-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by University of Groningen

w university of % e
groningen ?'::f/, i University Medical Center Groningen

University of Groningen

Chronological objects in demographic research
Willekens, F.J.C.

Published in:
Demographic Research

DOI:
10.4054/DemRes.2013.28.23

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Willekens, F. J. C. (2013). Chronological objects in demographic research. Demographic Research, 28(23),
649-680. https://doi.org/10.4054/DemRes.2013.28.23

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 27-12-2020

https://core.ac.uk/display/232520541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4054/DemRes.2013.28.23
https://www.rug.nl/research/portal/en/publications/chronological-objects-in-demographic-research(5be714e8-19b6-4230-9af8-6e77508a8c2d).html
https://doi.org/10.4054/DemRes.2013.28.23

DEMOGRAPHIC RESEARCH

A peer-reviewed, open-access journal of population sciences

DEMOGRAPHIC RESEARCH

VOLUME 28, ARTICLE 23, PAGES 649-680

PUBLISHED 27 MARCH 2013
http://www.demographic-research.org/Volumes/Vol28/23/
DOI: 10.4054/DemRes.2013.28.23

Research Material

Chronological objects in demographic research

Frans Willekens

© 2013 Frans Willekens.

This open-access work is published under the terms of the Creative Commons
Attribution NonCommercial License 2.0 Germany, which permits use,
reproduction & distribution in any medium for non-commercial purposes,
provided the original author(s) and source are given credit.

See http:// creativecommons.org/licenses/by-nc/2.0/de/

Table of Contents

1 Introduction
2 Chronological objects: overview
3 Objects of class “Date” or class POSIX
4 Date as elapsed time since reference point in time
5 Date as elapsed time since reference event
6 Ilustrative applications
7 Conclusion
8 Acknowledgements
References

Annex

650

653

658

662

665

667

671

672

673

678

Demographic Research: Volume 28 Article 23
Research Material

Chronological objects in demographic research

Frans Willekens'

Abstract

BACKGROUND

Calendar time, age and duration are chronological objects. They represent an instant or
a time period. Age and duration are usually expressed in units with varying lengths. The
number of days in a month or a year depends on the position on the calendar. The units
are also not homogeneous and the structure influences measurement. One solution,
common in demography, is to use units that are large enough for the results not to be
seriously affected by differences in length and structure. Another approach is to take the
idiosyncrasy of calendars into account and to work directly with calendar dates. The
technology that enables logical and arithmetic operations on dates is available.

OBJECTIVE
To illustrate logical and arithmetic operations on dates and conversions between time
measurements.

METHOD

Software packages include utilities to process dates. | use existing and a few new
utilities in R to illustrate operations on dates and conversions between calendar dates
and elapsed time since a reference moment or a reference event. Three demographic
applications are presented. The first is the impact of preferences for dates and days on
demographic indicators. The second is event history analysis with time-varying
covariates. The third is microsimulation of life histories in continuous time.

CONCLUSION

The technology exists to perform operations directly on dates, enabling more precise
calculations of duration and elapsed time in demographic analysis. It eliminates the
need for (a) approximations and (b) transformations of dates, such as Century Month
Code, that are convenient for computing durations but are a barrier to interpretation.
Operations on dates, such as the computation of age, should consider time units of
varying length.

! Netherlands Interdisciplinary Demographic Institute. E-mail: willekens@nidi.nl.

http://www.demographic-research.org 649

Willekens: Chronological objects in demographic research

1. Introduction

A person born on July 12" 1977 marries on July 12" 2007. What is the age at marriage?
This is a simple question for humans but a complicated one for computers. Software
packages do not always produce correct results. The common method is to divide the
age in days by the average length of a year. The age at marriage is 10957 days, which
translates in age 30 in completed years (exact age of 30.02 years) if the length of a year
is taken as 365 days and age 29 (exact age of 29.9986 years) if the more precise
approximation of 365.25 days is used. A person born one year later on July 12" 1978
marrying on July 12™ 2008 marries at an age of 10958 days, which results in 30 years in
both cases. This approach to calculating age, although approximate, is recommended by
major texts on survival analysis (e.g. Kalbfleisch and Prentice 2002; Therneau and
Grambsch 2000, p. 71). SPSS (IBM 2011, p. 153), STATA (Stata 2009, p. 338) and
SAS (SAS Institute, 2008, p. 4663) determine age in days and calculate the age in years
by dividing the number of days by 365 (SAS) and 365.25 (SPSS, Stata). The need for
an approximation is a consequence of peculiarities of our calendar: years (and months)
vary in length. The relevance of this problem from a demographic perspective is
twofold. First, demography has historically been particularly concerned about age
allocation and demands that, technology permitting, age be computed precisely.
Second, the relation between period (current date), cohort (date of birth) and age, which
is widely used in demography, is not valid unless age is measured precisely and not
approximately.

The calendar has other consequences. A month has a varying number of days of
the week. Most months have 4 Saturdays but some have 5 Saturdays. The number of
weekends varies too. If death, childbirth, marriage or another demographic event is
concentrated on a particular day of the week, then the event is more likely in months
with five occurrences of that day than in months with four occurrences. Examples of
concentration of events on particular days are widespread. Saturday is a preferred day
for weddings (e.g. Haskey 1996). Births are less likely on weekends (e.g. Goodman et
al. 2005; Lerchl and Reinhard 2008). Delivering a child outside the normal working
week is associated with increased risk of perinatal and neonatal death (e.g. Hong et al.
2006; Pasupathy et al. 2010). The neonatal mortality rate is higher on weekends
compared to weekdays (e.g. Salihu et al. 2012). Sudden Infant Death Syndrome (SIDS)
is more common on weekends (e.g. Mooney et al. 2004). Patients admitted to hospital
on a Saturday or Sunday are more likely to die than patients admitted mid-week (e.g.
Freemantle et al. 2012; Mohammed et al. 2012). In some countries, intoxication-related
deaths peak during weekends and around festival days when alcohol is widely
consumed in excess (e.g. Méakeld et al. 2005). In the USA, mortality from natural causes
spikes around Christmas and New Year (e.g. Phillips et al. 2010). These are some

650 http://www.demographic-research.org

Demographic Research: Volume 28 Article 23

examples from the literature that demonstrate the role of the calendar in the timing of
demographic events.

Calendar time, age, period, interval and duration are key concepts in demography.
They are chronological objects. Measurement of these objects and arithmetic and
logical operations are common tasks of a demographer. Age and durations are often
expressed in years and months, and sometimes in days. Years and months are time units
that vary in length. The common approach is to replace the unit of varying length with a
unit of fixed length. Common assumptions of years of fixed length (365 days
disregarding leap years, or 365.25 days or 365.242199 days considering leap years) and
months of fixed length of 30.437 days are usually good enough approximations. An
accurate measurement of age on a particular date from the date of birth is not possible
without a calendar. To obtain estimates of demographic rates by month, some authors
control for different lengths of months, e.g. Doblhammer and Vaupel (2001) in a study
of the effect of month of birth on the lifespan and Sobotka et al. (2005) in a study of
fertility levels. The peculiarities of our calendar are particularly significant in
simulations of life histories in continuous time.

Units of time used in demography not only vary in length, they are also not
homogenous. Their structure impacts measurement. Demographic events are seldom
uniformly distributed during the week, month or year. The effect of disregarding
preferences for particular years, months or days of the week may distort demographic
findings. Many Chinese couples chose to marry or have a child during the year of the
Dragon. In the West, Saturday is a preferred day for weddings; it is Friday in other parts
of the world. If such preferences exist, the number of Saturdays (and Fridays) in a
month may have an effect on the monthly marriage rate. Although the effect is likely to
be small, it may be significant. For instance, if 10 percent of the population at risk
marries within a year and 80 percent of marriages take place on a Saturday, then the
monthly marriage rate is 0.0101 if the month has 5 Saturdays and 0.0087 if the month
has 4 Saturdays. Calot (1981), Calot and Sardon (2004), Wilson and Smallwood (2007)
and others draw attention to that problem and control monthly marriage rates for day-
of-the-week effect. Sobotka et al. (2005) correct monthly birth data for seasonal and
calendar factors. Day-of-the-week effects reveal important heterogeneity in
demographic processes that remains hidden in demographic studies that use large time
units. In the West, it is not uncommon for between 60 and 80 percent of marriages to
take place on a Saturday. In the USA between 2005 and 2010, 56% fewer children were
born on a Sunday than on a Tuesday or another normal working day®. Some effects
raise public concern. Using data on 14.2 million patients who were admitted to NHS
hospitals in England between April 2009 and March 2010, Freemantle et al. (2012)

2 Calculated from data in National Vital Statistics Reports 2005-2010,US National Center for Health
Statistics, Hyattsville, MD.

http://www.demographic-research.org 651

Willekens: Chronological objects in demographic research

show that those admitted on a Sunday have a 16% higher risk of dying within a month
than those admitted on a Wednesday. Those who become inpatients on a Saturday are
11% more likely not to survive. The results received wide media attention in the UK
and increased the awareness of day-of-the-week effects (see e.g. NHS-London 2011).
The measurement of effects of day-of-the-week, public holidays or other peculiarities of
our calendar, require operations on calendar dates. The use of chronological objects in
data analysis is not new (see e.g. James and Pregibon 1993). What is new is that new
technology enables accurate computations on calendar dates. Using this technology to
compute ages and durations more precisely is the subject of this paper.

Dates may be represented as calendar dates (year, month and day) or as number of
days or months since a reference point in time or a reference event. Several major
surveys such as the Demographic and Health Survey (DHS), the US Health and
Retirement Survey (HRS), and the Framingham Heart Study (FHS) do not use the
Gregorian calendar, but represent dates as times elapsed since a reference point. If the
elapsed time is measured in days the date is known as Julian date. The DHS and the US
National Survey on Family Growth present dates in Century Month Code (CMC),
which counts the number of months since 1% January 1900. The HRS and FHS use SAS
dates, which count the number of days since 1% January 1960. Scientists often use
decimal date, in particular decimal year, which represents a date as the year and fraction
of a year. For instance, exposure time in person years and the life expectancy are
generally expressed in decimal years. The different representations of dates call for
conversion methods. Several conversion methods are addressed in this paper.

To compute durations, R is used. R is an open-source software language for
statistical modeling and analysis®. It is a collection of functions that perform specific
tasks. Basic functions are included in Base R maintained by a Core Team of experts.
Additional functions in packages are contributed by researchers around the world and
are included in the Comprehensive R Archive Network (CRAN). The date functions
presented in this paper are from Base R and contributed packages, in particular
lubridate (Grolemund and Wickham 2011, 2012) and Biograph (Willekens 2012).

The paper consists of seven sections. Section 2 is an introduction to chronological
objects. The different types or classes of chronological objects are presented. Section 3
covers one particular class of object more extensively; the object of class “Date”, which
represents the date in the Gregorian calendar. Dates as elapsed times (days, months or
years) since a reference date are discussed in Section 4, where Julian dates and CMCs
are covered. Dates as elapsed times since a reference event are covered in Section 5.
Age belongs to this category. Section 6 includes three illustrative applications of date
arithmetic in demographic analysis. The first application requires the computation of
the number of Saturdays and Sundays in a month. The second is episode splitting, a

% www.r-project.org.

652 http://www.demographic-research.org

Demographic Research: Volume 28 Article 23

common problem in event history analysis with time-varying covariates. The third is
the microsimulation of life histories. Section 7 concludes the paper.

2. Chronological objects: overview

A calendar is a system of keeping time. The calendar in use in most of the Western
world is the Gregorian calendar, introduced in 1582 by Pope Gregory XIIlI. It succeeded
the Julian calendar, introduced in 46 BC by Julian Caesar. In both calendars a regular
year has 365 days divided into 12 months. A leap day is added to February every fourth
year. The Julian year is, on average, 365.25 days long. The calendar gave every fourth
year 366 days. Reform was required because the Julian calendar drifted behind the solar
calendar, based on the Earth's orbital period. At the time of reform the difference was
about a week. The Gregorian calendar provides that every fourth year has 366 days,
except for years divisible by 100 but not 400. In leap years, it has an extra day in
February. The year 2000 is a leap year, but 2100 is not. The new calendar was
introduced on October 15, 1582. In the Chinese, the Hindu, and the Hebrew calendars,
which are lunisolar calendars, a leap year has an extra month.

On computers and often in science, a date is represented as the time elapsed since a
reference point in time to facilitate arithmetic operations on dates. Character variables,
generally used to represent dates, are difficult to work with. Time elapsed is a numeric
variable and that class of variables enables arithmetic operations. Julian dates and
Century Month Codes are examples of dates expressed as time elapsed. The Julian date
(JD) system of time measurement presents the time in days and fractions of a day since
January 1, 4713 BC Greenwich noon in the Julian calendar. It is used in astronomy.
Today, the term Julian date or Julian Day Number is used to denote the interval of time
in days since a reference date. The reference date used as origin of time measurement is
known as (reference) epoch. Unix time, or POSIX ("Portable Operating System
Interface") time is part of the POSIX standard. POSIX is an open operating system
interface specified by the Institute of Electrical and Electronics Engineers (IEEE) to
assure code portability between operating systems. POSIX time defines time as the
number of seconds elapsed since midnight Coordinated Universal Time (UTC) of
Thursday, January 1, 1970. That reference date and time is known as Unix epoch and
the POSIX standard is a formula for calculating seconds since the epoch. Most software
packages use the Julian date system to store dates and time internally on the computer,
but the epoch differs. R uses Unix time. SAS, S-plus and STATA use a different
reference: January 1, 1960. An event that occurs on January 30, 1960 occurs at 29 days
(1+29). An event that occurs on December 3, 1959 occurs at day —29 (December 31 is
day -1 and December 3 is day —29). In Excel, dates are stored as days since January 1,

http://www.demographic-research.org 653

Willekens: Chronological objects in demographic research

1900. In SPSS dates and times are stored as numbers of seconds from midnight,
October 14, 1582 (the beginning of the Gregorian calendar). For example, in R, March
7, 2002 is represented as 11753. In SAS or Stata, it is 15406, while in SPSS midnight of
March 7, 2002 is 13 234 835 972. Dates that occur before the reference date are
negative numbers. Julian dates may be used to convert SPSS dates into R, SAS or
STATA dates. The number of days since October 14, 1582 is the number of seconds
divided by 86400, which is the number of seconds in a day.

Some observational studies also use the Julian date system and present a date as
time elapsed since a reference date. For instance, the Framingham Heart Study (FHS),
which is a longitudinal study that started in 1948-50 and is widely used in
epidemiology, and the US Health and Retirement Study (HRS) use SAS dates (days
since January 1, 1960). In the HRS, if the day of an event (e.g. birth) or the day of
censoring is not known but the month is recorded, the 15" is the imputed day. If the
date of birth is not known but the year is given, 1 July is imputed (see St.Clair et al.
2011, p. 107). Many surveys do not record the day of an event but the month and report
the date as the number of months elapsed since a reference date. The Century Month
Code is such a form of date reporting. The date is reported as the number of months
since 1% January 1900, with January 1900 defined as month 1. The CMC coding
scheme is designed to facilitate the computation of elapsed time. Dates in CMC are not
directly interpretable. As a consequence, the identification of anomalies and outliers is
not straightforward.

Packages in the Comprehensive R Library Network (CRAN) that are particularly
useful in demographic research generally require dates to be numeric, i.e. years, months
or days since an origin or epoch. The packages include survival for survival analysis,
mstate and msm for multistate survival analysis and Epi for epidemiological analysis,
including drawing Lexis diagrams and age-period-cohort analysis. Date variables that
are not numeric “will cause some of the utilities to crash” (Epi manual). The function
cal .yr of the Epi package converts a Date object into decimal year. It first computes
the Unix date (Julian date with origin 1 January 1970) and obtains the number of years
by dividing the number of days by 365.25. The author, Carstensen (2012)
acknowledges that inaccuracies may arise and gives as an illustration 1 Jan 2000. The
cal _yr function converts that date into 1999.999. Such an inaccuracy can be avoided
by using computations that account for varying lengths of months and years.

In R calendar dates are objects of a particular class. The concept of class is central
to object-oriented programming. Class is an attribute of an object. Objects in a class are
recognized because they share characteristics. Classes direct and streamline operations
on objects. They invoke the appropriate method when operations are performed on
objects and functions are called to invoke specific operations. If a generic function is
applied to an object, the class of the object determines which method is used. For

654 http://www.demographic-research.org

Demographic Research: Volume 28 Article 23

instance, the generic plot function does different things depending on the class of the
object to be plotted. When a generic function is called, an internal dispatching method
finds the class of the object and invokes the appropriate method. Classes of objects
commonly encountered in R include “numeric”, “character”, “logical”, “list”,
“function” and “Date”. In addition, there are many classes defined in packages and
user-defined classes. If a date is given as a character string, the object is of class
“character”. To differentiate it from other character objects, the subclass “date” is
given. Dates are usually entered on the computer as character strings. To perform
operations on dates, objects of class “character” need to be converted into objects of
class “date”. R has several functions that convert character strings into date objects. The
as.Date and POSIXIt/POSIXct functions are the most common (see below). The
POSIX class is particularly useful when timezone manipulation is important. To
facilitate arithmetic and logical operations on dates, the computer converts dates into
numeric objects (days or seconds since a reference date).

Base R has a number of functions to process dates. For instance, the as.Date
function converts a date from a character string into a Date object. 1SOdate converts
three numeric values (year, month and day) into a Date object. The function
weekdays identifies which day of the week a given calendar date is. In addition, there
are several contributed packages that may be used to process dates. The package chron,
developed by James in S and ported to R by Hornik, handles chronological objects
(James and Hornik 2011). It converts between Julian and calendar dates, finds
weekdays and holidays, extracts the year, month and day of a date, etc. The package
date developed by Therneau in S and ported to R by Lumley, Halvorsen and Hornik,
has functions for handling dates. It converts calendar dates into Julian dates and vice
versa (Therneau et al. 2012). The default reference date is 1% January 1960. The Julian
date for June 23, 1965 is 2000 in the date package and -1653 in Base R. Several
functions of the date package were included in earlier versions of the survival package.
The survival package, developed by Therneau and ported to R by Lumley, has a
function (ratetableDate) that converts an object of class “Date” into number of
days since 1% January 1960 (Therneau and Lumley 2012). The function is used in the
function pyears of the survival package, which computes the duration of follow-up
by a cohort of subjects. Since the time unit is not variable, the authors recommend using
day as the unit of time and converting days into years by dividing the number of days
by 365.25. The ConvCalendar package, developed by Gray and Lumley (2010),
converts between the Date class and d/m/y for several calendars, including Persian,
Islamic, and Hebrew. Wuertz et al. (2012) developed the package timeDate for financial
engineering and computational finance, with special attention to special days, holidays
and Daylight Saving Time (see also Chalabi et al. 2011). Grolemund and Wickham
(2011, 2012) published lubridate.

http://www.demographic-research.org 655

Willekens: Chronological objects in demographic research

The package lubridate deals with a critical issue in operations on dates; namely,
the variable length of the time units month and year. Grolemund and Wickham (2011)
distinguish between units of time of constant length (duration is always the same) and
relative units of time; their length varies and is relative to when they occur. A year may
have 365 or 366 days depending on when it occurs relative to other years. Only seconds
have a consistent length. Grolemund and Wickham introduce four time-related object
classes based on the Java language Joda-Time project (Colebourne and O'Neill 2010).
Joda-Time introduces a conceptual model of the different ways Java handles timespans
and changes in date and time. The four time-related objects are relevant for
demographic analysis. They are: instant, interval, duration and period. An instant is a
specific moment in time, such as midnight, January 1, 2013. An instant is defined as the
number of seconds from midnight, January 1, 1970 (Joda-Time uses milliseconds).
Lubridate does not create a new class of instant objects. Instead, it recognizes any date-
time object that refers to a moment of time as an instant. It accepts objects of class
POSIXct, POSIXIt and “Date” to define instants. For instance, the date object created
using z=as.Date('2010-01-30") is an instant object. To test it, use
as. instant(z). Intervals, durations and periods are ways of recording timespans.
An interval is the timespan between two instants. An interval has a length and a
position in the calendar. The length of an interval can be determined unambiguously
because we know when it occurs. An object of class interval is created by specifying
two instants, e.g.

library (lubridate)
span <- new_interval(as.Date(''2009-01-30"),
as.Date(''2012-02-25")).

Intervals are implemented in lubridate (and Joda-Time) as half-open, which is to
say that the start instant is inclusive but the end instant is exclusive. For age to be
measured correctly, age must be an object of class interval. Only in that case does the
age account for the varying lengths of months and years.

656 http://www.demographic-research.org

Demographic Research: Volume 28 Article 23

A period represents the length of an interval. It tracks changes in clock time
between two instants. Periods are measured in common time units: years, months, days,
hours, minutes, and seconds. With the exception of seconds, none of these units have a
fixed length. Leap years and Daylight Saving Time can expand or contract a unit of
time depending on when it occurs. For this reason, periods do not have a fixed length
unless they are paired with a start date (see below). The following code changes an
object of class interval to an object of class period:

p=as.period(span,unit="year').

The length of the period is measured in year, month, day, hours, minutes and
seconds. Itis "'3y Om 26d OH OM OS'. The object p of class period has 6 slots. A
slot extracts an object from a class. The year is extracted by p@year, the month by
p@month and the day by p@day. The lubridate functions seconds, days, weeks,
months and years are shortcuts to create period objects. These units are not of fixed
length because units expand or contract in length to accommodate conventions such as
leap years, leap seconds, and Daylight Saving Time. Consider a person born on July
12, 1977 who marries at exactly age 30. The date of marriage is the sum of the age at
birth, which is an instant (start date), and age, specified as an object of class period:

as.Date(''1977-07-12"") + years(30)

which is July 12, 2007. The period object years(30) is "30y Om 0d OH OM 0S". The
number of days in the 30 years is not fixed but depends on the date of birth.

Duration measures the exact number of seconds in an interval. The duration of the
period object 30 years is

dur <- as.duration (years (30))

The object dur is a numeric object and its value is 946080000 seconds. The command
duration (1,'"days') gives the number of seconds in a normal day (86400) and
duration (1,"years')gives the number of seconds in a year that is not a leap
year. The command duration (span) gives 96854400s (seconds). It measures the
exact passage of time in seconds. The number of seconds does not always align with
measurements made in larger units of time such as hours, months and years. This is
because the exact length of larger time units are affected by conventions such as leap
years and Daylight Saving Time. Seconds are converted into minutes, hours and days
using the most common lengths in seconds: Minutes = 60 seconds, hours = 3600
seconds, days = 86400 seconds. The duration of the interval span in days is

http://www.demographic-research.org 657

Willekens: Chronological objects in demographic research

duration(span)/duration(l,"days"), which yields 1121 days. Units larger
than days are not used in lubridate due to their variability. Values are given with the
warning that they are only estimates. The value of dur in seconds is exact. The value in
years is approximate (~29.98 years).

Base R measures duration with the “difftime” class. The code

span <- as.Date(''2012-02-25") - as.Date(''2009-01-30'"))

produces an object of class “difftime” representing the number of days between two
instants (1121 days).

To determine the exact age of a person on a given date in years (decimal years),
the date of birth must be provided. In other words, an object of class interval must be
given. In addition, the Gregorian calendar between the two instants must be considered.
The length of the timespan between date of birth and the given date is not sufficient to
determine the exact age and, as the example at the beginning of this paper shows, to
correctly determine the age in completed years. The length of the timespan in days, in
combination with the date of birth, is sufficient to determine the exact age. Consider a
person born on July 12, 1977 who marries on July 12, 2007. The correct age at
marriage is

T <- new_interval (as.Date (*'1977-07-12"),
as.Date(''2007-07-12""))
z <- as.period (F).

The result is "30y Om 0d OH OM 0S". The age in days is age-d <- duration
(f)/duration (1,"days"'), which is 10957 days. The number of years,
assuming years of 365.25 days, is age .d/365 .25 or 29.99863 years.

3. Objects of class “Date” or class POSIX

The as.Date function of Base R converts a character vector of calendar dates into an
object of class “Date”. For instance, z <- as.Date (*'2010-08-20") and
as.Date(paste(2010, 8, 20, sep=""-"")) produce an object of class
Date. The function as.numeric(z) gives the Julian date. For example,
as.numeric(as.Date (*'2010-08-20")) gives 14841, which is the number of
days since January 1, 1970. To convert the numeric object into a Date object, use
as.Date(14841,0rigin="1970-01-01"). The epoch or origin must be
provided.

658 http://www.demographic-research.org

Demographic Research: Volume 28 Article 23

R stores dates as Unix dates. It communicates the dates with the user by giving the
year, month and day. The default format is a four digit year, followed by a month, then
a day, separated by either dashes or slashes (e.g. YYYY-MM-DD where YYYY is the
year, MM is the month and DD is the day). The default format follows the rules of the
ISO 8601 international standard which expresses a day as "2001-02-03". Dates do not
need to be in the standard format. The as.Date function allows a variety of input
formats. For example, as.Date("20/08/2010" , format="%d/%m/%Y ") reads
the date as a character string with day, month and four-digit year. The outcome is the
date in the standard format: 2010-08-20. The same result is obtained using a different
format: as.Date('August 20 2010",format="%B%d%Y'"). The following
symbols can be used with the date format:

Symbol Meaning Example
%d day as a number (0-31) 01-31
%a abbreviated weekday Mon

%A unabbreviated weekday Monday
%m month (00-12) 00-12
%b abbreviated month Jan

%B unabbreviated month January
%y 2-digit year o7

%Y 4-digit year 2007

The class “Date” of Base R is one of several classes of chronological objects.
Other classes are "date" (from package date), "chron™ and "dates" (from package chron)
and the “timeDate” object of the timeDate package. Another important class is the
POSIX class mentioned above. The POSIX class is particularly useful when time zones
are considered because it allows for different time zones. The as.Date function
converts a POSIX object into a Date object. The default input format for POSIX dates is
the same as Date dates: the year followed by the month and day, separated by slashes or
dashes.

Several calculations can be performed on objects of classes “Date” and POSIX.
The 1SOdate function converts a year, month and day into a date object of class
POSIXct and class POSIXIt. The POSIXct class represents and stores the date/time
values as the number of seconds since January 1, 1970. The POSIXIt class stores them
as a list with elements for second, minute, hour, day, month, and year. The year, month
and day may be retrieved from this representation. Consider midnight of August 20,
2012. The number of seconds since midnight January 1, 1970 is

d <- 1SOdate (2012,8,20,0,0,0)
S <- as.numeric(d) = 1345420800

http://www.demographic-research.org 659

Willekens: Chronological objects in demographic research

where d is an object of class POSIXct. If the exact reference time is not specified, the
default is noon and not midnight. This default is often confusing in the manipulation of
dates in demographic research. The year, month and day can be extracted from the
POSIXIt object ¥ <- as.POSIXIt(d). The year is f$year+1900; the month is
f$mon+1 (F$mon is the number of completed months) and the day is f$mday. To
extract the components of the date from s, use

g <- as.POSIXIt(s,origin="1970-01-01").

Note that the epoch must be provided. The default time zone is Universal Time,
Coordinated (UTC). It is a successor of the Greenwich Mean Time (GMT). GMT
differs from London time (British Standard Time BST) because GMT is not affected by
Daylight Saving Time. The London time for midnight August 20, 2012 UTC time is

as.POSIXIt(s,origin="1970-01-01", tz="Europe/London'")

which is "2012-08-20 01:00:00 BST".
The function strptime also converts a character representation of a date into a
POSIXIt object:

d <- strptime('20-01-2012", format=""%d-%m-%Y"") .

The format of the date needs to be provided. The output format is the ISO format.
Subtraction of two dates gives the number of days between the dates. For instance, the
time difference between July 13, 1997 and August 20, 2010 is:

b1=1S0date(1997,7,13,0,0,0)
b2=1S0date(2010,8,20,0,0,0)
b2-b1

which is a time difference of 4786 days. The date is measured at midnight (0 hours, 0
minutes and 0 seconds).

Instead of days, weeks may also be wused. In the example above,
difftime(b2,bl,units="weeks") the time difference is 683.7143 weeks.
Units can be seconds, minutes, hours, days or weeks. The input consists of dates of
class “Date” or POSIX.

The Format function is used for formatting dates for output. For example,

660 http://www.demographic-research.org

http://en.wikipedia.org/wiki/Greenwich_Mean_Time

Demographic Research: Volume 28 Article 23

d<- as.Date("'1Mar1946",format=""%d%b%Y"")
format (d,"%d-%B-%Y"")

gives us "01-March-1946". To select the year, use format (date,"%Y"). An
example of this would be :

d<- as.Date("'1Mar1946",format=""%d%b%Y"'")
format (d,"%Y')

which results in the character variable "1946". To obtain the month, use format
(d,"%B'™), to getthe day of the month, use Format (d,"%d') and to get the day
of the week, use format (d,""%A™). An alternative to the format function is the
strptime function of Base R. It converts a date as a character string into an object of
class POSIXIt and gives the date in an ISO date format. For example

strptime(*'250ct1970", Format=""%d%b%Y"")

accepts a date in the format given and returns the date in ISO format. The function
strftime accepts a date in the ISO format and returns the date in a desired format. The
I1SO format is required. Other formats result in wrong dates. For example,

strftime(*'1970-10-25", Format=""%d%b%y"")

returns ""250ct70"".
The code

strftime ('25-12-1970", format=""%d%b%y"")#

results in "19Dec25", and strftime ("'25-12-1970",Fformat=""%d%b%Y"'") in
"19Dec0025".

Time zones and Daylight Saving Time (DST) complicate operations on dates and
times. In most demographic applications, time zones and DST are not important. But
suppose you want to attend a seminar (webinar) at your institute in Rostock, Germany
while visiting San Francisco. The presentation is on 21" June 2013 at 3:00 p.m.; when
should you log in? The time is*

* For more information on this subject, see Revolutions Blog, a blog dedicated to news and information of
interest to R users. The editor is David Smith (http://blog.revolutionanalytics.com/2009/06/converting-time-
zones.html) (Accessed January 16, 2013).

http://www.demographic-research.org 661

Willekens: Chronological objects in demographic research

meeting <- as.POSIXct("2013-06-21 15:00",
tz="Europe/Berlin')

It is the Central European Summer Time (CEST). The following code produces the
time you need to log in:

login <- format(meeting, tz="America/Los_Angeles",
usetz=TRUE)

The result is "'2013-06-21 06:00:00 PDT", which is 6:00 a.m. Pacific
Daylight Time. An alternative function that gives the same result is the lubridate
function with_tz:

with_tz(meeting, "America/Los_Angeles™).

4. Date as elapsed time since reference point in time

In this section, | consider two formats of elapsed time: (a) Century Month Code, which
is the number of months since a fixed reference date and (b) decimal date, which
expresses a calendar date as calendar year and fraction of a year. Both formats give a
numeric object. Many surveys in the social and health sciences express dates in months
since a fixed reference date, without information on the day. The reference date is often
January 1, 1900, in which case the coding is referred to as Century Month Code (CMC).
CMCs are used in fertility surveys (e.g. the US National Survey on Family Growth),
labour force surveys, demographic and health surveys (e.g. Demographic and Health
Survey)®. The coding scheme is particularly relevant for demographic analysis since it
has been used in several surveys, including the World Fertility Survey, launched in the
1970s under the auspices of the International Statistical Institute (ISI). The scheme is
documented in demographic texts (see e.g. Pullum 2004). Blossfeld and Rohwer (2002)
and Blossfeld et al. (2007) use it in a basic text on event history modeling. The CMC
measures the months elapsed since January 1, 1900. For instance, CMC 555 is March
1946 and CMC 1347 is March 2012. The CMC is generally an integer but may be a real
number (number with a fractional or decimal component). If the date is known precisely
(day, month and year), the CMC is a real number. If the date is known approximately

® For the Demographic and Health Survey, see the online guide at http:/legacy.measuredhs.
com/help/datasets/ (Accessed January 16, 2013) and for the US National Survey on Family Growth, see
http://www.cdc.gov/nchs/data/nsfg/NSFG_2006-2010_UserGuide_MainText.pdf (Accessed January 16,
2013).

662 http://www.demographic-research.org

Demographic Research: Volume 28 Article 23

(month), the CMC is an integer number. If CMC is an integer, the transition is assumed
to take place at a given day of the month, usually the beginning of the month or the
middle of the month. It is important to make the day explicit since surveys may assume
that events occur at the beginning of the month, but that censoring occurs at the end of
the month (e.g. the German Life History Survey [GLHS] data distributed by Blossfeld
and Rohwer 2002). The CMC coding scheme is applied because the conversion of dates
into numerical values facilitates the computation of durations between two dates. A
disadvantage is that the interpretation of event dates is much harder.

In demographic analysis, it may be necessary to convert calendar dates into CMC
and vice versa. Let us convert January 10, 1984. The Date_as_cmc function, which
is part of the utilities of Version 2 of the Biograph package, released in 2012 (Willekens
2012), converts a calendar date into CMC. For example, Date_as_cmc("'1984-
01-10"") gives the CMC 1009 and Date_as_cmc(c(''1984-01-10",""1946-
03-05")) results in the vector with elements 1009 and 555°.

To convert a date in CMC into a calendar date, the components of the date are
considered: year, month and day. Year and month are derived from the date in CMC
and the day needs to be provided. The Biograph function cmc_as_Date converts
CMC into the calendar date and produces a character string. For example,
cmc_as_Date (1009,15) is January 15, 1984 and cmc_as Date (555) is
March 1, 1946. The first argument is the date in CMC and the second argument is the
day. If the day is omitted, it is assumed to be 1 (default). The desired date format may
be different, e.g. cmc_as_Date (555,1,"%d%b%y"") gives us ""01Mar46' .

The decimal date represents a date as a year and fraction of a year. The function
Date_as_year, which is a utility in Biograph, computes the decimal date from the
calendar date. It uses relative time; it accounts for the different lengths of months and
leap years. For instance,

Date_as_year (c(''2012-02-29","2010-02-29"),
format. in=""%Y-%m-%d"")

converts the first date but not the second date because 2010 is not a leap year and
February 29 does not exist. It uses the difftime function of Base R. The result is the
numeric vector {2012.161 NA}’. Other packages have a similar function. For
instance, the function cal.yr of the Epi package for statistical analysis in

® The date functions of Biograph are documented in the manual of the package. The package includes a Doc
folder with an R programme that illustrates calls to the different date functions of the package. To find the
location of the Doc folder after the package is installed, use system.file (package="Biograph™)

" The common formula that considers the average duration of a month is (see e.g. Mamun, 2003):
year.frac <- year+(month-1)/12+(day-1)/(30.437*12) where 30.437 is the average
number of days in a month.

http://www.demographic-research.org 663

Willekens: Chronological objects in demographic research

epidemiology (Carstensen 2012) converts dates into decimal years by assuming that all
years are 365.25 days long. To show that the procedure may lead to inaccuracies,
Carstensen (2012) converts January 1, 2000, which is 1999.9986. Date_as_year
("'2000-01-01"") gives us 2000. The decimal_date function of the lubridate
package is not able to convert January 1, 2000 to a decimal year. The call
decimal_date (as.-Date(''2000-01-01"")) resultsin NA.

To check the precision of the conversion into decimal years, the decimal year may
be converted back into a calendar date. The function year_as_Date of Biograph
converts a decimal year into a calendar date. For example, Date_as_year converts
January 30, 2000 into 2000.079235 , and year_as_Date converts 2000.079235 into
January 30, 2000. The year_as_Date function gives the date in a format specified
by the user. If no format is specified, the standard format is used: year, month and day.
The code year_as_Date (2012.161) gives us February 28, 2012 instead of
February 29, 2012. Inaccuracies remain but the reasons are not yet known.

The function cmc_as_year converts CMC into decimal date. It uses relative
time. Consider March 2012: cmc_as_year (1347) is 2012.164 . The decimal date
may be converted into CMC using the year_as_cmc function of Biograph. The
function produces an object with two components: the CMC and the day used in
converting Date into CMC.

To convert a duration in days to a date, the following code may be used. Suppose a
period of 10 days starts on February 20, 2012. The end of the period is

as.Date(as.numeric(as.Date(''2012-02-20"))+10,
origin="1970-01-01")

which is March 1, 2012. The procedure accounts for the leap day in the Gregorian
calendar. If 2012 is replaced with 2013, the result is March 2, 2013. The operation
converts the calendar date (Date object) into a Julian date, adds 10 and converts the
Julian date back to a calendar date.

The same result is obtained using a function of lubridate package:

as.Date(''2012-02-20"")+days(10) -

5. Date as elapsed time since reference event

In some observational studies, the date is represented as time elapsed since a reference
event. Common reference events are birth, marriage, entry into the job market or an
observational study. Common examples of dates as elapsed times since a reference
event are age, duration of marriage, number of days since a diagnosis or surgery, and

664 http://www.demographic-research.org

Demographic Research: Volume 28 Article 23

time-on-study. For instance, the Framingham Heart Study (FHS) gives event dates in
days since exam 1 (in addition to SAS dates)®. If the calendar date of the reference
event is known, ages and durations can be converted into calendar dates. Time
measurement as days or years elapsed since a reference event also arises in simulation
of life histories. In that case, age is used as the time scale and the number of persons of
the same age can easily be determined. To determine the number of individuals of a
given age at a given calendar date, dates of birth must be given. If virtual subjects in a
simulation are allocated dates of birth, ages can be converted into calendar dates and the
size and age composition of the virtual population at a given point in time can be
determined.

Age calculations are not trivial because the lengths of years and months vary with
their position in the calendar. A division of the number of days since birth by 365.25 is
an approximation. In Section 2 of the paper, it became evident that the computation of
the exact age at a given date requires an object of class interval. It requires the date of
birth and the given date, or the date of birth and the age in days. The Date_as_age
function of Biograph uses lubridate functions to define interval and period objects and
to compute the exact age. Suppose a person born on July 12, 1977 marries on July 12,
2007, i.e. on his 30™ birthday. The following code produces the age:

age <- Date_as_age (x="2007-07-12",
format. in=""%Y-%m-%d",
born="1977-07-12"").

The result is an object with four components: (1) the age in seconds, (2) the age in
days, (3) age in years, months and days, and (4) the age in decimal years (years and
fraction of a year). The age in decimal years is obtained by subtracting the decimal date
of marriage from the decimal date of birth. The function uses lubridate functions. Since
the computation of age is essential in demographic analysis and the Date_as_age
function is new, the procedure is described in some detail. The date of birth and date of
marriage are:

marriage <- 1SOdate(2007,07,12,0,0,0)
birth <- 1SOdate (1977,07,12,0,0,0).

The following code, using lubridate functions, produces the exact age

f=new_interval (birth,marriage)
z=as.period (f,unit="'year')

8 http://www.framinghamheartstudy.org/share/data/soe_06as.html (Accessed January 16, 2013)

http://www.demographic-research.org 665

Willekens: Chronological objects in demographic research

The result is "30y Om 0d OH OM 0S", as it should be. The age in completed years is
z@year. An alternative way of obtaining the age is F%/%years(1).

The time difference between marriage and date of birth is 10957 days. The age at
marriage in days is obtained by

age.d <- new_interval(ymd(''1977-07-12"),
ymd(*'2007-07-12")) %/% days(1)

or
difftime(ymd(*'2007-07-12"),ymd(*'1977-07-12")).

The age in seconds is obtained by converting the interval object into a duration object:
d <- as.duration (F)

with d an object of class “duration”. This gives us 946684800 seconds, which in that
period is exactly 30.00 years. The number of days is the number of seconds divided by
the number of seconds per day, which is 86400. It is 946684800 /86400 = 10957 days.

If a year is assumed to have 365.25 days, the age is 10957/365.25 = 29.9986 years
or 29 years in completed years. Division should be by years of relative length and not
by years of constant length.

The date of birth and the age may be converted into a date using Biograph’s
age_as_Date function:

age_as_Date (30,'1977-07-12",format._born=""%Y-%m-%d",
format.out=""%Y-%m-%d"") .

The date is "2007-07-12".

6. Illustrative applications

Calot wanted to know the effect of th