures 3D and 3E). Selection for a stronger-walled abscission zone or
the prevention of bracts releasing seeds (Figures 3D and 3E) are possible physiological traits to
target to reduce hemp seed loss due to shattering. Furthermore, immature seeds are similar in
size, but weighed only half that of mature seeds due to incomplete embryo development
(Figures 3F, 3G and 3H). Without shattering, immature seeds would all fully mature, increasing
yield by up to 15%. Thus, further domestication of non-shattering cultivars could greatly
improve yield via a multifold mechanism, preventing harvesting loss and permitting all seeds
to reach maturity.

Seed traits that expand market options will also be valuable. For example, there has been little
research investigating the differences in hemp seed flavors. Taste tests in our lab identified
varieties with weak to strong flavors of hazelnut (cv. ‘Georgina’) or walnut (cv. ‘CRS-1’), as well
as one (cv. ‘Victoria’) with a mild flavor. More work has been done on altering seed oil
composition [32], although hemp seeds already possess valuable v-3 characteristics [7].
Hemp seed oil is �85% polyunsaturated fatty acids with 60% and 24% being v-6 and v-3
fats, respectively [7]. Further increases in v-3 fatty acid levels might foster the favorability of
hemp seed for human and animal dietary needs. Overall, different tastes and oil compositions
would expand the use of hemp seed in human and animal food products.

Production and Quality of Hemp Fiber
Hemp stalks contain two key fractions, the bast fiber and hurd. To separate bast fibers from the
inner hurd, the stalks must undergo a process called ‘retting’. Retting relies on the diverse
microbial populations in the environment to break down pectin and other components that bind
the fibers to the hurd tissue [33,34]. Crop maturity at harvest, retting method, environmental
conditions, as well as the nature of the bacterial and fungal populations, are factors that impact
retting [35–37]. Harvesting the crop at initiation of flowering improves fiber yield, strength, and
quality [33,38,39]. Continuing studies on the biodiversity, relationships, and functions of
microbial communities will improve our understanding of the retting process [40–43] and
augment the consistency of obtaining high quality products. Retting methods, primarily
dew- and water-retting, pose drawbacks, including inconsistent fiber strength and quality,
and polluted wastewater, respectively [34]. Development of varieties having bast fiber with
higher cellulose content as well as lower pectin and lignin cross-linkages may decrease the
retting requirements, thus improving fiber strength and quality while saving time and labor.

Hemp is a rapidly growing plant that tolerates high planting density [30,44–47], and may
therefore be suitable as a viable biofuel crop. The total biomass of hemp per hectare is similar to
other energy crops, including giant miscanthus (Miscanthus � giganteus), poplar (Populus sp.),
switchgrass (Panicum virgatum), and willow (Salix sp.) (Figure 3I). However, hemp may provide
a key advantage; its bast fibers contain 73–77% cellulose, 7–9% hemicelluloses, and 2–6%
lignin, compared to 48%, 21–25%, and 17–19%, respectively, in the hurd [48–50]. Thus, the

development are similar in size. (H) 1000-seed weights of immature, transitional, and mature seeds of the variety Big Al Kentucky Plume. *, p-values of t-test <0.001. (I)
Fiber yield and composition of hemp compared to other proposed biomass crops. Also see [47–58]. yWeight of dry matter (DM) includes moisture content at time of
harvest. zBiomass is for fiber and hurd combined. Typically, stem material is 20–30% fiber.
For a Figure360 author presentation of Figure 3, see the figure online at http://dx.doi.org/10.1016/j.tplants.2017.08.004#mmc1
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concentration of digestible cellulose and hemicellulose is higher in hemp fiber than in other
energy crops (Figure 3I) [51–58]. In contrast, the cellulose and hemicellulose contents of hemp
hurd are comparable to that in stems of giant miscanthus, poplar, switch grass, and willow.
Importantly, 20–30% of the stem biomass in hemp consists of high cellulose fiber; thus, the
ratio of digestible sugars to lignin is higher in hemp than in other similar-yielding biofuel crops.
These traits make hemp an above-average energy crop for some biochemical-based biofuel
production and greenhouse gas abatement applications [59,60]. Establishment of hemp as a
biofuel crop would be beneficial to the industry by increasing demand for hurd and fiber.

Phytocannabinoids and Other Metabolites
Hemp produces a diverse array of nonintoxicating phytocannabinoids, terpenes, and phenolic
compounds with potential pharmaceutical values as drugs or supplements [3,61,62]. The
biosynthesis of terpenophenolic phytocannabinoids in Cannabis is well understood, albeit,
several early steps in the pathway remain to be characterized [63,64]. Understanding the
regulation of phytocannabinoid biosynthesis is vital to development of varieties that are
optimized for production of desirable metabolites while maintaining low levels of THC. Little
is known about the endogenous and environmental regulation of phytocannabinoids. Abscisic
acid, ethylene, and gibberellic acid modulate the production of phytocannabinoids [65–67].
However; at present, factors controlling the epigenetic, transcriptional, and post-transcriptional
regulation of phytocannabinoid biosynthesis remain uncharacterized.

Hemp trichomes are classified into bulbous, capitate-sessile, capitate-stalked, and nongland-
ular types [13,68]. Phytocannabinoid production and accumulation are localized to the capi-
tate-stalked glandular trichomes [13,69]. Increased production of phytocannabinoids in
marijuana is, at least partially, due to the presence of larger glandular trichomes [70]. Elucidating
hormonal and other signaling cascades that regulate the development and size of specific types
of hemp trichomes will also be important in maximizing phytocannabinoid production in hemp.

The effects of agronomic practices and nutrients on phytocannabinoid production also need to
be investigated. Anecdotal claims from marijuana growers suggest that pollination of Cannabis
flowers lowers phytocannabinoid yield [71], consistent with decreases in essential oil levels [72].
Further studies to evaluate this concern are essential to maximize the production of CBD and
other desired phytocannabinoids.

Hemp Breeding Limitations
Germplasm collections are a fundamental source of genetic and phenotypic diversity for plant
breeding and research. Currently, access to and utility of accession collections remain limited
due to the lack of a core Cannabis germplasm collection. As THC levels may limit germplasm
utility in many regions, accessions with <0.3% THC should be used to form a hemp-only
germplasm core collection. Establishment of a core collection encompassing the range of
hemp genetic and phenotypic diversity would increase the utility of germplasm resources and
be invaluable for breeding and genetic analyses. Comparisons of accessions present in existing
collections [73] are needed to help establish such a core collection. Similarly, centralized and
curated collections of hemp mutants are not available. The development of mutant germplasm
collections will provide a rich source of genetic variation for studying gene function and
improved traits for breeding.

Hemp is an anemophilous crop in which the pollen can travel long distances. Studies in
southern Spain identified Cannabis pollen in atmospheric samples which arrived from the
extensive marijuana fields in Morocco over 100 km away [74,75]. Long-distance pollen dis-
persal causes difficulty for breeding programs which require spatial or mechanical methods for
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germplasm isolation. Cost-effective and efficient methods are needed that will allow breeders
to develop multiple new hemp varieties simultaneously in a limited growing area.

Hemp Sex Expression
Hemp is a dioecious plant with female and male hemp plants being valued differently
depending upon the products. For phytocannabinoid production, a pure female population
is most desirable. As a seed crop, a female predominant population, with a limited number of
male plants for pollination, or a monoecious variety, is most desirable to maximize yield. For
fiber production, males and females are both utilized, although males are preferred [15,18].
Therefore, a major goal of hemp growers and breeders is to quickly and easily determine or
manipulate the sex of plants, preferably prior to planting.

Sex in hemp is genetically determined by a pair of heteromorphic sex chromosomes; females
have an XX chromosome pair whereas males have XY. However, environmental conditions (e.
g., photoperiod and temperature) and phytohormones can affect sexual phenotype [15,76–79],
suggesting other overriding regulatory mechanisms are involved in determining sex in hemp.
Monoecious cultivars possess XX sex chromosomes [80], but they produce flower clusters with
male flowers at the bottom and females towards the top of each inflorescence [14]. Notably,
male flowers occur as the plant transitions from rapid growth to flowering. Stem elongation and
fiber development are associated with elevated levels of gibberellins [81]. In hemp, gibberellins
are associated with plant masculinity and greater fiber number, length, and diameter
[77,82,83]. Thus, a concentration gradient of gibberellin and other hormones may dictate
inflorescence sex.

Genetic markers have been developed to differentiate sex in hemp plants [84–86]; however,
such a method is not viable for commercial plantings. Recently, quantitative trait loci (QTLs)
were identified for sex expression in dioecious and monoecious hemp [87,88]. Cloning of the
responsible genes from these QTLs will greatly improve our understanding of genetic control of
sex in hemp. Identification of genes present on the sex chromosomes, especially outside the
pseudoautosomal recombinant region [86], will be critical for understanding sex-linked traits.
Continued development of molecular markers is needed to improve QTL mapping resolution
and for marker-assisted selection of desirable traits in breeding programs.

Hemp Molecular Biology
The organic food market is a key player in promoting hemp food and CBD products. As such,
widespread public acceptance of transgenic hemp is unlikely. It also remains unknown whether
the public will welcome hemp modified using gene-editing techniques, which lack nonplant or
plant-pest DNA sequences [89,90]. Thus, many improvements to hemp will probably be
accomplished using traditional breeding methods. However; for research purposes, the
development of applicable molecular biology techniques is imperative to further study the
molecular mechanisms that determine important traits in hemp.

Publication of a draft-quality Cannabis genome and other genetic studies have shed some light
into the difference between marijuana and hemp. The Cannabis draft genomeAppendix Aiii has
been compared with draft genome sequences of its closest relative common hop (Humulus
lupulus; Cannabaceae) as well as more distant species including breadnut (Artocarpus
camansi; Moraceae) and mulberry (Morus notabilis; Moraceae) [91–94]. Recently, low cover-
age (4–6X) whole-genome sequencing and genotyping-by-sequencing have been performed
on 54 (11 hemp and 43 marijuana) and 325 (55 hemp and 213 marijuana) distinct cultivars,
respectively [94–97]. However; with only raw data files available, the lack of websites with easy-
to-use graphical user interfaces for data analyses limits the utility of these draft-level genome
sequences. Transcriptome assemblies are also available (Medicinal Plants Genomes Resource
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and PhytoMetaSyn databases), but are primarily targeted toward understanding phytocanna-
binoid metabolism. Comparison of marijuana and hemp indicates that the expression of
phytocannabinoid biosynthetic genes is higher in marijuana, suggesting that transcriptional
regulation of the pathway may be one factor controlling cannabinoid production [94]. Recently,
a transcriptome was generated for hemp bast fibers at different growth stages [98], providing
insight into fiber development. The evolution of genetic differences between seed/oil, fiber, and
dual-purpose cultivars is less studied. In-depth genetic comparisons of diverse seed/oil, fiber,
and phytocannabinoid cultivars are needed to identify the specific genes and mechanisms
controlling important yield traits. To attain the full benefit of these and other studies across
species, the genome sequence needs to be improved beyond draft quality, and websites with
user-friendly graphical user interfaces must be developed.

To characterize hemp gene functions, methods to manipulate gene expression (e.g., via gene
knockout or overexpression) are urgently needed. Protocols for developing transformed hairy
roots and cell suspension cultures are available [99,100], but the utility of both methods is
limited since neither tissue produces seed, fiber, or phytocannabinoids. A whole-plant regen-
eration protocol has been developed for marijuana [101], suggesting that the development of
transgenic hemp plants is feasible. Virus-induced gene silencing methods would also prove
useful for studying gene function, but thus far have been unsuccessful [64]. Alternatively,
isolation of mutants from chemical mutagenesis screens is possible [32], but extremely difficult
due to the anemophilous and dioecious nature of hemp. Currently, exploitation of the natural
genetic diversity present within hemp may be the most straightforward way to study gene
functions.

Concluding Remarks
Hemp is an unusually diverse crop that can contribute to the seed/oil, fiber, and medicinal
product markets. The global market for products derived from hemp is anticipated to double by
2020, largely due to growth in the USA market. The areas of developing seed shattering
resistance; increasing seed size; selecting for grain flavors; understanding the microbial
populations involved in retting; characterizing and enhancing the properties of hemp useful
for biofuel applications; elucidating environmental, hormone, and nutritional impacts on pro-
duction and accumulation of CBD and other valuable metabolites; establishment of a core
hemp germplasm collection; identification of methods to specifically manipulate hemp sex
expression as desired; and developing a high quality reference genome with user-friendly
interface need further research to improve crop yield to maintain long-term sustainable
production and economic viability. Many needed crop improvements can be achieved through
traditional plant breeding. However, studies to elucidate the underlying biology of hemp seed,
fiber, and metabolite production are lacking (see Outstanding Questions). Immediate estab-
lishment of molecular biology techniques is essential to hemp research. Improvements in hemp
genomics will advance our understanding of key agronomic traits. While many scientific
advances are needed to revitalize hemp production, we have illustrated target areas which
we have identified as top research priorities.
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Outstanding Questions
The genetics of hemp grain yield traits
remains poorly understood. What
mechanisms control yield and quality
traits (shattering resistance, sex deter-
mination, flavor, and oil composition)?
To what extent do shattering, imma-
ture seeds, and nonoptimal sex impact
grain yield? Answers to these ques-
tions are needed to maximize grain
production. Both traditional and
molecular genetic studies will be
instrumental to better understand
these processes.

Fiber production is hindered by incon-
sistent product quality, primarily due to
problems with the retting process.
How can consistent high-quality ret-
ting be attained? While recent efforts
have started identifying microorgan-
isms involved with retting, more work
is needed to fully understand this key
process. Identification of microbe spe-
cies responsible will help guide devel-
opment of methods and products,
which should improve retting consis-
tency and, in turn, maximize fiber yield
and quality.

While the phytocannabinoid biosyn-
thetic pathway is mostly known, the
regulation and other mechanisms con-
trolling metabolite quantity remain
ambiguous. Specifically, phytocanna-
binoid yield is known to vary consider-
ably between hemp cultivars and
within different environments. Despite
this, little is known about environmen-
tal impacts on hemp metabolism. How
does the environment influence phyto-
cannabinoid levels? What role do
hemp specialized metabolites contrib-
ute to stress tolerance? Studies are
needed to identify regulatory factors
controlling phytocannabinoid produc-
tion, particularly those connected with
responses to stress.

Progress has been made to under-
stand the differences between hemp
and marijuana. However, much less
remains known about the genetic dif-
ferences between fiber and seed/oil
hemp cultivars. What genetic changes
separate fiber, seed/oil, or dual pur-
pose hemp cultivars? Identification of
such changes will aid breeding efforts
selecting hemp for specific purposes.
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Resources
iclinicaltrials.gov
iiomafra.gov.on.ca/english/crops/facts/00-067.htm
iiihttp://genome.ccbr.utoronto.ca/cgi-bin/hgGateway
ivvotehemp.com/legislation.html
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