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BaCkground

Until 2001 chemotherapy and hormonal therapies were the mainstays of systemic treatment 

of solid tumors. In 2001 it was shown that activation of the mutated c-Kit receptor in gastrointes-

tinal stromal tumors (GIST) could be blocked by imatinib, a c-KIT tyrosine kinase inhibitor. This 

was one of the first successes of targeted therapy in solid tumors apart from the already long 

existing anti-hormonal therapy. The objective response rate in metastatic and unresectable GIST 

went from 0-5% for chemotherapy up to 38% for imatinib [1]. In recent years, more and more 

drugs specifically targeting diverse tumor characteristics have been developed. Unfortunately, 

not all targeted agents were as successful and in most cases, the effect of targeted agents is 

temporarily and often only seen in a subgroup of patients. 

A major challenge in oncology is to identify patients that will benefit from various targeted 

agents. Eventually, this should lead to ‘personalized medicine’: a specific drug to treat a specific 

tumor with specific molecular or genetic characteristics in a specifically selected patient. 

Molecular profiling of tumor tissue is important in this regard, but there may also be a role 

for molecular imaging in selecting patients and predicting tumor responses. The advantage 

of molecular imaging is that it is non-invasive and all tumor lesions can be assessed which 

addresses tumor heterogeneity and circumvents sampling errors. 

Another application of molecular imaging may be the (early) assessment of tumor responses. 

Treatment with targeted drugs may not always lead to a direct volume response of the tumor. 

Response assessments based on tumor diameter such as RECIST criteria for solid tumors on 

CT scans may therefore underestimate the anti-tumor activity of targeted agents [2]. In brain 

tumors, response assessment is especially difficult due to the blood brain barrier. Disruption or 

normalization of the blood brain barrier by the treatment complicates the evaluation of contrast 

enhanced MRI imaging [3]. Targeted drugs can block or reactivate pathways in tumors and 

modify the tumor microenvironment. This can potentially be visualized by molecular imaging 

with labeled drugs or labeled markers of pathway and microenvironment alterations. 

As anticancer treatments are becoming more effective, attention also needs to be paid to 

side effects of treatment and care for long term cancer survivors. Prognostic markers for toxicity 

due to anticancer treatments are therefore warranted. Early recognition of susceptibility for 

toxic effects of anticancer therapy can lead to early treatment adaptations and more specific 

follow up. 

The aim of this thesis is to provide novel insights in targeted drugs and the use of molecular 

imaging and biomarkers in anticancer treatments. 

outline of the thesis

Currently, the most frequently used way of systemic anticancer treatment is still DNA damage 

induction via chemotherapy. This DNA damage leads to apoptosis of tumor cells via the intrinsic 

apoptotic pathway. However, tumor cells often have mutations in this pathway, resulting in 

resistance to chemotherapy [4]. In addition, chemotherapy does not selectively affect tumor 

cells, but also induces damage to normal cells. Another way of inducing cell death is by targeting 
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the extrinsic pathway in tumor cells that induces apoptosis. One of the potentially interesting 

ways of doing this is via the TRAIL-R1 and TRAIL-R2 death receptors. Agonistic antibodies and 

recombinant TRAIL (rhTRAIL) can activate these receptors. In preclinical studies, it was found 

that these drugs can induce apoptosis and can enhance apoptosis in combination with chemo-

therapy and radiotherapy [5-7]. In chapter 2, a literature review was performed concerning the 

results of the phase 1 and 2 studies with the different agonistic antibodies against the TRAIL 

receptors and recombinant TRAIL. 

When the first studies with imatinib in GIST patients were conducted, a decrease of 
18F-fluorodeoxyglucose (FDG) uptake on PET scans was noted within days of starting imatinib 

therapy. It was suggested that this could be used as an early marker of therapeutic response 

in these patients [8]. Approximately 15% of GIST patients show primary resistance to imatinib, 

defined as progressive disease at first CT evaluation after 2 months [9]. In chapter 3 we retro-

spectively analyzed FDG-PET scans before start of imatinib and after 1 week of treatment 

initiation in 36 patients and compared the results with the outcome on CT scan after 2 months 

of treatment. We investigated whether early changes in tumor FDG uptake can predict primary 

imatinib resistance.

In brain tumors, the use of FDG-PET scans is hampered by the high uptake of glucose in 

normal brain tissue. However, accurate assessment of response to standard therapy with MRI 

imaging in glioblastomas is extremely difficult. Progressive lesions may not represent tumor 

growth, but rather a treatment effect that subsides in time without a change of therapy. This 

phenomenon is called pseudoprogression and seen in up to 64% of the patients with progres-

sive disease on MRI directly after radiotherapy [10]. The difficulty to distinguish recurrent tumor 

growth (true progression) from pseudoprogression complicates the clinical decision making in 

these patients: in case of pseudoprogression, standard treatment with adjuvant temozolomide 

should be continued, whereas in case of true tumor progression, other treatment modalities 

or palliative care would be more appropriate. 18F-fluorothymidine (FLT) is a PET tracer that is 

taken up by proliferating cells and therefore it may be possible to use FLT-PET scans to discrimi-

nate true progressive tumors from pseudoprogression as in the latter less proliferation would 

be expected. In chapter 4 we prospectively investigated the capability of FLT-PET scans in 

discriminating between pseudoprogression and true progression in patients with newly 

diagnosed glioblastoma treated with radiotherapy and temozolomide. In 30 patients, FLT-PET 

scans were performed before start and 4 weeks after completion of concomitant radiochemo-

therapy. MRI scans were performed at these two time points and after 3 cycles of adjuvant TMZ. 

Pseudoprogression was defined as progressive disease on MRI after radiochemotherapy, with 

stabilization or improvement of enhancing lesions after 3 cycles of adjuvant TMZ. Changes in 

FLT uptake were compared between patients with true progression and pseudoprogression. 

Another challenge in the management of malignant gliomas is the lack of effective standard 

therapy for recurrent disease, despite numerous studies with targeted agents and chemothera-

peutics conducted in recent years. One reason for this might be that the blood-brain barrier 

hampers the uptake of targeted agents in brain tumors. An important target in high grade 

1
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gliomas is TGF-β, since it was shown that TGF-β functions as a tumor promoter in advanced 

cancer and is involved in glioma development [11,12]. In chapter 5, we describe a clinical 

study in which patients with recurrent high grade gliomas were treated with fresolimumab, a 

monoclonal antibody against TGF-β. To investigate whether the antibody actually reached the 

tumor, patients underwent a PET scan with 89Zirconium labeled fresolimumab before start of 

treatment.  

Testicular cancer patients are mostly treated with a combination of bleomycin, etoposide 

and cisplatin (BEP) chemotherapy. The cure rate is very high in this patient group. But about 10% 

of the patients treated with BEP develop bleomycin induced pulmonary toxicity and in up to 3% 

of the patients this is fatal [13]. TGF-β is involved in many cellular physiological and patholog-

ical processes in the body including the immune response, wound healing and fibrosis [14]. In 

preclinical studies, TGF-β is implicated as an important factor in the development of bleomycin 

induced pulmonary toxicity [15]. An early marker that can predict which patients will develop 

this toxicity is not available. In chapter 6 we investigated the prevalence of abnormalities that 

were suspect for bleomycin-induced pulmonary changes on post chemotherapy restaging CT 

scans and whether TGF-β1 and GDF15 (a member of the TGF-β superfamily) and Hs-CRP levels 

in plasma can be used as biomarkers for the occurrence of these changes in testicular cancer 

patients treated with bleomycin containing combination chemotherapy. In chapter 7 the thesis 

is summarized and future perspectives are given. Chapter 8 provides a summary of the thesis 

in Dutch.
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aBstraCt

The extrinsic apoptotic pathway can be activated by the endogenous ligand TRAIL (Tumor 

Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand) by binding to the death receptors 

TRAIL-R1 and TRAIL-R2 on the cell surface. This pathway is currently evaluated as an anticancer 

treatment strategy. Both recombinant human TRAIL and several agonistic antibodies against 

TRAIL-R1 and R2 have been studied in single agent and combination studies and proved to be 

safe and well tolerated. In this article, the clinical studies published to date will be reviewed. 

Also, future perspectives and biomarker studies for selecting patients that will benefit from 

these agents will be discussed.



17

Translating TRAIL-receptor targeting agents to the clinic | 

introduCtion

There are several different ways of inducing apoptosis in malignant cells as an anticancer 

treatment strategy. The most frequently exploited ways of treating tumors is to induce DNA 

damage via chemotherapy and/or radiotherapy, thereby activating the mitochondrial (intrinsic) 

apoptotic pathway. An important regulator of the intrinsic apoptotic pathway is the tumor 

suppressor p53, which can induce apoptosis in response to DNA damage inflicted by chemo-

therapy and radiation. However, p53 function in tumor cells is often lost, resulting in resistance 

to chemotherapy. In addition, chemotherapy does not selectively affect tumor cells, but also 

induces damage to normal cells.

Another way of inducing cell death is by stimulation of apoptosis via the extrinsic pathway. 

The extrinsic pathway is independent of p53 and can be activated by the endogenous ligand 

TRAIL (Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand), a transmembrane 

protein and a member of the TNF super family [1]. Physiologically, TRAIL is considered to have 

an anti-inflammatory effect and to play a role in autoimmunity and anti-tumor surveillance [2-4]. 

TRAIL can induce apoptosis in tumor cells by binding to the death receptors TRAIL-R1 (DR4) and 

TRAIL-R2 (DR5) on the cell surface. These death receptors are present in a broad range of both 

normal cells and tumor cells [5]. Interestingly, recombinant human (rh)TRAIL induces cell death 

only in tumor cells and not in normal cells [6]. What causes this difference is still not elucidated. 

When death receptors are activated by TRAIL, these receptors undergo homo-trimerization. 

This trimer forms the death-inducing signaling complex (DISC) together with the Fas-associated 

death-domain (FADD) and pro-caspases 8 and 10. The activated caspases then activate caspases 

3, 6 and 7, eventually resulting in apoptosis. Active caspase 8 also cleaves Bcl-2 interacting 

domain (Bid) into truncated Bid(tBid), which then triggers the intrinsic apoptotic pathway by 

activation of caspase 9 and finally caspase 3. Important cellular proteins that inhibit activation of 

the extrinsic apoptotic pathway are cFLIP, a competitor of caspase 8, and the inhibitor-of-apop-

tosis proteins (IAPs) that inhibit caspase activity [7]. In preclinical studies, not only rhTRAIL but 

also the agonistic antibodies against TRAIL-R1 and TRAIL-R2 induced apoptosis in various tumor 

cell lines, while normal cells were spared [6,8,9]. RhTRAIL and the TRAIL-R antibodies, also called 

PARAs (pro-apoptotic receptor agonists), in addition enhance the cytotoxic effect of “classic” 

chemotherapy, targeted therapies and radiotherapy [10-12]. This has led to several studies that 

are finalized or are ongoing with PARAs as single agent or combined with chemotherapeutic as 

well as targeted agents. In this review the results of these studies will be summarized and future 

perspectives and the possible use of biomarkers for selecting eligible patients will be discussed.

CliniCal studies

In recent years, several phase 1 and 2 single agent and combination studies have been 

conducted with recombinant human TRAIL (dulanermin, (Amgen/Genentech)) targeting both 

TRAIL-R1 and TRAIL-R2 and the agonistic monoclonal antibodies to either TRAIL-R1 (mapatu-

mumab (Human Genome Sciences)) or TRAIL-R2 (lexatumumab (Human Genome Sciences), 

conatumumab (Amgen), drozitumab (Genentech), tigatuzumab (Daiichi-Sankyo) and LBY135 

2
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(Novartis)). These trials are summarized in Table 1.

Mapatumumab, lexatumumab, conatumumab and drozitumab are fully human IgG1 

antibodies, whereas tigatuzumab is a humanized IgG1 antibody and LBY135 a chimeric (mouse/

human) IgG1 antibody. 

single agent studies

dulanermin

In a phase 1 study with dulanermin, 71 patients with advanced cancer received up to 30 mg/

kg/day intravenously (iv) for 5 days every 3 weeks. This regime was found to be safe and well 

tolerated. Two patients with chondrosarcoma achieved a partial tumor response, and were still 

on treatment after 2.7 and 4.3 years, respectively. Furthermore, in two other sarcoma patients, 

tumor necrosis was found during surgery after the first cycle of dulanermin therapy, which is 

possibly an indication of dulanermin induced cell death. The serum half life of dulanermin was 

found to be 0.5–1 h. No antibodies against dulanermin were detected [13].

Mapatumumab

In two phase 1 trials with mapatumumab up to 10 mg/kg iv every 2 weeks or up to 20 mg/

kg iv every 4 weeks, the best responses were stable disease in respectively 19 out of 49 and 12 

out of 41 patients with advanced solid tumors. The maximum tolerated doses were not reached 

[14,15].

In a phase 2 study, patients with colorectal cancer received mapatumumab 10 mg/kg after 

2 loading doses of 20 mg/kg iv every 14 days. In a phase 2 study in patients with non-small cell 

lung cancer (NSCLC), patients received mapatumumab 10 mg/kg every 21 days. In both studies, 

no objective responses were observed, but respectively 12 out of 38 and 9 out of 32 heavily 

pretreated patients achieved stable disease [16,17].

In a phase 1b/2 trial in 40 patients with non-Hodgkin’s lymphoma (NHL) treated with doses 

of 3 or 10 mg/kg mapatumumab iv every 21 days, 2 complete responses and 1 partial response 

were seen in patients with follicular lymphoma and 11 patients achieved stable disease [18].

No anti-mapatumumab antibodies were found in the phase 1 trials. The mean plasma half life 

value for mapatumumab was found to be 19, 22 and 26 days respectively [14,15,18].

agonistic trail-r2 antibodies

Lexatumumab was studied as a single agent in two phase 1 studies in patients with advanced 

solid tumors. The maximum tolerated dose was found to be 10 mg/kg and this dose could be 

administered every 2  weeks. Dose limiting toxicities, seen in five patients in these 2 studies, 

consisted of elevations of serum amylase, bilirubin and transaminases. One of these patients 

developed septicemia and acute renal failure and died 25 days after the lexatumumab adminis-

tration. Stable disease was achieved in respectively 12 out of 37 and 9 out of 27 patients, while 

one mixed response was seen in a patient with Hodgkin’s lymphoma. In this patient a lung lesion 

became smaller but other lesions increased in size [19,20]. A phase 1 study with lexatumumab 
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has also been conducted in 24 pediatric patients with solid tumors. Doses up to 10 mg/kg every 

14 days were found to be safe in this population. Five patients achieved stable disease. In one 

patient stable disease was ongoing at 17 months [21].

Drozitumab was investigated at doses up to 20  mg/kg every 14  days and the maximum 

tolerated dose was not reached. Twenty out of 41 evaluable patients achieved stable disease. 

Minor responses were found in 3 patients with colorectal cancer, ovarian cancer and chondro-

sarcoma with respectively 28%, 23% and 20% reduction in measurable disease [22].

In a phase 1 study evaluating tigatuzumab in doses up to 8 mg/kg iv every week, 7 out of 17 

patients experienced stable disease as a best result, with 1 patient having stable disease for over 

2 years. The maximum tolerated dose was not reached [23].

Conatumumab was studied in doses up to 20  mg/kg every 2  weeks in 37 patients. The 

maximum tolerated dose was not reached. One partial response was seen in a patient with 

NSCLC, who was still on treatment after 4.2 years. One minor response (24% decrease in tumor 

size) was observed in a patient with colorectal carcinoma and 14 patients achieved stable 

disease [24]. In another phase 1 study, conatumumab was also well tolerated and 9 out of 18 

patients achieved stable disease [25].

LBY135 monotherapy was investigated in doses up to 20 mg/kg every 3 weeks in 32 patients 

with advanced solid tumors. A minor response in one patient and a decrease in tumor markers 

in two patients were seen. There were no dose limiting toxicities in patients receiving LBY135 

monotherapy [26].

Pharmacokinetic analyses of these antibodies against TRAIL-R2 showed that the serum 

half life of the antibodies is around 14 days for lexatumumab, 9–19 days for drozitumab and 

13–19 days for conatumumab. The plasma half life of tigatuzumab is 6–10 days and preliminary 

results show a half life value of 10 days for LBY135 [19,20,22-24,26]. In one patient, antibodies 

against lexatumumab were found before treatment, but this finding was not confirmed in 

later samples [19]. Antibodies against drozitumab were found in one patient, but because the 

baseline test of this patient was also positive, this did not seem to be related to treatment [22]. 

In the study with LBY135, immunogenicity was found in 25% of the patients, which seemed to 

affect exposure in five patients during later doses [26].

efficacy of Paras as single agents

Side-effects in single agent studies were generally mild, with the side-effects seen most 

frequently being fatigue and nausea. All investigated PARAs were considered safe and well 

tolerated and a maximum tolerated dose was only found for lexatumumab. From preclinical 

data there were concerns about a possible toxic effect of PARAs, especially on the liver [27]. 

However, in the clinical studies so far, this was not confirmed.

Most of the single agent studies had a phase 1 character and were performed in heavily 

pretreated patients and are therefore not ideal to judge anti-tumor activity. Tumor responses 

were observed in lymphomas treated with mapatumumab and three partial responses in solid 

tumors have been reported after treatment with dulanermin and conatunumab. The complete 

2
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responses with mapatumumab were achieved at 9 and 11 months, the partial responses with 

dulanermin at 2 and 8  months and the partial response with conatumumab at 8  months. 

Interestingly, further decrease in tumor size was seen in some of these patients after about 9 

and 11 months (mapatumumab) and 22 months (conatumumab) [13,18,24]. Although these are 

only individual cases, this indicates that response evaluation with RECIST criteria after the first 

months of treatment might be underestimating the therapeutic efficacy of PARAs. This under-

scores the relevance of waterfall plots over time.

The clear difference between the half life values of dulanermin and the agonistic antibodies 

indicates that dulanermin is only shortly available to bind to death receptors on tumor cells after 

administration while the antibodies are present for a long time. However, this short availability 

does not preclude tumor responses. The precise consequences of these differences in half life 

for trial design are still unknown.

Combination studies

Based on preclinical data there is a strong rationale to combine PARAs with chemotherapy, 

radiotherapy and other targeted therapies as PARAs enhance their effect [10-12]. These combi-

nations theoretically induce cell death by targeting both the extrinsic and the intrinsic apoptotic 

pathway. Activation of both the extrinsic and intrinsic apoptotic pathway is amplified by the 

combination of PARAs with chemotherapy. PARAs amplify signaling of the intrinsic apoptotic 

pathway via tBid, while chemotherapy augments activation of the extrinsic apoptotic pathway 

via, among others, TRAIL receptor upregulation at the cell surface and reduction of cellular cFLIP 

levels. Proteasome inhibition with bortezomib results in pleiotropic effects, but bortezomib 

treatment is found to induce TRAIL receptor surface expression, reduce FLIP expression, block 

IAP functionality and prevent proteasomal degradation of p53 and pro-apoptotic Bcl2 family 

members in cancer cells [28]. Inhibition of the NF-kappaB, Akt or MAPK prosurvival pathways 

using cetuximab, rituximab or sorafinib synergizes with PARAs targeting the apoptotic pathway. 

The mechanism of drug interaction can be at the DISC resulting in enhanced DISC formation or 

more downstream causing reduced expression of anti-apoptotic Bcl-2 family members and IAPs 

[29,30].

dulanermin

In a phase 1b study, dulanermin in doses up to 8 mg/kg iv for 5 days or up to 20 mg/kg iv for 

2 days every 3 weeks was studied in combination with paclitaxel, carboplatin and bevacizumab. 

Of the 24 patients with NSCLC included, 1 patient achieved a complete response, 13 a partial 

response and the median progression free survival was 7.2 months. A maximum tolerated dose 

was not reached. Combination of dulanermin with these drugs did not significantly affect phar-

macokinetics of dulanermin [31]. Results of a randomized phase 2 study with paclitaxel and 

carboplatin ± bevacizumab ± dulanermin (8 mg/kg iv for 5 days or 20 mg/kg iv for 2 days every 

3 weeks) in 213 chemo naïve NSCLC patients showed that this combination is well tolerated. 

However, this combination did not result in a better objective response rate or progression free 

survival [32].
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Dulanermin in doses up to 8  mg/kg iv for 5  days every 3  weeks was also combined with 

rituximab during 4 cycles in patients with low-grade NHL. There were 3 complete and 3 partial 

responses out of 12 patients treated [33]. The preliminary results of a randomized phase 2 study 

in patients with relapsed follicular NHL did not show a better objective response rate for this 

combination (61.5% versus 63.6%) [34].

Preliminary results in colorectal cancer patients show that dulanermin (up to 8 mg/kg iv for 

5 days every 3 weeks) combined with irinotecan and cetuximab or dulanermin (up to 9 mg/kg 

iv for 3 days every 2 weeks) with leucovorin, 5-fluorouracil and irinotecan (FOLFIRI) is safe [35].

Mapatumumab

Mapatumumab in doses up to 30 mg/kg iv every 3 weeks was studied in combination with 

gemcitabine and cisplatin and in doses up to 20 mg/kg iv with paclitaxel and carboplatin in 

phase 1 studies. The maximum tolerated dose was not reached in either study. Partial responses 

were observed in respectively 12 out of 49 and 5 out of 27 patients. Combination of mapatu-

mumab with chemotherapy regimens did not seem to influence the pharmacokinetics of any 

agent [36,37].

Preliminary results from a randomized phase 2 trial of mapatumumab combined with carbo-

platin and paclitaxel in 111 patients with NSCLC show that this combination does not lead to a 

better response rate or longer progression free survival [38].

In a phase 1b study, mapatumumab (up to 30 mg/kg every 3 weeks) was combined with 

sorafenib (400 mg BID) in patients with advanced hepatocellular carcinoma and chronic viral 

hepatitis. Among 19 patients, a partial response was seen in 2 patients and 4 patients achieved 

stable disease [39].

agonistic trail-r2 antibodies

In a phase 1b study, the combination of lexatumumab up to 10 mg/kg every 2 weeks with 

gemcitabine or FOLFIRI or lexatumumab every 3 weeks with pemetrexed or doxorubicin was 

studied in 41 patients. Preliminary results show 2 partial responses in colorectal cancer patients 

in the FOLFIRI arm and 1 partial response in a patient with small cell lung cancer in the doxoru-

bicin arm. Pharmacokinetics of lexatumumab or the chemotherapeutics were not influenced by 

each other [40].

A randomized phase 2 study in 124 patients was performed comparing drozitumab or 

placebo plus paclitaxel, carboplatin and bevacizumab in previously untreated patients with 

NSCLC. The objective response rate did not differ between the two arms (respectively 40% and 

42%), nor did the progression free survival [41].

A phase 2 study of drozitumab (10 mg/kg every 3 weeks, after a loading dose of 15 mg/kg) 

with rituximab in patients with NHL previously treated with rituximab, showed that this combi-

nation was well tolerated and 20 out of 40 patients achieved an objective response, consisting 

of 2 complete responses and 18 partial responses [42].

Two phase 1b studies in metastatic colorectal cancer patients were performed, in which 

drozitumab was combined with either FOLFOX and bevacizumab or cetuximab and irinotecan 

2
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or FOLFIRI ± bevacizumab. All combinations were found to be well tolerated [43, 44].

Conatumumab was studied in combination with several chemotherapy regimens and 

targeted therapies. In previously untreated patients with advanced NSCLC, the combination of 

conatumumab (up to 15  mg/kg every 3  weeks) with paclitaxel and carboplatin resulted in 1 

complete response and 3 partial responses among 10 evaluable patients. Pharmacokinetics of 

conatumumab seemed not to be affected by combined treatment with paclitaxel and carbo-

platin [45].

Combination of conatumumab (up to 10 mg/kg every 2 weeks) with modified FOLFOX6 and 

bevacizumab in 12 patients with previously untreated colorectal cancer and combination with 

gemcitabine in 13 previously untreated patients with metastatic pancreatic cancer resulted in 

partial responses in respectively 5 and 4 patients. Pharmacokinetics showed no differences with 

those found in single agent studies [46,47]. 

Conatumumab (10 mg/kg every 2 weeks) in combination with panitumumab in pretreated 

metastatic colorectal cancer patients appeared to be safe, but did not result in objective 

responses in either patients with wild-type KRAS tumor status or mutant KRAS tumor status. 

Stable disease was seen in 8 out of 19 patients with wild-type KRAS and 4 out of 25 patients with 

KRAS mutant status [48].

Conatumumab (up to 15  mg/kg iv every 3  weeks) was also combined with AMG 479 (an 

insulin-like growth factor receptor 1 antagonistic antibody) in a phase 1 study. Three out of 9 

patients achieved stable disease. Dose limiting toxicities were not observed and no interactions 

were seen between these agents [49].

In a randomized phase 2 study the combination of gemcitabine with conatumumab (10 mg/

kg every 2 weeks) or AMG 479 or placebo in 125 patients with previously untreated pancreatic 

cancer was studied and showed that these combinations are well tolerated. Although no 

objective response was seen in the conatumumab arm, stable disease rate, progression free 

survival and 6  month survival seem to be better in the conatumumab and AMG 479 arms 

compared to placebo [50].

In a phase 1/2 open-label and double blind study in patients with metastatic or unresect-

able soft tissue sarcomas, patients were given conatumumab (15 mg/kg every 3 weeks) with 

doxorubicin or placebo with doxorubicin. Although this combination was safe, the addition of 

conatumumab did not improve the progression free survival or the response rates [51].

In the phase 1 trial with LBY135, 24 patients received LBY135 in doses up to 20 mg/kg every 

3  weeks in combination with capecitabine (2 times daily, 2  weeks on, 1  week off). In these 

patients, 1 partial response was seen [26].

efficacy of Paras in combination studies

Data of 6 randomized phase 2 studies are available. The results indicate that only the combi-

nation of conatumumab and gemcitabine shows a trend toward a longer progression free 

survival and 6 month overall survival [50]. Addition of dulanermin to rituximab in NHL patients 
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does not seem to improve the objective response rate compared to rituximab alone, nor did the 

addition of conatumumab to doxorubicin in soft tissue sarcoma patients [34,51].

There were 3 randomized studies in patients with NSCLC. Combination of paclitaxel and carbo-

platin with mapatumumab does not seem to improve the objective response rate or progres-

sion free survival compared to chemotherapy alone. The same was the case for dulanermin and 

drozitumab with paclitaxel, carboplatin and bevacizumab [32,38, 41]. Therefore regretfully no 

benefit of the addition of dulanermin, mapatumumab or drozitumab could be shown in these 

randomized phase 2 studies.

However, we know that the combination of cetuximab or panitumumab with bevacizumab 

and chemotherapy in colorectal patients performed worse than one of the antibodies separately 

[52,53]. Therefore the addition of other antibodies to bevacizumab may hide its anti-tumor 

activity. The reason for this is still unraveled; however bevacizumab effects on tumor vasculari-

zation could be involved in this.

Interpretation of the preliminary results of the non-randomized phase 2 combination studies 

is hampered by the limited size of the studies. In earlier phase 1 combination studies, waterfall 

plots show anti-tumor effects of treatment with PARAs, although responses often do not meet 

the formal current RECIST criteria for partial response [31,36,37,54].

FuTuRe peRspeCTIves 

ongoing studies

In Table 2, the diverse ongoing studies with PARAs are shown. Of special interest are the 

studies that combine PARAs with other targeted therapies, since targeting the apoptosis route 

on multiple levels might lead to improved effectiveness.

Although PARAs also enhanced the cytotoxic effects of irradiation in preclinical settings, 

no clinical trials investigating the combination of these agents with radiotherapy have been 

conducted to date. A phase 1b/2 study combining mapatumumab, radiotherapy and cisplatin in 

patients with advanced cervical cancer (NCT01088347) and a phase 1/2 study combining cona-

tumumab with gemcitabine, capecitabine and radiation therapy in patients with pancreatic 

cancer (NCT01017822) have been initiated.

Another approach is direct injection of recombinant adenovirus that encodes for TRAIL in 

tumor tissue. In a phase 1 trial these injections were given in the prostate of patients with prostate 

cancer. Preliminary results of the first 3 patients show that the injection was well tolerated [55].

novel Paras

In recent years several novel PARAs with improved properties targeting TRAIL receptors have 

been developed. Fusion of an antibody derivative to TRAIL can result in antibody targeting-

dependent activation of TRAIL and other TNF family members that are in their soluble form 

biologically less active [56]. A number of TRAIL fusion proteins have been constructed, where 

recombinant soluble TRAIL was genetically linked to a receptor selective antibody fragment 

2
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based on a single chain variable fragment (scFv). The scFv can be directed against cancer specific 

targets such as EGFR [57], against AML cells using anti-CD33 scFv and against acute leukemic 

T-cells using anti-CD7 scFv [58,59].

Another approach to raise more effective PARAs is the computational design of TRAIL variants 

that bind TRAIL-R1 or TRAIL-R2 with stronger affinity and preferably have reduced affinity to 

the decoy receptors compared with rhTRAIL [60,61]. A novel antibody based approach is a 

tetrameric nanobody agonist targeting TRAIL-R2, TAS266 (Novartis) [62].

Biomarkers

Another important subject of intense investigation is the search for biomarkers that 

can predict the tumor response to these new agents and could thus be used to personalize 

treatment.

It would be of major interest to know whether apoptosis induction via TRAIL-R1 or TRAIL-R2 is 

influenced by the expression of these receptors and cellular downstream proteins in the tumors. 

Just immunohistochemistry of these targets in the tumor tissue may not be enough, since no 

clear relation between receptor expression and outcome has been shown in clinical studies so 

far [16-19, 36,37]. Other potential biomarkers for apoptosis are also evaluated in clinical trials 

[63,64]

In the preclinical setting the rate of O-glycosylation of TRAIL-R1 and TRAIL-R2 appears to be 

predictive of the sensitivity of tumor cells to dulanermin and drozitumab. In dulanermin and 

drozitumab sensitive tumor cells higher expression of mRNA encoding enzymes involved in 

O-glycosylation was found [65,66]. These enzymes can be assessed using immunohistochem-

istry assays, which are now tested in clinical trials with PARAs [32, 67].

Antibodies that are (radio)labeled could possibly also be used as biomarkers [68-72]. 

Preliminary results of an imaging study with 111Indium labeled mapatumumab in patients show 

that mapatumumab is taken up in part of the tumor lesions [73]. An imaging trial with 111Indium 

labeled CS1008 (tigatuzumab) is currently ongoing (NCT01220999). These imaging techniques 

could potentially predict availability of the drug at the tumor site and guide future therapy.

ConClusion

Based on its property to induce apoptosis in tumor cells while sparing normal cells, PARAs 

are of interest to explore as a new cancer treatment modality. In clinical studies, the use of both 

rhTRAIL and antibodies against TRAIL-R1 and TRAIL-R2 appears to be safe and side effects are 

generally mild. Monotherapy with these agents resulted in some anti-tumor efficacy which 

could occur after a long treatment period.

Combination of PARAs with other treatments seems to be safe. Although no full phase 3 studies 

have been performed, all results until now show only modest effects. The maximum tolerated 

dose with these (combinations of ) drugs was mostly not reached. This uncertainty about dosing 

could partly be addressed by molecular imaging and labeling of the drugs involved. If there 

is a role for these drugs, it will be in the setting of a rational combination therapy. Ongoing 
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(randomized) combination studies, including combinations with other targeted therapies and 

radiotherapy, are awaited. Furthermore, novel PARAs with improved properties targeting TRAIL 

receptors and new biomarkers and imaging strategies that may help to select patients might 

lead to higher response rates in future trials.

aCknowledgeMents

Supported by Grants RUG 2005-3361 and RUG 2005-3365 of the Dutch Cancer Society and 

Grant T3.112 of the Dutch Top Institute Pharma.

2



32

| Chapter 2

References

[1] Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, et al. Identification and 

characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995 

Dec;3(6):673-82. 

[2] Rus V, Nguyen V, Puliaev R, Puliaeva I, Zernetkina V, Luzina I, et al. T cell TRAIL promotes murine 

lupus by sustaining effector CD4 th cell numbers and by inhibiting CD8 CTL activity. J Immunol. 

2007 Mar 15;178(6):3962-72. 

[3] Hoffmann O, Priller J, Prozorovski T, Schulze-Topphoff U, Baeva N, Lunemann JD, et al. 

TRAIL limits excessive host immune responses in bacterial meningitis. J Clin Invest. 2007 

Jul;117(7):2004-13. 

[4] Finnberg N, Klein-Szanto AJ, El-Deiry WS. TRAIL-R deficiency in mice promotes susceptibility 

to chronic inflammation and tumorigenesis. J Clin Invest. 2008 Jan;118(1):111-23. 

[5] Spierings DC, de Vries EG, Vellenga E, van den Heuvel FA, Koornstra JJ, Wesseling J, et al. 

Tissue distribution of the death ligand TRAIL and its receptors. J Histochem Cytochem. 2004 

Jun;52(6):821-31. 

[6] Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, et al. Safety and antitumor 

activity of recombinant soluble Apo2 ligand. J Clin Invest. 1999 Jul;104(2):155-62. 

[7] Duiker EW, Mom CH, de Jong S, Willemse PH, Gietema JA, van der Zee AG, et al. The clinical 

trail of TRAIL. Eur J Cancer. 2006 Sep;42(14):2233-40. 

[8] Chuntharapai A, Dodge K, Grimmer K, Schroeder K, Marsters SA, Koeppen H, et al. Isotype-

dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J 

Immunol. 2001 Apr 15;166(8):4891-8. 

[9] Ichikawa K, Liu W, Zhao L, Wang Z, Liu D, Ohtsuka T, et al. Tumoricidal activity of a novel 

anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med. 2001 

Aug;7(8):954-60. 

[10] Jin H, Yang R, Ross J, Fong S, Carano R, Totpal K, et al. Cooperation of the agonistic DR5 

antibody apomab with chemotherapy to inhibit orthotopic lung tumor growth and improve 

survival. Clin Cancer Res. 2008 Dec 1;14(23):7733-40. 

[11] Luster TA, Carrell JA, McCormick K, Sun D, Humphreys R. Mapatumumab and lexatumumab 

induce apoptosis in TRAIL-R1 and TRAIL-R2 antibody-resistant NSCLC cell lines when treated in 

combination with bortezomib. Mol Cancer Ther. 2009 Feb;8(2):292-302. 

[12] Marini P, Junginger D, Stickl S, Budach W, Niyazi M, Belka C. Combined treatment with lexa-

tumumab and irradiation leads to strongly increased long term tumour control under normoxic 

and hypoxic conditions. Radiat Oncol. 2009 Oct 27;4:49. 



33

Translating TRAIL-receptor targeting agents to the clinic | 

[13] Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O’Dwyer PJ, Gordon MS, et al. Phase I 

dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor 

agonist, in patients with advanced cancer. J Clin Oncol. 2010 Jun 10;28(17):2839-46. 

[14] Tolcher AW, Mita M, Meropol NJ, von Mehren M, Patnaik A, Padavic K, et al. Phase I pharma-

cokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody 

with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1.           

J Clin Oncol. 2007 Apr 10;25(11):1390-5. 

[15] Hotte SJ, Hirte HW, Chen EX, Siu LL, Le LH, Corey A, et al. A phase 1 study of mapatumumab 

(fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. 

Clin Cancer Res. 2008 Jun 1;14(11):3450-5. 

[16] Trarbach T, Moehler M, Heinemann V, Kohne CH, Przyborek M, Schulz C, et al. Phase II trial 

of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates 

the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with 

refractory colorectal cancer. Br J Cancer. 2010 Feb 2;102(3):506-12. 

[17] Greco FA, Bonomi P, Crawford J, Kelly K, Oh Y, Halpern W, et al. Phase 2 study of mapatumumab, 

a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, 

in patients with advanced non-small cell lung cancer. Lung Cancer. 2008 Jul;61(1):82-90. 

[18] Younes A, Vose JM, Zelenetz AD, Smith MR, Burris HA, Ansell SM, et al. A phase 1b/2 trial of 

mapatumumab in patients with relapsed/refractory non-hodgkin‘s lymphoma. Br J Cancer. 2010 

Dec 7;103(12):1783-7. 

[19] Plummer R, Attard G, Pacey S, Li L, Razak A, Perrett R, et al. Phase 1 and pharmacokinetic study 

of lexatumumab in patients with advanced cancers. Clin Cancer Res. 2007 Oct 15;13(20):6187-94. 

[20] Wakelee HA, Patnaik A, Sikic BI, Mita M, Fox NL, Miceli R, et al. Phase I and pharmacokinetic 

study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. 

Ann Oncol. 2010 Feb;21(2):376-81. 

[21] Merchant MS, Chou AJ, Price A, Geller JI, Tsokos M, Graham C, et al. Lexatumumab: Results of 

a phase I trial in pediatric patients with advanced solid tumors. J Clin Oncol (Meeting Abstracts). 

2010 May 20;28(15_suppl):9500. 

[22] Camidge DR, Herbst RS, Gordon MS, Eckhardt SG, Kurzrock R, Durbin B, et al. A phase I safety 

and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients 

with advanced malignancies. Clin Cancer Res. 2010 Feb 15;16(4):1256-63. 

[23] Forero-Torres A, Shah J, Wood T, Posey J, Carlisle R, Copigneaux C, et al. Phase I trial of weekly 

tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). 

Cancer Biother Radiopharm. 2010 Feb;25(1):13-9. 

2



34

| Chapter 2

[24] Herbst RS, Kurzrock R, Hong DS, Valdivieso M, Hsu CP, Goyal L, et al. A first-in-human study 

of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res. 2010 Dec 

1;16(23):5883-91. 

[25] Doi T, Murakami H, Ohtsu A, Fuse N, Yoshino T, Yamamoto N, et al. Phase 1 study of conatu-

mumab, a pro-apoptotic death receptor 5 agonist antibody, in japanese patients with advanced 

solid tumors. Cancer Chemother Pharmacol. 2010 Dec 16. 

[26] Sharma S, de Vries EG, Infante JR, Oldenhuis C, Chiang L, Bilic S, et al. Phase I trial of LBY135, a 

monoclonal antibody agonist to DR5, alone and in combination with capecitabine in advanced 

solid tumors. J Clin Oncol (Meeting Abstracts). 2008 May 20;26(15_suppl):3538. 

[27] Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, et al. Apoptosis induced in normal 

human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med. 2000 

May;6(5):564-7. 

[28] Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. TRAIL receptor signalling and 

modulation: Are we on the right TRAIL? Cancer Treat Rev. 2009 May;35(3):280-8. 

[29] Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W, et al. Reduction of TRAIL-induced mcl-1 

and cIAP2 by c-myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. 

Cancer Cell. 2007 Jul;12(1):66-80. 

[30] Daniel D, Yang B, Lawrence DA, Totpal K, Balter I, Lee WP, et al. Cooperation of the proapop-

totic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-hodgkin 

lymphoma xenografts. Blood. 2007 Dec 1;110(12):4037-46. 

[31] Soria JC, Smit E, Khayat D, Besse B, Yang X, Hsu CP, et al. Phase 1b study of dulanermin 

(recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevaci-

zumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol. 2010 

Mar 20;28(9):1527-33. 

[32} Soria JC, Mark Z, Zatloukal P, Szima B, Albert I, Juhasz E, et al. Randomized phase II study 

of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-

small-cell lung cancer. J Clin Oncol. 2011 Nov 20;29(33):4442-51. 

[33] Fanale M, Burris H, Yee L, Lucas J, Dimick K, Goldwasser M, et al. Results of a phase 1B study 

of recombinant human APO2L/TRAIL with rituximab in patietns with relapsed low-grade NHL. 

Annals of Oncology. 2008 June;19(suppl 4):161. 

[34] Belada D, Mayer J, Czuczman MS, Flinn IW, Durbin-Johnson B, Bray GL. Phase II study of 

dulanermin plus rituximab in patients with relapsed follicular non-hodgkin’s lymphoma (NHL).  

J Clin Oncol (Meeting Abstracts). 2010 May 20;28(15_suppl):8104. 



35

Translating TRAIL-receptor targeting agents to the clinic | 

[35] Yee L, Burris HA, Kozloff M, Wainberg Z, Pao M, Skettino S, et al. Phase ib study of recom-

binant human Apo2L/TRAIL plus irinotecan and cetuximab or FOLFIRI in metastatic colorectal 

cancer (mCRC) patients (pts): Preliminary results. J Clin Oncol (Meeting Abstracts). 2009 May 

20;27(15S):4129. 

[36] Mom CH, Verweij J, Oldenhuis CN, Gietema JA, Fox NL, Miceli R, et al. Mapatumumab, a fully 

human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine 

and cisplatin: A phase I study. Clin Cancer Res. 2009 Sep 1;15(17):5584-90. 

[37] Leong S, Cohen RB, Gustafson DL, Langer CJ, Camidge DR, Padavic K, et al. Mapatumumab, 

an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with 

advanced solid malignancies: Results of a phase I and pharmacokinetic study. J Clin Oncol. 2009 

Sep 10;27(26):4413-21. 

[38] Von Pawel J, Harvey JH, Spigel DR, Dediu M, Reck M,  Cebotaru CL, et al. A randomized phase 

II trial of mapatumumab, a TRAIL-R1 agonist monoclonal antibody, in combination with carbo-

platin and paclitaxel in patients with advanced NSCLC. J Clin Oncol. 2010;28 suppl(7s). 

[39] Sun W, Nelson D, Alberts SR, Poordad F, Leong S, Teitelbaum UR, et al. Phase ib study of mapa-

tumumab in combination with sorafenib in patients with advanced hepatocellular carcinoma 

(HCC) and chronic viral hepatitis. ASCO Meeting Abstracts. 2011 February 03;29(4_suppl):261. 

[40] Sikic BI, Wakelee HA, von Mehren M, Lewis N, Calvert AH, Plummer ER, et al. A phase ib study 

to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, 

in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI. J Clin Oncol (Meeting 

Abstracts). 2007 June 20;25(18_suppl):14006. 

[41] Karapetis CS, Clingan PR, Leighl NB, Durbin-Johnson B, O’Neill V, Spigel DR. Phase II study 

of PRO95780 plus paclitaxel, carboplatin, and bevacizumab (PCB) in non-small cell lung cancer 

(NSCLC). J Clin Oncol (Meeting Abstracts). 2010 May 20;28(15_suppl):7535. 

[42] Wittebol S, Ferrant A, Wickham NW, Fehrenbacher L, Durbin-Johnson B, Bray GL. Phase II 

study of PRO95780 plus rituximab in patients with relapsed follicular non-hodgkin’s lymphoma 

(NHL). J Clin Oncol (Meeting Abstracts). 2010 May 20;28(15_suppl):e18511. 

[43] Rocha Lima CS, Baranda JC, Wallmark J, Choi Y, Royer-Joo S, Portera CC. Phase ib study 

of drozitumab combined with first-line FOLFOX plus bevacizumab (BV) in patients (pts) with 

metastatic colorectal cancer (mCRC). ASCO Meeting Abstracts. 2011 February 03;29(4_suppl):546. 

[44] Baron AD, O’Bryant CL, Choi Y, Ashkenazi A, Royer-Joo S, Portera CC. Phase ib study of 

drozitumab combined with cetuximab (CET) plus irinotecan (IRI) or with FOLFIRI {+/-} bevaci-

zumab (BV) in previously treated patients (pts) with metastatic colorectal cancer (mCRC). ASCO 

Meeting Abstracts. 2011 June 09;29(15_suppl):3581. 

2



36

| Chapter 2

[45] Paz-Ares L, Sanchez Torres JM, Diaz-Padilla I, Links M, Reguart N, Boyer M, et al. Safety 

and efficacy of AMG 655 in combination with paclitaxel and carboplatin (PC) in patients with 

advanced non-small cell lung cancer (NSCLC). J Clin Oncol (Meeting Abstracts). 2009 May 

20;27(15S):e19048. 

[46] Saltz L, Infante J, Schwartzberg L, Stephenson J, Rocha-Lima C, Galimi F, et al. Safety and 

efficacy of AMG 655 plus modified FOLFOX6 (mFOLFOX6) and bevacizumab (B) for the first-line 

treatment of patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol (Meeting 

Abstracts). 2009 May 20;27(15S):4079. 

[47] Kindler HL, Garbo L, Stephenson J, Wiezorek J, Sabin T, Hsu M, et al. A phase ib study to 

evaluate the safety and efficacy of AMG 655 in combination with gemcitabine (G) in patients 

(pts) with metastatic pancreatic cancer (PC). J Clin Oncol (Meeting Abstracts). 2009 May 

20;27(15S):4501. 

[48] Peeters M, Infante P, Rougier P:L,J., Uronis HE, Stephenson J, Schwartzberg LS, et al. Phase Ib/

II trial of conatumumab and panitumumab (pmab) for the treatment (tx) of metastatic colorectal 

cancer (mCRC): Safety and efficacy. ASCO Gastrointestinal Cancers Symposium. 2010;abstract 

443. 

[49] Chawla SP, Tabernero J, Kindler HL, Chiorean EG, LoRusso P, Hsu M, et al. Phase I 

evaluation of the safety of conatumumab (AMG 655) in combination with AMG 479 in patients 

(pts) with advanced, refractory solid tumors. J Clin Oncol (Meeting Abstracts). 2010 May 

20;28(15_suppl):3102. 

[50] Kindler HL, Richards DA, Stephenson J, Garbo LE, Rocha Lima CS, Safran H, et al. A placebo-

controlled, randomized phase II study of conatumumab (C) or AMG 479 (A) or placebo (P) plus 

gemcitabine (G) in patients (pts) with metastatic pancreatic cancer (mPC). J Clin Oncol (Meeting 

Abstracts). 2010 May 20;28(15_suppl):4035. 

[51] Demetri GD, Le Cesne A, Chawla SP, Brodowicz T, Maki RG, Bach BA, et al. First-line treatment 

of metastatic or locally advanced unresectable soft tissue sarcomas with conatumumab in 

combination with doxorubicin or doxorubicin alone: A phase I/II open-label and double-blind 

study. Eur J Cancer. 2012 Mar;48(4):547-63. 

[52] Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJ, Schrama JG, et al. Chemotherapy, beva-

cizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009 Feb 5;360(6):563-72. 

[53] Hecht JR, Mitchell E, Chidiac T, Scroggin C, Hagenstad C, Spigel D, et al. A randomized phase 

IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and 

bevacizumab alone for metastatic colorectal cancer. J Clin Oncol. 2009 February 10;27(5):672-80. 

[54] Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response 

evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009 

Jan;45(2):228-47. 



37

Translating TRAIL-receptor targeting agents to the clinic | 

[55] Griffith T, Konety B, Joudi F, Aubert H, Cohen M, Ratliff T, et al. Phase I study of Ad5-TRAIL 

in men with clinically organ confined prostate cancer. AACR Meeting Abstracts. 2007 April 

14;2007(1_Annual_Meeting):4870. 

[56] Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U, et al. Differential activation 

of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed 

activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene. 2001 Jul 5;20(30):4101-6. 

[57] Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF, et al. Simultaneous 

inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of 

tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis 

induction by an scFv:STRAIL fusion protein with specificity for human EGFR. J Biol Chem. 2005 

Mar 18;280(11):10025-33. 

[58] ten Cate B, Bremer E, de Bruyn M, Bijma T, Samplonius D, Schwemmlein M, et al. A novel 

AML-selective TRAIL fusion protein that is superior to gemtuzumab ozogamicin in terms of in 

vitro selectivity, activity and stability. Leukemia. 2009 Aug;23(8):1389-97.

[59] Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH, et al. Target cell-

restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-

related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res. 

2005 Apr 15;65(8):3380-8. 

[60] van der Sloot AM, Tur V, Szegezdi E, Mullally MM, Cool RH, Samali A, et al. Designed tumor 

necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via 

the DR5 receptor. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8634-9. 

[61] Reis CR, van der Sloot AM, Natoni A, Szegezdi E, Setroikromo R, Meijer M, et al. Rapid and 

efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL 

variants. Cell Death Dis. 2010 Oct 21;1:e83. 

[62] Huet H, Schuller A, Li J, Johnson J, Dombrecht B, Meerschaert K, Cromie K, Bilic S, Li S, Garner 

A, Nunes S, Chopra R, Clark K, Yao M, Fawell S, Stover D,  Sellers WR, Ettenberg S. TAS266, a 

novel tetrameric nanobody agonist targeting death receptor 5 (DR5), elicits superior antitumor 

efficacy than conventional DR5-targeted approaches. AACR Meeting Abstracts. 2012;3853. 

[63] Pan Y, Xu R, Peach M, Huang CP, Branstetter D, Novotny W, et al. Evaluation of pharmacody-

namic biomarkers in a phase 1a trial of dulanermin (rhApo2L/TRAIL) in patients with advanced 

tumours. Br J Cancer. 2011 Oct 27. 

[64] Zoog SJ, Ma CY, Kaplan-Lefko PJ, Hawkins JM, Moriguchi J, Zhou L, et al. Measurement 

of conatumumab-induced apoptotic activity in tumors by fine needle aspirate sampling. 

Cytometry A. 2010 Sep;77(9):849-60. 

2



38

| Chapter 2

[65] Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, et al. Death-

receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/

TRAIL. Nat Med. 2007 Sep;13(9):1070-7. 

[66] Punnoose EA, Wagner K, Amler L, Ashkenazi A. Sensitivity to apomab, an agonistic DR5 

specific antibody, is correlated with expression of specific O-glycosyl transferases in tumor-cell 

lines of both epithelial and non epithelial origin. AACR Annual Meeting. 2009;abstract 687. 

[67] Stern HM, Padilla M, Wagner K, Amler L, Ashkenazi A. Development of immunohistochem-

istry assays to assess GALNT14 and FUT3/6 in clinical trials of dulanermin and drozitumab. Clin 

Cancer Res. 2010 Mar 1;16(5):1587-96. 

[68] Kim H, Chaudhuri TR, Buchsbaum DJ, Wang D, Zinn KR. High-resolution single-photon 

emission computed tomography and X-ray computed tomography imaging of tc-99m-labeled 

anti-DR5 antibody in breast tumor xenografts. Mol Cancer Ther. 2007 Mar;6(3):866-75. 

[69] Gong J, Yang D, Kohanim S, Humphreys R, Broemeling L, Kurzrock R. Novel in vivo imaging 

shows up-regulation of death receptors by paclitaxel and correlates with enhanced antitumor 

effects of receptor agonist antibodies. Mol Cancer Ther. 2006 Dec;5(12):2991-3000. 

[70] Zhou L, Dicker D, Wang W, El-Deiry WS. Prediction of pro-apoptotic anti-cancer therapeutic 

response by visualization of death receptors and specific markers of apoptosis. AACR Annual 

Meeting. 2009;abstract 4471. 

[71] Rossin R, Kohno T, Hagooly A, Sharp T, Gliniak B, Arroll T, et al. Characterization of 

64Cu-DOTA-conatumumab: A PET tracer for in vivo imaging of death receptor 5. J Nucl Med. 

2011 Jun;52(6):942-9. 

[72] Duiker E, Dijkers E, Heerspink HL, de Jong S, van der Zee A, Jager P, et al. Development 

of radioiodinated rhTRAIL and a radiolabelled agonistic TRAIL receptor antibody for clinical 

imaging studies. Br J Pharmacol. 2011 Oct 20. 

[73] Oldenhuis C, Dijkers EC, Duiker EW, Fox NL, Klein JL, Gietema JA, et al. Development of radi-

olabeled mapatumumab and imaging in solid tumor patients who are treated with gemcitabine, 

cisplatin, and mapatumumab. J Clin Oncol (Meeting Abstracts). 2009 May 20;27(15S):e14521. 



39

Translating TRAIL-receptor targeting agents to the clinic | 

2





S.F. Oosting 1, M.W. den Hollander 1, B. Rikhof 1, D.B. Rouw 2, J.R. de Jong 3, P.L. Jager 4, A.H. 

Brouwers 3, A.J.H. Suurmeijer 5, W.J. Sluiter 6, W.T.A. van der Graaf 7, E.G.E. de Vries 1, 

J.A. Gietema 1, A.K.L. Reyners 1

Departments of 1Medical Oncology, 2Radiology, 3Nuclear Medicine and Molecular Imaging, 
5Pathology, 6Endocrinology, University of Groningen, University Medical Centre Groningen, 

Groningen, The Netherlands. 4Department of Nuclear Medicine, Isala Clinics,  Zwolle, The 

Netherlands. 7Department of Medical Oncology, Radboud University Nijmegen Medical Centre, 

Nijmegen, The Netherlands.

Submitted 

Previously presented at the ASCO Annual Meeting 2011

18F-FDG-peT response no early 
predictive marker for primary 

imatinib resistance in patients with 
gastrointestinal stromal tumors

Chapter 3 



42

| Chapter 3

aBstraCt

Background: Approximately 15% of gastrointestinal stromal tumor (GIST) patients show 

primary resistance to imatinib, defined as progressive disease on CT after 8 weeks. We inves-

tigated whether early change in tumor 18F-fluorodeoxyglucose uptake on positron emission 

tomography (FDG-PET) predicts primary imatinib resistance.

Methods: 36 metastatic or locally advanced GIST patients underwent FDG-PET scans before 

and 1 week after start of imatinib. Relationship between FDG-PET response (EORTC criteria) and 

CT response after 2 months of treatment (RECIST 1.0 and Choi criteria) was investigated. FDG 

uptake was measured as Standardized Uptake Value (SUV). 

Results: Of the 30 patients evaluable with FDG-PET, 26 experienced a response and 4 had 

stable disease. Mean tumor SUVmax decreased from 7.4 (SD 3.8, range 2.2-18.4) to 3.0 (SD 

2.1, range 0.1-11.8) after 1 week imatinib (P < 0.001). FDG-PET response had a high positive 

predictive value for clinical benefit (response or stable disease) according to RECIST 1.0: 92% 

(95% CI 75-99%) and Choi: 95% (95% CI 76-100%). The false negative rate was respectively 11% 

(95% CI 2-30%) and 9% (95% CI 1-30%). 

Conclusion: While FDG-PET response has a high positive predictive value for clinical benefit 

of imatinib in GIST patients, it does not predict primary resistance. 
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introduCtion

Gastrointestinal stromal tumors (GIST) are mesenchymal tumors that arise in the gastroin-

testinal tract. They are characterized by expression of CD117; the KIT receptor. Approximately 

80% of all GISTs have a gain of function mutation in KIT resulting in constitutive activation and 

continuous downstream signaling. Furthermore, 5-10% of GISTs have an activating mutation 

in the gene encoding platelet derived growth factor receptor α (PDGFRA). Imatinib is an oral 

tyrosine kinase inhibitor that inhibits signaling of both KIT and PDGFRα. The majority of patients 

with unresectable or metastatic GIST benefits from treatment with imatinib [1]. However, ± 

15% of GIST patients have primary imatinib resistant disease, i.e. progressive disease within 3 

months after start of treatment [2]. Earlier or upfront identification of primary resistance would 

spare these patients the side effects of ineffective therapy and allow an earlier switch to alter-

native treatment. To date, no predictive biomarkers to guide treatment decisions are available. 

However, it is well appreciated that imatinib can induce a rapid and dramatic decrease in glucose 

uptake in GIST [3-6].

The objective of this study was to investigate whether metabolic response early after initiation 

of treatment can be used to predict primary resistance to imatinib in patients with locally 

advanced or metastatic GIST. In addition, we studied whether the metabolic response correlated 

with progression free survival (PFS) or specific receptor tyrosine kinase gene mutations.

Materials and Methods

Patients and study design

This is a retrospective analysis of consecutive patients with newly diagnosed locally advanced, 

metastatic or recurrent GIST, who started treatment with imatinib between February 2001 and 

October 2007 at the University Medical Centre Groningen (UMCG). Imatinib was administered 

orally at 400 to 800 mg per day. Fourteen patients were part of an earlier study [4]. 

fdg-Pet

FDG-PET scans at baseline and after 1 week imatinib treatment were standard care from 

February 2001 for patients with advanced GIST in the UMCG. As of October 2007, a different PET 

scan protocol was used. Therefore, this analysis is restricted to GIST patients who underwent PET 

scans before October 2007. PET scans were performed on a Siemens ECAT EXACT HR+ scanner 

in 2D mode. Patients fasted for 6 hours. Ninety min after injection of 5 MBq/kg 18F-FDG, a whole 

body scan was performed (7-8 bed positions from femur to crown, 8 min per bed position of 

which 3 min transmission time). The iterative reconstruction algorithm AW-OSEM 2D was used 

with 2 iterations, 8 subsets and a Gaussian filter of 10 mm.

For each patient, a maximum of 5 target lesions was used for tumor evaluation. Target lesions 

were defined as the 5 most intense FDG accumulating tumor lesions. The FDG uptake was 

measured by calculating the Standardized Uptake Value (SUV) as described earlier in regions of 

interest (ROI) placed over tumor lesions, with Siemens Leonardo software [7]. The maximum SUV 

(SUVmax) and the uptake in the 3-dimensional isocontour at 70% and at 40% of the maximum 

3
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pixel value (SUV70 and SUV40) for each target lesion was measured. For all target lesions in a 

patient the mean SUVmax, the mean SUV70 and the mean SUV40 was calculated for both scans. 

For classification of metabolic tumor response, the EORTC criteria for FDG-PET imaging were 

used [7]. Also the previously reported thresholds for the single lesion with the most intense 

uptake at baseline (25% reduction, 40% reduction, <2.5 and <3.4 for SUVmax on the second scan) 

were tested [8] and the definition of metabolic response used by Choi et al (decrease of mean 

SUVmax with ≥70% to less than 2.5) [9]. 

Ct scan

CT scans were performed at baseline, after 8 weeks and every 3 months thereafter. For 

response classification, Response Evaluation Criteria for Solid Tumors (RECIST) version 1.0 was 

used as well as the criteria described by Choi et al [9,10].

Mutation analysis

Mutation analysis of KIT exons 9, 11, 13 and 17 and PDGFRA exons 12, 14 and 18 was performed 

as described previously [11]. 

outcome parameters

Primary resistance is defined as progressive disease after 8 weeks of treatment according 

to RECIST1.0 or the Choi criteria. Positive predictive value, negative predictive value and false 

negative rate of FDG-PET for primary resistance were calculated with 95% confidence intervals (CI). 

Progression free survival (PFS) was defined as the time from imatinib initiation until disease 

progression or death, whichever occurred first. For PFS analysis, the occurrence of a new lesion, 

or an increase in size of pre-existing lesions (as defined by RECIST 1.0), or development of an 

intra-tumoral nodule and/or an increase in ‘solid’ tissue, in the background of a hypodense 

lesion were considered progressive disease according to the ESMO guidelines for GIST [12,13].

statistics

For comparison of the mean SUV at the first and second FDG-PET scan, the Wilcoxon signed 

rank test was used. PFS was estimated with the Kaplan-Meier method. Patients were censored at 

the date of surgery for complete surgical resection and at the date of last follow up for patients 

alive and progression free at the time of analysis. 

results

Patients

Thirty six patients with a mean age of 62 years (range 23 - 81) were included. Nine patients 

had locally advanced disease and 27 patients had metastatic or recurrent disease. For charac-

teristics see Table 1. Two patients started with imatinib 400 mg 2 times daily, the others with 

400 mg once daily. The median follow-up time was 35 months (range 4 - 87+). In patients who 

received imatinib with a non-curative intent, median PFS was 23 months (range 2 - 83+ months) 

and in this subgroup median overall survival was 32 months (range 4 - 87+ months). Twelve 

patients received subsequent systemic treatment upon disease progression.  
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             Table 1. Patient characteristics.

Characteristics Total (N = 36)

Age (years)

Median

Range

62

23-81

Sex, N (%)

Male

Female 

22 (61)

14 (39)

Treatment setting, N (%)

Neo-adjuvant

Palliative

7 (19)

29 (81)

Primary site, N (%)

Stomach

Small bowel

Colon

Other

13 (36)

14 (39)

3 (8)

6 (17)

Metastatic sites, N (%)

Liver

Peritoneal cavity

Liver and peritoneal cavity

Other

11 (31)

8 (22)

6 (17)

2 (6)

Mutation type, N (%)

KIT exon 11

KIT exon 9

PDGFRA exon 18

Wild typea

Unknown

15 (42)

5 (14)

3 (8)

2 (6)

11 (31)

           N: number of patients

           a No KIT or PDGFRA mutation 

fdg-Pet assessment

The baseline FDG-PET scan was performed at a median of 2 days (range 1 - 46) before start 

of treatment. Four patients had no FDG-avid lesions and therefore did not undergo a second 

FDG-PET scan. These four patients had normal blood glucose levels and were not on glucose 

lowering medication. The repeat scan was performed at median 8 days (range, 6-10) after start 

of imatinib. In two patients, a different FDG-PET imaging protocol was used for the baseline and 

repeat scan; these patients were therefore excluded from the analysis, resulting in 60 FDG-PET 

scans of 30 patients available for quantification of metabolic response. Tumor FDG-uptake 

decreased from baseline with a mean SUVmax of 7.4 (SD 3.8, range 2.2 - 18.4) to a mean SUVmax of 

3.0 (SD 2.1, range 0.1 - 11.8, P < 0.001) after 1 week imatinib (Fig. 1).
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Relative changes in mean SUVmax for individual patients ranged from +7.3% to -97.8% (Fig. 2B). 

Based on change of mean SUVmax, 26 patients experienced a metabolic response according to 

EORTC criteria and four patients had metabolic stable disease (hereafter called non-responders). 

None of the patients had metabolic progressive disease. Analysis of mean SUV40 and mean 

SUV70 revealed a similar pattern with 26 responders and four non-responders, although 

according to mean SUV70, one non-responder had metabolic progressive disease. 

Predictive value of metabolic response

One out of 30 patients had non-measurable disease on CT, therefore data of 29 patients were 

available for response classification according to RECIST. Two patients had progressive disease, 

i.e. primary imatinib resistance. In six patients Hounsfield Units could not be measured, therefore 

evaluation according to the Choi criteria could be applied in 23 patients (Table 2). Positive 

predictive value of a metabolic response (estimated with mean SUVmax) for clinical benefit from 

imatinib is 92% (95% CI 75 - 99%) for RECIST and 95% (95% CI 76 - 100%) for the Choi criteria. 

As none of the metabolic non-responders in our cohort had primary imatinib resistant disease, 

a negative predictive value could not be calculated. The false negative rate of FDG-PET for 

prediction of clinical benefit from imatinib was 11% (95% CI 2-30%) for RECIST and 9% (95% CI 

Figure 1. (left) Tumor FDG uptake (in mean SUV
max 

with standard deviation) in 30 GIST patients before 

start and after 1 week imatinib (IM) treatment.

Figure 2. (below) A. Absolute and B. relative changes 

in tumor FDG uptake (in mean SUV
max

) in individual 

patients (N = 30) in up to 5 tumor lesions between 

baseline PET scan and PET scan after 1 week imatinib 

(IM) treatment. Grey dotted lines shows thresholds 

for response (-25%) and progressive disease (+25%) 

according to EORTC criteria.
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1–30%) for the Choi criteria. Of the four patients with a negative baseline FDG-PET scan, three 

had clinical benefit (two partial responses and one stable disease) and one had progressive 

disease according to RECIST. Based on the Choi criteria two out of three derived benefit from 

imatinib (both partial responses) whereas the third patient had primary resistant disease. 

Table 2. FDG PET versus CT response.

CT scan

RECIST (N = 29) Choi (N = 23)

CR/PR/SDa PD CR/PR/SDb PD

FDG-PET scan

Responsec 24 2 20 1

No response 3 0 2 0

FDG-PET response after 1 week and CT response after 8 weeks of imatinib treatment.

N = number of patients, CR = complete response, PR = partial response, SD = stable disease, PD = 

progressive disease
a CR (N = 1), PR (N = 9), SD (N = 17)
b CR (N = 1), PR (N = 16), SD (N = 5)
c decrease in mean SUVmax ≥ 25% and no new lesions and no visible increase in extent of tumor 

FDG-uptake >20% in the longest dimension

For mean SUV70 identical predictive values for primary imatinib resistant disease as for 

mean SUVmax were obtained and mean SUV40 performed worse. There was no difference in 

PFS between metabolic responders, non-responders and patients with non FDG-avid lesions 

when using mean SUVmax according to the EORTC criteria (Fig. 3). This was also the case for mean 

SUV70, mean SUV40, for the definition of response used by Choi et al and for SUVmax of the 

single lesion with the most intensive uptake at baseline according to the thresholds described 

by Holdsworth et al [8,9]. 

Figure 3. PFS in patients with a metabolic tumor response (N = 26, black line), patients without metabolic 

response (N = 4, grey solid line) and in patients with non FDG-avid tumor lesions (N = 4, grey dashed line). No 

difference in PFS was found.

3
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Mutation analysis and metabolic response

In 25 of 36 patients, sufficient tumor tissue was available for mutation analysis. A KIT exon 11 

mutation was present in 15 cases (60%), a KIT exon 9 mutation in five (20%), a PDGFRA exon 18 

mutation in three (12%), and no mutation was found in either KIT or PDGFRA in two patients (8%).

One patient with a KIT exon 9 mutation and two patients with a PDGFRA mutation showed 

no FDG uptake in tumor lesions at baseline. One patient with a KIT exon 11 and one patient with 

a KIT exon 9 mutation were not evaluable for metabolic response. Metabolic response for 20 

patients according to mutation is shown in Fig. 4.

Figure 4. Change in tumor FDG uptake (mean SUV
max

 with standard deviation) after 1 week imatinib treatment 

according to mutation type: KIT exon 11 (N = 14), KIT exon 9 (N = 3), PDGFRA (N = 1) and in wild type tumors          

(N = 2). IM = imatinib.

disCussion

The results of the current study show that early FDG-PET response cannot be used to identify 

primary imatinib resistant disease in patients with GIST. Absence of an early metabolic response 

does not indicate that patients do not benefit from imatinib.

Furthermore, patients with primary resistant disease can have a metabolic response. 

Although we found high positive predictive values of metabolic response for clinical benefit 

from imatinib (92% for RECIST and 95% for the Choi criteria) the upfront chance of response or 

stable disease is 85%, which falls within the 95% CI of the positive predictive value. Therefore, 

little if any predictive information on treatment outcome is added by early assessing metabolic 

response. 

Stroobants et al. performed FDG-PET scans at baseline and after 1 week of imatinib treatment 

in 17 GIST patients [6]. From their study a positive predictive value of 92%, a negative predictive 

value of 75% and a false negative rate of 8% for patients who derive clinical benefit from imatinib 

(response plus stable disease as best response according to RECIST) can be calculated, which 

is comparable with our results. Recently FDG-PET results of a study on neoadjuvant imatinib 

treatment in operable GIST patients were reported [14]. Looking at metabolic responders versus 

non-responders after 1 week of treatment, a positive predictive value of 100%, a negative 

predictive value of 14%, and a false negative rate of 16% can be calculated for clinical benefit 

from imatinib, again in line with our findings. A possible explanation for incidental incongruence 

between antitumor activity and glucose uptake is given by Tarn et al [15]. They demonstrated in 
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vitro that different intracellular signaling cascades are responsible for imatinib induced down-

regulation of Glut4 expression and imatinib induced apoptosis in GIST cells. However, no asso-

ciation between reduction in Glut4 expression and reduction in FDG uptake in tumors of GIST 

patients treated with imatinib in the neoadjuvant setting was found [14]. Previous studies in 

GIST patients showed that metabolic response correlated with PFS, time to progression or time 

to treatment failure (i.e. disease progression or death from any cause whichever occurs first) 

[4,6,8,9,16].

In Table 3, the current and previous studies are summarized. We did not find a correlation 

between metabolic response and PFS despite testing different SUV parameters and multiple 

cut off values for metabolic response. This may be due to the different definitions of metabolic 

response that are used. EORTC criteria are based on a few small studies in which no GIST patients 

were included. These criteria should therefore be regarded as consensus recommendations 

rather than evidence based guidelines [7]. Also, adherence to EORTC FDG-PET criteria does not 

guarantee similar analysis, as for example the number of lesions to be assessed per patient is not 

defined. Furthermore, a description of how disease progression is determined, is only provided 

by Choi et al and differs slightly from the ESMO recommendation that we used [9,13]. Finally, 

the small size of these studies and the different timing of FDG-PET scans will clearly affect the 

results. 

We found no FDG uptake in tumor lesions before start of treatment in four out of 36 patients. 

This corresponds with previous findings [6,16,17]. The numbers of patients are too small to draw 

conclusions on prognostic or predictive value of a negative baseline FDG- PET scan. 

We studied metabolic response in GIST patients starting first line treatment, according to 

mutation. Although small numbers prohibit conclusions, the FDG-PET results for the three 

patients with a PDGFRA exon 18 mutation were striking: two patients showed non FDG-avid 

lesions and the third patient is the only patient with an increase in FDG uptake after 1 week 

imatinib treatment. This suggests that in tumors with a PDGFRA exon 18 mutation, metabolic 

response to imatinib differs from KIT mutated tumors. Metabolic response was seen in 85% of 

patients with KIT exon 11 mutations (23/27) and in 50% (2/4) of patients without KIT or PDGFRA 

mutations after 1 week imatinib [14]. Fuster et al. performed FDG-PET scans in imatinib resistant 

GIST patients before and after initiation of doxorubicin while continuing imatinib [18]. In 15 

patients with mutation analysis available, they demonstrated lower baseline SUVmax in patients 

with wild type KIT tumors compared to non-wild type KIT tumors. However, in another second 

line study with sunitinib in imatinib resistant GIST patients, no correlation was found between 

KIT mutational status and metabolic activity or metabolic response in 22 patients [19].

Limitations of our study are the retrospective nature and the relative small size of the cohort. 

However, the data presented support the conclusion that early assessment of metabolic 

response with FDG-PET after 1 week of imatinib treatment in GIST patients is not helpful for 

go-no-go decisions. Primary imatinib resistance cannot be reliably identified with this technique. 

Therefore absence of progressive disease at 2 and 4 months according to RECIST 1.0 remains the 

most robust way to identify patients with a survival benefit from imatinib [20]. For second line 
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treatment with sunitinib also the absence of progressive disease according to RECIST 1.0 at 3 

months seems the best way to identify patients benefiting from this treatment [21].

This does not preclude an important role for FDG-PET imaging in staging GIST patients, as 

FDG-PET can reveal metastases that are missed on CT [4,16,22,23]. 

In conclusion, the results of our study suggest that repeat FDG-PET imaging early after 

initiation of imatinib in patients with GIST is not informative for clinical decision making with 

regard to continuation of imatinib. Imatinib is an extremely effective agent for this disease 

and should, in the advanced setting, be continued until convincing clinical and/or radiological 

evidence of progressive disease or unacceptable toxicity.

3
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aBstraCt 

Background: Response evaluation in glioblastoma (GBM) patients after first line radiotherapy 

and temozolomide (TMZ) is hampered by the occurrence of progressive, contrast-enhancing 

lesions on MRI not reflecting true tumor progression. 18F-fluorothymidine (FLT) is a Positron 

Emission Tomography (PET) tracer that is taken up by proliferating cells. The goal of this study 

was to prospectively assess the value of FLT-PET in discriminating between true and pseudopro-

gression in patients with primary GBM treated with chemoradiotherapy.  

Methods: FLT-PET and MRI scans were performed before start and 4 weeks after chemoradio-

therapy. MRI scans were also performed after 3 cycles of adjuvant TMZ. Pseudoprogression was 

defined as progressive disease on MRI after chemoradiotherapy, with stabilization or reduction 

of enhancing lesions after 3 cycles of adjuvant TMZ. Changes in maximum standard uptake 

value (SUVmax) and tumor-to-normal brain tissue (T/N) ratios were calculated for FLT uptake and 

presented as the mean of the SUVmax in case of multiple lesions. Ki67 staining in the primary 

tumor and overall survival were analyzed. 

Results: Thirty patients, (28 GBM, two gliosarcoma (WHO grade IV)), were included. Of 24 

patients evaluable for pseudoprogression, seven showed pseudoprogression and seven true 

progression. No difference was found in changes of SUVmax and T/N ratios or changes in these 

parameters between these patient groups. A lower baseline FLT uptake predicted longer overall 

survival, but baseline FLT uptake did not correlate with Ki67. 

Conclusions: FLT-PET scans do not discriminate between true progression and pseudopro-

gression in GBM patients. Baseline FLT uptake appears to predict overall survival (NTR3680).
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introduCtion 

Glioblastoma (GBM) is the most common and most aggressive type of primary brain tumors, 

accounting for more than 50% of all gliomas with an incidence of 3.19 per 100.000 in the United 

States [1]. After surgery, the addition of temozolomide (TMZ) to standard 60 Gy radiotherapy has 

improved 2-year survival from 11 to 27% and 5-year survival from 2 to 10%. This is currently the 

standard of care for newly diagnosed GBM [2]. However, response evaluation of this treatment 

in these patients is problematic. This is due to the difficulty of distinguishing recurrent tumor 

(true progression) from pseudoprogression. The latter is defined as the detection of progressive 

gadolinium-enhanced lesions on an MRI scan immediately after the end of concurrent chemo-

radiotherapy, where spontaneous improvement occurs without further treatment other than 

adjuvant TMZ [3,4]. This is the case in up to 64% of patients with progression on the first MRI scan 

after radiotherapy [5]. The difficulty of distinguishing true progression from pseudoprogression 

hampers clinical decision making in these patients. In case of pseudoprogression, standard 

treatment with adjuvant TMZ should be continued, whereas in case of true tumor progression, 

other treatment modalities – although scarce – or palliative care might be more appropriate. 
18F-fluorothymidine (FLT) is a Positron Emission Tomography (PET) tracer that is taken up by 

proliferating cells. It is phosphorylated in the cell by thymidine kinase 1, which is involved in 

DNA synthesis, and subsequently trapped. FLT uptake reflects thymidine kinase 1 activity, and 

can be used as a measure of cell proliferation. In several tumor types, FLT uptake corresponds 

with the Ki67 proliferation index and its change correlates with the response to therapy [6,7].  

In glioma patients, FLT uptake has been used for tumor grading and was correlated with Ki67 

[8,9]. Moreover, FLT-PET performed better in predicting survival and recurrence in glioma patients 

than FDG-PET and MRI [10,11]. However, no prospective studies have yet been conducted on 

the efficacy of FLT-PET to discriminate between pseudoprogression and true progression. An 

effective technique to make this discrimination is urgently needed to improve clinical decision 

making in these patients. Therefore, the aim of this prospective study in patients with newly 

diagnosed GBM was to determine whether FLT-PET scans, performed before and after chemora-

diotherapy, can discriminate between true progression and pseudoprogression as measured by 

MRI after 3 courses of adjuvant TMZ.  

Patients and Methods 

Patients and treatment

Patients with newly diagnosed GBM or gliosarcoma (WHO grade IV, hereafter referred to as 

GBM) who were eligible for standard treatment with radiotherapy and TMZ were prospectively 

included. After surgical resection or biopsy, patients were treated with radiotherapy consisting 

of 2 Gy irradiation 5 out of 7 days per week during 6 weeks, for a total dose of 60 Gy. Patients 

received concomitant TMZ orally in a dose of 75 mg/m2 daily for 6 weeks. After a treatment break 

of 4 weeks, patients received up to 6 cycles of adjuvant TMZ (150–200 mg/m2) for 5 days every 

28 days. The use of corticosteroids during treatment was registered. No changes in treatment 

4
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were introduced based on the results of the FLT-PET scan. Overall survival was calculated from 

date of informed consent to date of death or last known date alive, censored at time of analysis 

(November 2013). All patients gave written informed consent to participate in the study. The 

protocol was approved by the local ethics committee and registered in the Dutch trial register 

(NTR3680).  

imaging

Patients underwent standard radiologic follow up with MRI (1.5T using T1, T2 and contrast 

enhanced 3D T1 Gradient echo sequences) directly after surgery (baseline), 10 weeks after 

start of treatment (4 weeks after completing chemoradiotherapy), 22 weeks after start of 

treatment (after the third cycle of adjuvant TMZ or earlier as clinically indicated) and thereafter 

every 3 months. MRI data for this study were assessed by an independent neuroradiologist 

and a radiologist in training using the Macdonald criteria for tumor response evaluation [12]. 

Pseudoprogression was defined as progressive disease on MRI scan at 10 weeks, with stabiliza-

tion or reduction of enhancing lesions on MRI at 22 weeks. True progression was defined as 

progressive disease on both the MRI at 10 weeks and the MRI at 22 weeks.

FLT-PET scans were performed after surgery, but before start of radiotherapy (baseline) 

and 10 weeks after start of treatment (4 weeks after completing chemoradiotherapy). FLT was 

synthesized as described by Been et al [13]. Patients were instructed to fast for a minimum of 

4 hours before tracer injection of 200 MBq FLT intravenously, injected 30 minutes before PET 

scanning. PET scans were made on either HR+ or mCT PET scanners (Siemens, Knoxville). The 

maximum Standard Uptake Value (SUVmax) was assessed by drawing a region of interest (ROI) 

around every lesion on a separate reconstruction according to the European Association of 

Nuclear Medicine Research Ltd [14]. In case of multiple lesions, the mean of the SUVmax of the 

different lesions was calculated. FLT-PET scans were fused with the most recent MRI to differ-

entiate actual tumor from post-surgery effects outside the cerebrum if needed. The SUVmean for 

normal brain tissue was assessed by drawing a ROI in the contralateral brain tissue. Tumor-to-

normal ratios (T/N ratio) were determined by dividing the SUVmax of the tumor by the SUVmean of 

the normal brain tissue. A PET response was defined as a 25% decrease of the SUVmax between 

the first and second FLT-PET scan. 

ki67 immunohistochemical staining

Deparaffinized GBM tissue from primary surgery was used to evaluate the proliferation 

fraction of tumor cells (4-μm-thick tissue slices). Antigen retrieval was performed using 10 

mM Tris/1 mM EDTA (pH 9), in a microwave at 700 W. Endogenous peroxidase and biotin were 

blocked using routine techniques. The slides were incubated with the primary antibody, Ki67 

(Clone MIB-1; Dako, Glostrup, Denmark) at room temperature for 1 hour, followed by application 

of the secondary antibody peroxidase-conjugated rabbit anti-mouse serum (Dako, Glostrup, 

Denmark), and the tertiary antibody peroxidase-conjugated goat anti-rabbit serum (Dako, 

Glostrup, Denmark), for 30 minutes each. The first antibody was diluted 1/100 in 1% bovine 

serum albumin (BSA)/phosphate buffered saline (PBS). The secondary and tertiary antibodies 
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were diluted 1/100 in 1% BSA/PBS with 1% AB serum. Color development was performed with 

3,3′-diaminobenzidine (Sigma, Zwijndrecht, the Netherlands) for 10 minutes. The slides were 

scanned for hot spots of proliferative activity. In one high power field (400x magnification) the 

fraction of Ki67-positive nuclei/total number of nuclei was evaluated.

statistics

Mann Whitney U tests were used to compare FLT uptake between patients with and without 

pseudoprogression. To discriminate between true progression and pseudoprogression, 

Receiver Operating Curves were used to find an optimal cutoff point for FLT uptake and changes 

in uptake. A Fisher’s exact test was used to analyze categorical data. A Kaplan-Meier curve with a 

log rank test was used to analyze survival. A Pearson correlation test was used to calculate corre-

lations between FLT uptake and proliferation index. A two-sided P-value of < .05 was considered 

significant. For the Fisher’s exact test, a one-sided P value was given. Statistics were calculated 

in IBM SPSS statistics 20. Graphs were made using GraphPad Prism version 5.00 for Windows. 

results 

Patients

In total, 28 patients with GBM and two with gliosarcoma (WHO grade IV) were included in 

this study between November 2009 and November 2012. For patient characteristics, see Table 1. 

All but one patient completed radiotherapy. Seven patients did not complete concomitant TMZ, 

and of the 27 patients who started adjuvant TMZ, 16 patients did not complete the adjuvant 

courses. The most frequent reasons for this were progressive disease and thrombocytopenia. 

One patient with a secondary GBM underwent a short schedule of concomitant radiotherapy 

(23 x 2 Gy) and TMZ. The median overall survival for all 30 patients was 14 months (range 1-36 

months). Five patients were not evaluable for pseudoprogression because of early death, 

salvage surgery or clinical deterioration that prevented further participation in the study. One 

patient was not analyzable for the pseudoprogression analysis as only a baseline MRI before 

tumor resection was available (Fig 1). 

Figure 1. CONSORT diagram.

4
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    Table 1: Patient characteristics.

Characteristic No. of patients (n 
= 30)

Median Range

Age, years 58 33 - 68

Sex

Male 17

Female 13

Tumor type 

Glioblastoma 26

Secondary glioblastoma 2

Gliosarcoma 2

Type of intervention 

Biopsy  3

Surgical resection 27

Baseline FLT-PET scans were performed 5 days (median) before start of radiotherapy. Two 

patients had their baseline FLT-PET scan 2 and 4 days after start of radiotherapy for logistic 

reasons. Follow-up FLT-PET scans were made 27 days (median) after completion of radiotherapy. 

Three patients had their follow up FLT-PET scan 1 day after the start of adjuvant TMZ. Finally, for 

logistic reasons two patients had their FLT-PET scan 6 and 22 days, respectively, after the start 

of adjuvant TMZ. 

Pseudoprogression 

A total of 24 patients were evaluable for pseudoprogression analysis (Fig 1). Pseudoprogression 

was seen in seven patients, and true progression in seven other patients (Figures 2 and 3).Ten 

patients had either stable disease or a complete response on MRI after 10 weeks (Table 2). 

We found no difference in or change of SUVmax and T/N ratio on FLT-PET scans between 

patients with pseudoprogression and those with true progression. With 25% reduction of SUVmax 

as a cutoff value, only two of the patients with pseudoprogressivon were identified, while three 

patients with true progression also showed a decrease in SUVmax over 25% (sensitivity 29%, spec-

ificity 43%). We also used optimal cutoff points found by others for identifying recurrent tumor 

of a SUV ≥ 1.34 and T/N ratio of ≥ 4.94 applied to FLT-PET scan at 10 weeks [15,16]. This approach 

also did not predict all cases correctly. Using a T/N ratio of ≤ 2.95 on the FLT-PET scan at 10 

weeks, we identified four out of seven patients with true progression and zero patients with 

pseudoprogression (sensitivity 100%, specificity 57%, one sided P = .04). ROC curves showed no 

other reasonable cutoff point for any parameter to discriminate between pseudoprogression 

and true progression. 
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Figure 2. FLT-PET images at baseline (left) and 10 weeks (right) and MRI images at baseline (left), 10 weeks 

(middle) and 22 weeks (right) of a patient with pseudoprogression. SUV
max 

on baseline FLT-PET was 1.44, SUV
max

 

at 10 weeks 0.74.

Figure 3. FLT-PET images at baseline (left) and 10 weeks (right) and MRI images at baseline (left), 10 weeks 

(middle) and 22 weeks (right) of a patient with true progression. SUV
max 

on baseline FLT-PET was 3.70, SUV
max

 at 

10 weeks 1.80.
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Table 2. Overview of results in all included patients.

Patient 

No. 

SUVmax 

baseline

T/N 

baseline

SUVmax 

10 weeks

T/N  

10 weeks

Change 

SUVmax%

MRI 10 

weeks

MRI 22 

weeks

Ki  

67 %

Overall 

survival

1 1.55 3.4 1.33 2.8 14.2 NE SD 30 29

2 NU ND NU ND ND SD SD 40 36*

3 NU ND 0.81 3.1 ND PD SD 35 32

4 1.73 5.6 1.58 6.3 8.7 PD SD 35 17

5 1.24 3.1 1.46 3.2 -17.7 SD PD 40 20

6 1.75 4.4 0.95 2.9 45.7 SD PD 30 31

7 1.59 7.6 1.34 8.4 15.7 PD NE 25 10

8 2.18 14.5 0.74 4.4 66.1 PD PD 50 19

9 2.43 6.2 1.14 2.5 53.1 SD SD 30 24

10 NU ND NU ND ND CR PD 10 14

11 NU ND NU ND ND CR CR 50 28

12 2.84 9.8 1.64 5.1 42.3 SD ND 30 4

13 NU ND 0.96 1.7 ND PD PD 25 9

14 1.23 3.0 1.14 3.5 7.3 PD SD 60 27*

15 1.90 5.3 1.61 4.0 15.3 PD SD 18 9

16 3.00 5.9 1.26 2.6 58.0 SD PD 19 10

17 5.02 9.0 ND ND ND ND ND 50 1

18 4.17 8.7 2.67 3.3 36.0 PD SD ND 9

19 1.10 2.0 1.00 1.9 9.1 SD SD 40 25*

20 1.38 3.9 1.68 2.8 -21.7 PD PD 30 11

21 1.59 5.9 0.85 2.3 46.5 PD PD 25 22*

22 0.65 2.0 0.68 2.7 -4.6 PD PD 20 14

23 0.35 1.5 NU ND ND CR CR 15 19

24 1.64 6.6 ND ND ND SD ND 20 9

25 1.61 6.0 1.33 3.9 17.4 PD SD 50 17*

26 2.85 16.8 0.93 5.5 67.4 SD PD 60 6

27 3.70 9.5 1.80 5.3 51.4 PD PD 50 5

28 1.44 7.6 0.74 4.1 48.6 PD SD 50 13*

29 2.93 8.1 2.23 5.9 23.9 PD PD 7 7

30 1.42 3.3 ND ND ND SD SD ND 10

Abbreviations: PD = Progressive Disease, SD = Stable Disease, ND = Not Done, NE = Non Evaluable, NU =  
No Uptake, CR = Complete Response. 

*Patients censored at date last known alive. 
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overall survival 

In all 30 patients, a baseline FLT-PET scan was available (Figure 1). In November 2013, 24 

patients had died and six were censored at the last known alive date. The median SUVmax for all 

patients on baseline FLT-PET was 1.59. For patients with a SUVmax ≤ 1.59, median overall survival 

was longer compared to patients with a SUVmax > 1.59 (20 vs 9 months P = .01) (Figure 4). 

Figure 4. Kaplan-Meier curve for patients with SUV
max

 on first FLT-PET scan ≤ 1.59 and > 1.59. Overall survival is 

higher for patients with SUV
max

 ≤ 1.59 (P = .01). 

Proliferation index

In the 28 patients with available surgical specimens for Ki67 staining, the mean SUVmax at 

baseline FLT-PET did not correlate with the Ki67 index of the tumor tissue before treatment. 

disCussion 

In this prospective trial we determined that serially measured FLT uptake in GBM patients 

did not discriminate between true progression and pseudoprogression. Uptake and changes in 

uptake was measured on FLT-PET scans before (at baseline) and after chemoradiotherapy. Low 

FLT uptake at baseline was predictive of longer survival, but FLT uptake did not correlate with 

the Ki-67 index of the primary tumor. 

Despite the urgent need to distinguish between true progression and pseudoprogression in 

GBM patients, until now only retrospective studies have been performed on patients who had 

a radiological suspicion of recurrent brain tumor at different time points and showed variable 

results. In one such study, FLT-PET had a low specificity for identifying recurrent tumor from 

benign lesions in 20 patients [17]. Three other studies were able to discriminate between true 

progression and radionecrosis in 15, 19 and 21 glioma patients, respectively, using FLT kinetic 

values and the tumor-to-normal ratio [15,16,18]. A possible explanation for our findings is that 

FLT uptake in high-grade gliomas reflects not only trapping of FLT in proliferating tumor cells, 

but also disruption of the blood-brain barrier. As a result, areas with true progression as well as 

with pseudoprogression would show increased uptake. 

To limit the burden of trial participation for the patients in this poor prognosis group, we did 

not perform kinetic modeling. Instead, we used SUVmax for the quantification of FLT uptake. SUV 

4
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is easy to obtain, mostly used in clinical practice and has been proven to be robust. However, 

kinetic analysis might be of interest to distinguish between true FLT uptake due to proliferation 

and FLT leakage that results from disruption of the blood brain barrier. There are several studies 

that support this, although others showed a good correlation between FLT kinetic values and 

SUV [19-24]. Using kinetic analysis has several disadvantages in practice. It is a time-consuming 

procedure, as the uptake in time needs to be assessed, and it requires collecting multiple arterial 

blood samples, both of which make the procedure burdensome for patients. Several studies 

have suggested other parameters for quantification of FLT-PET, such as proliferative volume 

and parametric response maps [25,26]. Due to the small numbers of patients in the studies 

performed so far and the different approaches used for quantification, direct comparison of 

the results is difficult. Consequently, we are unable to draw more definitive conclusions about 

the usefulness of FLT-PET in glioma. However, the use of SUVmax could also have limitations. For 

instance, the heterogeneity of the FLT uptake is not taken into account by using SUVmax only. 

Another constraint of the present study is that the optimal time points for serial FLT-PET 

scanning before and during GBM treatment are difficult to choose. Because the aim of this 

study was to differentiate between true and pseudoprogression after chemoradiotherapy, we 

performed the baseline FLT-PET scan after surgery. Scanning before surgery would reveal tumor 

uptake, but most patients undergo a gross total resection of tumor tissue. However, scanning 

after surgery may have led to increased uptake of FLT due to increased blood flow and increased 

proliferation as part of the wound healing process. 

A surprising finding was that a T/N ratio ≤ 2.95 on the FLT-PET scan at 10 weeks identified 

patients with true progression only, as patients with true tumor progression would be expected 

to have a higher proliferation rate. Because of the small numbers of patients in this analysis, this 

result should be interpreted with caution; future studies are needed to confirm if this is indeed a 

clinically relevant finding. Currently, two trials are investigating FLT as an imaging biomarker of 

early treatment response (NCT01880008, NCT00813566). 

In earlier studies, correlations between FLT uptake in brain tumors and the Ki67 index were 

found [8-10]. However, in these studies FLT-PET scans were often performed before surgery, 

whereas in the current study post-surgery FLT-PET scans were made. This might explain the lack 

of correlation between FLT uptake and Ki67 index. 

In the current study, pseudoprogression and true progression were determined based on the 

MRI results at 22 weeks. This time point was chosen due to its clinical relevance. After 3 adjuvant 

TMZ courses, the diagnosis of true progression results in cessation of TMZ, thus avoiding further 

side-effects of TMZ and enabling a timely switch to second-line therapy or inclusion in clinical 

trials. However, the selection of this time point may have resulted in overestimation of the 

number of patients with pseudoprogression. Taal et al. defined a period with stable disease of 6 

months after radiotherapy for the diagnosis pseudoprogression [3]. Applying this criterion would 

have classified two patients with pseudoprogression as having true progression. However, this 

did not improve the performance of the FLT-PET scan in discriminating between true progres-

sion and pseudoprogression. On the other hand, clinical signs of pseudoprogression can take 
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longer than 3 months to resolve, so we might also have underestimated the number of patients 

with pseudoprogression [27]. 

Fortunately, since the start of this study, several new initiatives have been initiated. The 

RANO criteria for glioma response evaluation on MRI have been developed, and this reduces 

the number of patients found with pseudoprogression [28,29]. Also, other imaging modalities 

such as perfusion MRI and 11C-methionine-PET have shown interesting results, although large 

prospective studies comparing multiple imaging modalities are still lacking [30,31]. 

In conclusion, our prospective study suggests that FLT-PET scanning is not useful in for 

discriminating between pseudoprogression and true progression in GBM patients treated with 

radiochemotherapy. 
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aBstraCt 

Background: Transforming growth factor-β (TGF-β) signaling is involved in glioma devel-

opment. The monoclonal antibody fresolimumab (GC1008) can neutralize all mammalian 

isoforms of TGF-β and tumor uptake can be visualized and quantified with 89Zr-fresolimumab 

PET in mice. The aim of this study was to investigate the fresolimumab uptake in recurrent high 

grade gliomas using 89Zr-fresolimumab PET and to assess treatment outcome in patients with 

recurrent high grade glioma treated with fresolimumab. 

Methods: Patients with recurrent glioma were eligible. After intravenous administration of 37 

megabecquerel (MBq) (5 mg) 89Zr-fresolimumab, PET scans were acquired on day 2 and/or day 

4 after tracer injection. Thereafter, patients were treated with 5 mg/kg fresolimumab intrave-

nously every 3 weeks. 89Zr-fresolimumab tumor uptake was quantified as maximum standard-

ized uptake value (SUVmax). MRI scans for response evaluation were performed after 3 infusions 

or as clinically indicated. 

Results: Included were 12 recurrent high grade glioma patients: ten glioblastoma, one 

anaplastic oligodendroglioma and one anaplastic astrocytoma. All patients underwent an 
89Zr-fresolimumab PET scan 4 days after injection. In four patients an additional PET scan was 

performed on day 2 after injection. SUVmax on day 4 in tumor lesions was 4.6 (1.5 - 13.9) versus a 

median SUVmean of 0.3 (0.2 - 0.5) in normal brain tissue. All patients showed clinical and/or radio-

logical progression after 1-3 infusions fresolimumab. Median progression free survival was 61 

days (25-80) and median overall survival 106 days (37-417). 

Conclusion: 89Zr-fresolimumab penetrated recurrent high grade gliomas very well, however 

this did not result in clinical benefit.
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introduCtion 

High grade gliomas are rapidly progressive brain tumors that are divided into anaplastic 

gliomas and glioblastomas based upon their histopathologic features. The 5-year survival rates 

for anaplastic oligodendroglioma, anaplastic astrocytoma and glioblastoma (GBM) are 49%, 

25% and 5%, respectively [1]. Apart from surgery, the standard treatment of gliomas is currently 

based on tumor cell death induction by radiotherapy and chemotherapy. Given the modest 

treatment results novel strategies for the treatment of malignant glioma are needed.

Transforming growth factor-β (TGF-β) acts as a tumor promoter in advanced tumors where 

it induces proliferation and metastasis and suppresses the immune response [2]. TGF-β and its 

receptors are overexpressed in GBM and TGF-β signaling is involved in multiple steps of GBM 

development and invasion [3-5]. Plasma TGF-β levels are elevated in GBM patients and decrease 

after surgical tumor resection [6]. In addition, progression-free survival (PFS) and overall survival 

(OS) are decreased in glioma patients with high levels of phosphorylated SMAD2 (p-SMAD2), 

the substrate of TGF-β receptor I, compared with glioma patients with low levels of p-SMAD2 [7]. 

These features make TGF-β a promising target molecule for therapeutic approaches in recurrent 

glioma and therefore several TGF-β-inhibitors are under investigation in this setting [8]. 

Fresolimumab (GC1008) is a monoclonal antibody capable of neutralizing all mammalian 

isoforms of TGF-β (i.e., 1, 2, and 3) [9]. In a phase 1 study with fresolimumab in patients with 

melanoma and renal cell carcinoma, six patients achieved stable disease and one patient had a 

partial response [10]. In a phase 2 study in 13 mesothelioma patients stable disease was seen in 

three patients at 3 months [11]. 

Current standard of care and experimental treatment results in patients with recurrent high 

grade glioma are disappointing. It is often suggested that this is due to the impermeability 

of the blood brain barrier which may prevent drugs from reaching the tumor [12]. For thera-

peutic success in brain tumors, it is essential for a monoclonal antibody like fresolimumab to 

reach the target site in the brain. In tumor xenograft models, tumor uptake could be visualized 

and quantified with Zirconium-89 (89Zr) fresolimumab PET [13]. Therefore the aim of this study 

was to visualize and quantify fresolimumab uptake in recurrent high grade glioma using 
89Zr-fresolimumab PET. In addition, we evaluated the effect of treatment with fresolimumab in 

recurrent high grade glioma patients. 

Material and Methods

Patients 

Adult patients with recurrent glioma with one or more contrast enhancing lesions of at least 

20 mm on MRI were eligible. Main other inclusion criteria were: WHO performance score 0 - 2, 

adequate bone marrow, coagulation, kidney and liver function and negative tests for hepatitis 

B, C and HIV. Previous surgery, radiotherapy, chemotherapy or investigational agents should 

have been >4 weeks prior to inclusion (>6 weeks for nitrosourea, or monoclonal antibodies) and 

patients must have recovered from previous treatment. Main exclusion criteria were: history of 

5 



78

| Chapter 5

ascites or pleural effusions, active hypercoagulability states or use of anti-coagulants, hyper-

calcemia, pregnancy or nursing mothers, diagnosis with other malignancies (unless curatively 

treated), organ transplants, immunosuppressive therapy, active infection, autoimmune disease, 

and other significant uncontrolled medical illnesses.

This study has been approved by the local medical ethical committee and registered in a 

clinical trial register (Trial registration ID: NCT01472731). All patients gave written informed 

consent. A data safety monitoring board reviewed the progress and safety during the study. 

treatment 

Patients were treated with 5 mg/kg fresolimumab (provided by Genzyme (Sanofi-Aventis 

Oncology)) intravenously every 3 weeks until radiological or clinical progression or unaccep-

table toxicity. Fresolimumab was administered over 90 minutes for the first infusion, thereafter 

over 60 minutes and finally 30 minutes if no infusion related reactions occurred. Within 30 

minutes before infusion, patients received acetaminophen (500 mg) and clemastine (2 mg) as 

premedication. All adverse events were recorded and graded according to CTCAE version 4. PFS 

and OS were calculated from date of informed consent to date of disease progression on MRI, 

clinical progression or death. 

imaging

Conjugation and radio labeling of fresolimumab was performed under good manufacturing 

conditions (GMP) as previously described [13]. Before start of treatment with fresolimumab, 

patients were injected with 37 MBq (5 mg) 89Zr-fresolimumab. The radioactive dose of 37 MBq 

and the protein dose of 5 mg results in a specific activity of 7.4 MBq/mg. Thereafter, patients 

were observed for 2 hours for possible infusion related reactions. 
89Zr-fresolimumab PET scans were acquired on day 4 after injection. To assess the tumor 

accumulation of 89Zr-fresolimumab over time, an additional scan was acquired on day 2 after 

injection in some patients. Normal organ distribution of 89Zr-fresolimumab was assessed by 

whole body PET scans. The images were acquired using two PET camera systems (ECAT HR+, 

Siemens Medical Systems, Knoxville, TN; mCT Biograph, Siemens Medical Systems, Knoxville, 

TN). Acquisition time for the ECAT HR+ PET camera was 10 minutes per bed position on day 

2 after injection (of which 20% is transmission time). On day 4 after injection, imaging time 

was prolonged to 12 minutes per bed position to correct for decay time. For the mCT camera, 

imaging time was shorter (5 minutes per bed position). All scans were reviewed and analyzed 

by a nuclear medicine physician (AG) and an investigator (MdH). All attenuation-corrected PET 

images and MRI series (gadolinium enhanced T1, performed within 4 weeks before start of the 

study) were retrospectively fused by using a commercially available software program (esoft, 3D 

fusion, Siemens Medical Solutions) on a Siemens Workstation (Syngo MMWP, Siemens Medical 

Solutions) to identify tumor lesions. The two datasets were aligned based on mutual informa-

tion using the anatomical contours of the loaded datasets. Regions Of Interest (ROIs) were 

drawn around the tumor lesions on the PET scans (MdH). In normal organs ROIs were drawn 

in the same area of the organs for all patients. 89Zr-fresolimumab uptake was quantified using 
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AMIDE Medical Image Data Examiner software (Stanford University, Palo Alto, CA) version 0.9.2 

to calculate the standardized uptake value (SUV) [14]. The maximum SUV (SUVmax) of the tumor 

lesions and the mean SUV (SUVmean) of normal organs including blood (measured in the sinus 

confluens and iliac artery) was calculated.

Follow-up brain MRI scans (1.5T using T1, T2 and contrast enhanced 3D T1 Gradient echo 

sequences) were performed after every 3 treatment cycles (every 9 weeks) or as clinically 

indicated. MRI data for this study were assessed by a neuroradiologist (JCdG) using the 

Macdonald criteria for tumor response evaluation [15]. 

Plasma pharmacokinetics and biomarkers

Heparin plasma samples were collected from patients 1 hour after injection and at the time 

of PET scanning for 89Zr-fresolimumab pharmacokinetics. Plasma samples were counted in a 

gamma counter and the tracer concentration in plasma was calculated using a calibration graph. 

Before start of fresolimumab treatment, citrate plasma samples were collected. Blood 

samples were drawn without tourniquet when possible, immediately placed on ice and centri-

fuged at 2500 g for 30 minutes at 4 °C without brake. Plasma samples were stored at -70 °C. 

In these samples, total TGF-β1 was analyzed using a human TGF-β1 immunoassay (Quantikine, 

R&D Systems Minneapolis, MN). 

p-SMAD2 was analyzed as a read out of TGF-β signaling in archival paraffin embedded 

primary tumor tissue of all patients. Formalin fixed, paraffin embedded 3-µm tissue sections 

were mounted on microscope slides and dried overnight at 55°C. Tissue sections were dewaxed 

in xylene, and rehydrated in graded series of ethanol. Sections were subjected to microwave 

pretreatment with pH 6.0 citrate buffer for staining of p-SMAD2 (# 3101 Cell Signaling 

Technology, Inc. Danvers, MA). Subsequently sections were treated with 0.3% H2O2 for 30 

minutes, blocked for 1 hour with 2% BSA to reduce nonspecific antibody binding and were 

incubated with primary antibody. All antibody solutions were made in PBS with 1% BSA and 

0.1% TritonX-100. Incubation at 4°C overnight was followed by incubation with goat anti-rabbit 

antibody conjugated to peroxidase (DAKO, Heverlee, Belgium) and subsequently with rabbit 

anti-goat antibody conjugated to peroxidase (DAKO). Staining was visualized by 3,3’-diami-

nobenzidine and sections were counterstained with hematoxylin and mounted. As negative 

control, primary antibody was omitted and incubations were performed as described above.

statistical analysis

In the protocol 2 stopping rules were defined. The study would be terminated i) after inclusion 

of six patients if no 89Zr-fresolimumab uptake was seen on the PET scan; and ii) after inclusion 

of 12 patients if treatment with fresolimumab showed no clinical benefit. If clinical benefit was 

seen a maximum of 20 patients could be included. Statistical analyses were performed using 

the Pearson correlation test and the Mann-Whitney U test using IBM SPSS statistics 20. Data are 

presented as median with range unless stated otherwise. Two-sided P - values of 0.05 or less 

were considered to indicate significance. Graphs were made using GraphPad Prism version 5.00 

for Windows. 

5 
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results 

Patients and treatment

Twelve patients with recurrent high grade glioma (nine primary glioblastoma, one secondary 

glioblastoma (WHO Grade IV), one secondary anaplastic oligodendroglioma and one secondary 

anaplastic astrocytoma (WHO grade III) were enrolled in this study (Table 1). Patients were 

previously treated with 2 lines of treatment (1 – 8). 

                    Table 1: Patient characteristics. 

Characteristic no

Number of patients 12

Age, years

Median

Range

51

32-68

Sex

Male 

Female

6

6

Tumor type 

Glioblastoma

Anaplastic astrocytoma

Anaplastic oligodendroglioma

10

1

1

No of previous treatments

Median (range) 2 (1-8)

Previous treatment

Surgery

Radiotherapy + temozolomide 

Radiotherapy

Re-resection

Re-irradiation

Temozolomide 

Lomustine

Bevacizumab 

11

9

2

5

4

3

2

1

Two patients received 1 infusion of fresolimumab, five patients received 2 infusions and five 

patients received 3 infusions. All patients showed clinical progressive disease during treatment 

or progressive disease on the first on-treatment MRI scan. PFS was 61 days (25 - 80) and OS 106 

days (37 - 417). In the absence of clinical benefit the study was closed after the first 12 patients. 

There were no adverse events related to tracer injection. In 12 patients 69 non hemato-

logic adverse events, mostly grade 1 or 2 and mostly related to progression of disease, were 

observed during the study. Thirteen hematologic grade 1 adverse events were registered. 

The most common adverse events were neurologic deterioration, headache, skin disorders, 
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nausea and fatigue (Table 2). Adverse events that were considered as possibly related to fresoli-

mumab were acneiform rash (grade 1, 1 patient), dry skin (grade 1, 1 patient), fatigue (grade 2, 2 

patients), thrombocytopenia (grade 1, 1 patient) and epistaxis (grade 1, 1 patient). Four serious 

adverse events were recorded, of which 3 were neurologic worsening related to progressive 

disease and one was pain related to an osteoporotic vertebra fracture, all assessed unrelated to 

fresolimumab.

Table 2: Hematologic adverse events and most common non hematologic adverse events. 

adverse event no of cases grade 1 grade 2 grade 3

Neurologic deterioration 16 3 8 5

Headache 12 7 3 2

Skin disorders 8 7 1

Nausea 7 3 3 1

Fatigue 6 2 4

Thrombocytopenia 6 6

Anemia 5 5

Leucopenia 2 2

In four patients no post treatment MRI was made because of clinical deterioration. In two 

patients, suspected dispersed hemorrhagic spots were seen in the tumor on post treatment 

MRI. A relationship with fresolimumab could not be excluded, although one of these patients 

also had a second course of radiotherapy prior to study entry. 

imaging 

All 12 patients underwent at least a “brain only” PET scan on day 4 after injection. Seven 

patients underwent a whole body scan. Four patients underwent a whole body scan on both 

day 2 and day 4 after injection. The interval between date of consent en injection of PET tracer 

was 7 days (0 - 15). 

In all patients uptake of 89Zr-fresolimumab was seen in tumor lesions (n = 16). The SUVmax in 

tumor lesions on day 4 was 4.6 (1.5 - 13.9), which was higher than the SUVmean of normal brain 

tissue (0.3 (0.2 - 0.5)) (P < 0.01). The SUVmean was 3.0 (2.0 - 6.2) in the blood of the sinus confluens. 

In patients with a whole body scan the SUVmean of normal organs was the highest in the heart (8.3 

(6.4 - 8.9)) followed by the liver (7.1 (5.4 - 11.2)) and the kidneys (5.5 (3.4 - 6.6)) (Figure 1). In eight 

patients, uptake of 89Zr-fresolimumab was not seen in each tumor lesion. Most tumor lesions 

that did not show uptake were small (< 10 mm on MRI). In three patients no uptake was seen in 

larger gadolinium enhanced lesions of 13, 18, and 12 mm respectively. The latter 2 lesions were 

found in previously irradiated areas and 1 of these was not visible on the follow up MRI scan 

(Figure 2). In all four patients who underwent a PET scan on both day 2 and day 4 after injection, 

the tumor to blood ratio (measured in the sinus confluens) increased from day 2 to day 4 after 

injection (Figure 2). There was no correlation between tumor uptake and PFS or OS. 

5 
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Plasma pharmacokinetics and biomarkers

The plasma concentration of 89Zr-fresolimumab at 1 hour, 2 days and 4 days after injection 

was 1.87 (1.20 - 2.30), 1.31 (0.96 - 1.76) and 1.06 (0.72 - 1.38) μg/mL respectively. When corrected 

for the injected dose, the extrapolated Cmax/dose was 0.37 (0.23 - 0.41) μg/mL/mg (n = 10). 

Pre-treatment plasma TGFβ1 levels were 2058 pg/mL (837 - 3444) and correlated with mean 

SUVmax in the tumor lesions 4 days post injection (r = 0.61, P = 0.04, (Figure 3)). p-SMAD2 staining 

in primary tumor tissue was positive for all tumors, but also for normal brain tissue (Figure 4). 

disCussion

This is the first study that shows tumor uptake of a radiolabeled antibody in recurrent high 

grade glioma patients, indicating that fresolimumab does reach its target destination within the 

brain. Unfortunately, mono-therapy with fresolimumab did not result in an antitumor effect. 

The median SUVmax of 4.6 found in the gliomas is comparable to the SUVmax of 5.8 (1.7 - 15.1) 

found in metastatic lesions with 89Zr-bevacizumab PET in patients with neuroendocrine tumors 

[16]. The Cmax/dose of 89Zr-fresolimumab 1 hour after injection of 0.37μg/mL/mg is comparable 

to the pharmacokinetic results of an earlier study with fresolimumab [17]. This indicates that 

the radio labeled antibody has a similar Cmax with fresolimumab compared to other studies. 

Three contrast enhancing lesions >10 mm did not take up 89Zr-fresolimumab. Two were found 

in previously irradiated areas and one of these disappeared on follow up MRI. These lesions 

are suspected to represent radionecrosis instead of viable tumor tissue which might be the 

reason for the lack of TGF-β and uptake of 89Zr-fresolimumab. In all patients who underwent 

a whole body PET scan on both day 2 and day 4 after injection, the tumor to blood ratio 

increased. This increase in ratio supports tumor specific uptake. This pattern of tumor accumula-

tion and increasing tumor to blood ratios over time was also seen in our preclinical study with 

Figure 1. A: Representative example of 89Zr-fresolimumab PET on day 4 and uptake in the brain tumor (arrow). 

B: Uptake of 89Zr-fresolimumab in different organs (SUV
mean

) and tumor (SUV
max

) on day 4 after tracer injection. 

Blood pool uptake was measured in the sinus confluens. Blood, brain and tumor values measured in n = 12, other 

organs in n = 7 patients. 
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Figure 2. A: Fused MRI and PET scan of a patient with 2 contrast enhancing lesions. High uptake visible in 

the frontal lesion (left image). No uptake visible on PET scan in occipital lesion (right image, arrow) that was 

previously irradiated. B: MRI and fused MRI/PET images of a patient with 2 contrast enhancing lesions. The 

SUV
max

 in the progressive right frontal lesion was 5.5. The SUV
max 

in the previously irradiated lesion paraventricular 

right was 2.1. C: Whole body PET scan on day 2 (left) and day 4 (right) with increase of SUV
max

 in frontal brain 

lesion (black arrows) from 4.0 to 5.5. Tumor to blood ratio increased from 0.8 to 1.2. D: Tumor to blood ratios on 
89Zr-fresolimumab PET in 4 patients on day 2 and day 4 after injection. 

Figure 3. (left) Correlation between TGFβ1 in plasma and 

mean SUV
max 

of 89Zr-fresilimumab in brain tumor lesions on 

day 4 after injection (r = 0.61, P = 0.04).

Figure 4. (below) A: H&E staining of GBM with central 

necrosis. B: p-SMAD2 staining of the same area. 

5 
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89Zr-fresolimumab and in brain metastases in a clinical study with 89Zr-trastuzumab in metastatic 

breast cancer patients [13,18]. Taken together these findings suggest that 89Zr-fresolimumab 

uptake was not only a reflection of antibody leakage due to a damaged blood brain barrier but 

was tumor specific and TGF-β driven. 

In earlier studies the uptake of gemcitabine and GRN1005 in recurrent glioma patients was 

shown by analyzing tumor tissue obtained during surgery [19,20]. However, performing tumor 

biopsies is often not feasible in this patient group and tumor characteristics may change over 

time. PET scanning can be a non-invasive alternative for exploring potential drugable targets 

and showing tumor penetration of drugs. 

Treatment with fresolimumab was generally well tolerated, without infusion related reactions. 

Most adverse events were grade 1 or 2 and related to progression of disease. Unfortunately, no 

clinical benefit was observed in this small and often extensively pretreated patient group in 

which only one dose of fresolimumab was tested. Possible effects of this treatment in higher 

doses can therefore not be excluded. The median PFS was 61 days, which is comparable to the 

PFS of physician choice chemotherapy arm in recurrent glioblastoma in a recently conducted 

randomized phase 3 trial [21].

In all archival tumor samples, p-SMAD2 was positive, indicating that the TGF-β pathway was 

active in the tumors. In gliomas multiple signaling pathways are activated, and inhibition of 

just one pathway might be insufficient for a response [22]. Recently, other clinical studies using 

TGF-β inhibition in glioma patients have been published. Traberdersen is an antisense oligode-

oxynucleotide that inhibits TGF-β2. In a randomized 2b study traberdersen was administered 

intra-tumorally by convection-enhanced delivery and compared with standard chemotherapy 

in patients with recurrent/refractory high-grade glioma. Six-month tumor control rates were 

not significantly different in the entire study population (anaplastic astrocytoma and GBM). 

Pre-specified anaplastic astrocytoma subgroup analysis showed a significant benefit regarding 

the 14-month tumor control rate for trabedersen vs chemotherapy [23]. A phase 1 study with 

LY2157299 (a TGF-β receptor 1 kinase inhibitor) showed confirmed responses in treatment 

refractory gliomas in three out of 28 patients [24]. TGF-β therefore remains a potential inter-

esting target in glioma patients, and more (combination) studies are welcomed. 

ConClusion

In this study it was proven that an antibody against TGF-β reaches recurrent high grade 

gliomas. Although no treatment benefit was seen, this finding could be exploited for further 

development of recurrent high grade glioma treatment with antibodies or antibody-drug 

conjugates. 
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aBstraCt 

Background: Metastatic testicular cancer has a favorable prognosis when treated with BEP 

(Bleomycin, Etoposide and cisPlatin) chemotherapy. Bleomycin-induced pneumonitis (BIP) 

is a well known side-effect which can be fatal. In this study, we investigated the prevalence 

of lesions suspect for bleomycin-induced pulmonary changes on restaging CT scans after 

treatment, and whether the fibrosis markers Transforming Growth Factor-beta1 (TGF-β1), 

Growth Differentiation Factor-15 (GDF-15), and hs-CRP were predictive of this.

Methods: Patients between 18 and 50 years of age with metastatic testicular cancer treated 

with BEP chemotherapy were included in this prospective non-randomized cohort study. 

Post chemotherapy restaging CT scans were analyzed for abnormalities that were suspect for 

bleomycin-induced pulmonary changes as judged by two independent radiologists. The radio-

graphic abnormalities were graded as minor, moderate or severe. Plasma samples were collected 

before, during and after treatment and were quantified for TGF-β1, GDF-15 and hs-CRP. 

Results: 66 patients treated with BEP chemotherapy were included. Forty-five (68%) showed 

signs of bleomycin-induced pulmonary changes on the restaging CT scan, 37 were classified 

to have minor and eight to have moderate abnormalities. No differences in TGF-β1, GDF-15, or 

hs-CRP plasma levels were found between these groups. 

Conclusion: Bleomycin-induced pulmonary changes are very common on restaging CT scans 

after BEP chemotherapy for metastatic testicular cancer. TGF-β1, GDF15 and hs-CRP plasma 

levels before, during and after treatment are not different between patients with and without 

radiological signs of pulmonary bleomycin-induced toxicity and, therefore, not helpful as early 

fibrosis biomarkers to predict this. 
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introduCtion  

Metastatic testicular cancer has a favorable prognosis with a 5 year overall survival over 90% 

when treated with the current standard of BEP (bleomycin, etoposide and cisplatin) chemo-

therapy. Bleomycin is considered to be an essential component of the regimen [1]. Although 

well tolerated, in roughly 10% of the patients treated with this regime, bleomycin-induced 

pulmonary toxicity (BIP) is observed, with clinical symptoms such as dry cough, dyspnea, 

crackles during auscultation, abnormalities on chest X-ray and fever [2]. BIP is predominantly a 

fibrotic lung disease and, although its pathogenesis is not resolved, the immune system appears 

to be involved [3,4]. 

BIP occurs during bleomycin treatment, but can also develop after a treatment free interval 

of weeks to months [5]. In 1-3% of the affected patients pulmonary toxicity is fatal [6]. The 

cumulative bleomycin dose is an important denominator of the risk of BIP, although a safe dose 

has not been established [7]. Known risk factors are smoking, impaired renal function and higher 

age, but there is neither a test to predict which patients will develop BIP, nor a therapy to prevent 

it [8,9]. Standard strategy in case of BIP signs during treatment is to stop bleomycin administra-

tion. The change in diffusion capacity (TLCO) is used in several centers to terminate bleomycin 

administration, although these changes appear not to be specifically caused by bleomycin [10]. 

In earlier reports, restaging CT scans after completion of BEP chemotherapy for testicular 

cancer are reported to show signs suggestive for bleomycin-induced pulmonary changes 

[11-13]. These radiologic changes may be a good surrogate endpoint for the susceptibility for BIP. 

However, since the bleomycin effect on CT scan is observed only after completion of treatment, 

an upfront or early biomarker that identifies patients likely to develop BIP would be preferable as 

these patients could be treated with a non bleomycin containing schedule. An early biomarker 

change would facilitate a premature halt of the weekly bleomycin administration. 

Transforming growth factor-beta 1 (TGF-β1) is a cytokine involved in many physiological and 

pathological processes, including immune response, cell proliferation, angiogenesis, fibrosis 

and oncogenesis [14]. TGF-β1 plays an important role in development of BIP and fibrosis in 

animal models [15-17]. In patients treated with radiotherapy, or patients that underwent stem 

cell transplantation, a relationship between TGF-β1 levels and treatment-induced pulmonary 

toxicity was found [18-19]. Growth differentiation factor 15 (GDF-15) (also known as macrophage 

inhibitory cytokine 1 (MIC-1)) is a member of the TGF-β1 super family. GDF-15 levels are upreg-

ulated in many cancer types [20]. GDF-15 expression is induced during fibrosis development 

and correlates with lung function impairment in systemic sclerosis patients [21]. GDF-15 is a 

product of activated macrophages and hereby a role player in inflammatory processes [22]. In 

addition, we evaluated the role of the known inflammation marker high sensitive C-reactive 

protein (hs-CRP).

In this study, we investigated the prevalence of lesions suspect for bleomycin-induced 

pulmonary changes found on restaging CT scans after treatment with BEP chemotherapy in 

patients with metastatic testicular cancer, and whether fibrosis markers TGF-β1 and GDF-15 and 

the inflammation marker hs-CRP were predictive for these changes. 

6
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Material and Methods

Patients 

We performed a prospective non-randomized biomarker cohort study for which eligibility 

criteria were: patients between 18 and 50 years of age with metastatic testicular cancer who 

were to be treated with BEP chemotherapy in the University Medical Center Groningen. Primary 

assessments were related to cardiovascular parameters. Exclusion criteria were a medical history 

of cardiovascular disease or a creatinine clearance < 60 mL/min. An additional analysis was 

performed on pulmonary parameters. Criteria for this analysis were a minimum of at least two 

bleomycin administrations (60 USP) and presence of a chest CT scan as part of the restaging 

investigations after chemotherapy. Patients were treated with a standard regimen of 3 or 4 

three weekly BEP chemotherapy courses, depending on International Germ Cell Consensus 

Classification (IGCCC) prognosis group. During the first six days of each course, patients received 

daily anti-emetic therapy (dexamethasone and ondansetron). The local ethics committee 

approved the study. All patients gave written informed consent. 

Ct scans 

Post chemotherapy restaging CT scans were analyzed for abnormalities suspect for bleo-

mycin-induced pulmonary changes as judged by two independent radiologists who were 

blinded for clinical phenotype. Patients were instructed to inhale during CT scans of the thorax. 

CT scanning was started 30 seconds after intravenous contrast injection (55 cc Lomeron 350). 

Scans were made in caudalcranial direction from the deepest costophrenic pleural recesses to 

above the thorax aperture. For reconstruction the following parameters were used: 3/1.5 mm on 

Sensation-16 and Symbia T16 and 2/1.5 mm on S-64, Definition and mCT (Kernel B40f ). 

Radiologic criteria for abnormalities on restaging CT scan that were regarded as bleomycin-

induced were that these abnormalities were newly developed since start of BEP chemo-

therapy and could not readily be explained by other factors such as metastases or infection. 

When available, the next CT scan (follow-up scan), made as part of the routine follow-up after 

completion of treatment was assessed to judge whether abnormalities on the restaging CT 

scan, suspected to be the result of bleomycin-induced pulmonary changes, diminished or 

resolved. The type of abnormality was described and abnormalities were scored to be unifocal 

or multifocal with the location and number of lobes involved noted. Extension of radiographic 

abnormalities were graded as minor (only outer third of the lung involved), moderate (outer 

and middle third of the lung involved, but not extending across to the mediastinum) or severe 

abnormalities (whole width of the lung from periphery to mediastinum involved) according to 

Bellamy et al [11]. 

Measurement of biomarkers

EDTA plasma samples were collected for all biomarkers before start of chemotherapy (day 

1), for TGF-β1 on day 1 of every subsequent chemotherapy course, for GDF-15 and hs-CRP at 

day 8 of the third course and for all measured biomarkers at follow-up 4 weeks after the end 



93

Bleomycin-induced pulmonary changes on CT scan in testicular cancer patients | 

of chemotherapy. EDTA blood samples were centrifuged at 3000 g at 4°C for 10 minutes and 

plasma was stored at minus 20°C. In these samples total TGF-β1 levels were analyzed after 

activation with hydrochloric acid using a human TGF-β1 Quantikine ELISA-kit (R&D systems 

Abingdon, United Kingdom). GDF-15 levels were measured with the Human GDF-15 Quantikine 

ELISA-kit (R&D systems). Hs-CRP levels were analyzed using the nephelometer. 

statistics 

Differences in biomarker levels were investigated between patients with and without 

pulmonary changes on CT scan and in patients with and without clinical BIP. We also analyzed 

differences between the groups based on amount of changes on CT scan (no, minor, moderate 

or severe abnormalities). Biomarker levels were evaluated as absolute values, relative values 

(normalized to pre-chemotherapy levels) and absolute increases. Mann Whitney U tests and 

Kruskal Wallis tests were used to evaluate differences in biomarker levels between groups. Chi 

square and Fisher exact tests were used to analyze categorical data. A Spearman correlation 

test was used to test correlations. P-values ≤0.05 were considered significant. Statistics were 

calculated with IBM SPSS statistics 22. Graphs were made using GraphPad Prism version 5.00.

results 

Patients

Between May 2006 and June 2012, 78 patients were included in the biomarker study. Two 

patients withdrew consent during the study. In total, five patients were excluded from analysis 

because data were incomplete due to missed measurements. Five patients received ≤ 2 

BEP-courses. Data of 66 patients was analyzed (Figure 1, Table 1). Five of these 66 patients did 

not receive all initially planned bleomycin administrations because of clinical signs of BIP (n = 

3), development of bleomycin skin toxicity (n = 1) and development of a pulmonary embolism 

(n = 1). 

Figure 1. CONSORT diagram. 
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Table 1: Patient characteristics.

  Median (range) Number (%)

Total number of patients 66

Age (years) 31 (19-46)

Diagnosis

Non-seminoma 54 (82%)

Seminoma 12 (18%)

IGCCC prognosis group

Good 55 (83%)

Intermediate 10 (15%)

Poor 1 (2%)

Cumulative administered bleomycin dose (USP)

150 1 (2%)

180 1 (2%)

240 2 (3%)

270 52 (79%)

330 1 (2%)

360 9 (14%)

Pretreatment creatinine clearance (mL/min) 77 (53-107)

Pulmonary metastases

Yes 7 (11%)

No 59 (89%)

Smoking 

Yes 29 (44%)

No 26 (39%)

Ex 10 (15%)

Unknown 1 (2%)

Figure 2. Representative examples of minor graded (upper panel) and moderate graded (lower panel) bleo-

mycin-induced pulmonary changes; pretreatment, restaging and follow-up CT scan (left to right). 
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Bleomycin-induced pulmonary changes on Ct scan

Pretreatment staging CT scans from chest and abdomen were made median 22 (range 1 

- 78) days before start of chemotherapy. Restaging CT scans were made median 21 (range 5 - 

112) days after the last course of chemotherapy. The first CT scan during follow-up was made 

median 175 (range 70 - 588) days after the restaging CT scan. In 45 out of 66 (68%) analyzed 

patients radiological signs suspect for bleomycin induced pulmonary changes were seen on the 

restaging scan. Of these, 37 were classified to have minor and eight to have moderate abnormal-

ities (Figure 2). None were qualified as severe abnormalities. Most abnormalities were multifocal 

and found in the basal parts of the lungs.

There was no relation between the cumulative dose of bleomycin and development of lesions 

suspect for bleomycin toxicity on restaging CT scan. Renal function and smoking frequency were 

not different between groups (Table 2). On available follow-up scans of patients with suspected 

bleomycin-induced pulmonary changes (38/45; 84%), these changes diminished in 14 patients 

and disappeared in 24 patients. No differences were found in patient characteristics between 

these two groups (Table 3). 

In three patients with clinical signs of BIP for which administration of bleomycin was halted, 

the restaging CT scan showed moderate, minor and no abnormalities respectively. 

Biomarker plasma levels 

Table 4 shows biomarker plasma levels of all patients at clinical relevant time points. Median 

plasma levels before start of chemotherapy were 4788 (range 550 - 24369) pg/mL for TGF-β1, 

392 (range 187 - 1935) pg/mL for GDF-15 and 1.3 (range 0.2 - 50.4) mg/L for hs-CRP. No correla-

tion was found between TGF-β1, GDF-15, hs-CRP and tumor marker levels (AFP, β-HCG and LDH) 

before start of treatment in patients with elevated tumor markers (data not shown). 

No significant differences in absolute or relative levels of TGF-β1, GDF-15 and hs-CRP at the 

measured time points were found between patients with no, minor or moderate radiological 

signs of pulmonary bleomycin toxicity. In addition, there were also no significant differences 

found in patients with no or minor versus moderate pulmonary bleomycin toxicity (Table 

4). However, patients who developed pulmonary abnormalities on CT scan (either minor or 

moderate) more frequently had an TGF-β1 increase between day one of the first course BEP 

(before start of chemotherapy) and day one of the second course (86 vs. 60%, p=0.047). Also, 

GDF-15 levels at the 8th day of the third course were higher in patients with moderate changes 

on CT scan than in patients with no or minor changes on CT scan, although this difference was 

not statistically significant (7246 pg/mL vs. 5222 pg/mL, p=0.087). All groups showed the same 

pattern of hs-CRP decrease during chemotherapy and an increase afterwards. Patients with 

clinical signs of BIP had no different biomarker levels compared to other patients (Figure 3). In 

patients with pulmonary abnormalities on follow-up scans that diminished but not disappeared 

(n=14) TGF-β1, GDF-15 and hs-CRP levels were not different compared to the patient group in 

which pulmonary abnormalities disappeared (n=24) (Table 3).
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disCussion 

In this study, all restaging CT scans of patients with disseminated testicular cancer treated 

with BEP chemotherapy for signs of bleomycin-induced pulmonary toxicity were evaluated. In 

68% of these patients radiological abnormalities on the restaging CT scan interpreted as signs 

of bleomycin-induced pulmonary changes were observed. Clinical presentation suspect for BIP 

during treatment, which led to premature termination of bleomycin administration, was seen 

in only 5% of patients. This discrepancy between clinical presentation of BIP and radiological 

signs of bleomycin-induced toxicity on CT scans is striking. Earlier studies reported a much 

higher incidence of abnormalities on restaging CT scans as well, compared to the 10% of the 

patients who classically develop clinical signs of bleomycin-induced pulmonary toxicity [11-13]. 

However, these radiological abnormalities are not very well documented and not reported in 

more recent reports of clinical trials in which bleomycin is a component of the combination 

regimen for metastatic testicular cancer [23]. No high-resolution CT scans were made in any of 

the patients precluding statements on the presence of interstitial pneumonitis.  

The clinical relevance of radiological signs of bleomycin-induced pulmonary abnormalities 

on restaging CT scans remains unclear. Most of these abnormalities on CT scans were without 

accompanying symptoms and resolved spontaneously based on subsequent CT scans several 

months later during follow-up. We questioned whether post treatment radiological findings 

were accompanied by biochemical signs of active fibrosis and whether these could be used as 

early markers of the toxic effect of bleomycin on the lung. 

TGF-β1 is a cytokine involved in many processes in the body and plays a pivotal role in the 

development of lung fibrosis [24]. Various preclinical studies showed a critical role for TGF-β1 in 

the BIP development. In the current study, we did not find a difference in TGF-β1 levels between 

patients with and without radiological signs of bleomycin-induced pulmonary changes. 

However, patients who developed bleomycin-induced pulmonary changes on CT scan more 

often showed an increase of TGF-β1 levels from pre chemotherapy to day one of the second 

course. This may indicate involvement of the TGF-β1 pathway in development of pulmonary 

abnormalities due to bleomycin administration. 

The TGF-β1 plasma levels found in our patients at baseline had a broad range. Plasma TGF-β1 

levels in healthy volunteers also show a threefold difference with a broad range in other studies 

[25,26]. Measured TGF-β1 levels in our patient group may also be tumor derived rather than 

selectively the result of bleomycin-induced pulmonary changes [27]. However, no correlation 

between known tumor markers in testicular cancer and TGF-β1 levels before treatment was 

found. An interesting approach to circumvent this would be to assess TGF-β1 levels during bron-

choalveolar lavage (BAL) to assess only lung TGF-β1 levels [28]. We collected no platelet poor 

plasma, while TFG-β1 might have been released from platelets during collection and analyses of 

the samples [29]. This is a limitation of our study, but does not preclude comparison of TGF-β1 

levels within our patient group. 

We did not find differences in GDF-15 levels in patients with versus patients without bleo-

mycin-induced pulmonary changes on CT scan. Although the increase of GDF-15 levels seemed 
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to be larger in patients with moderate pulmonary changes on CT scans, this was not significant. 

The number of patients with moderate changes (n = 8) might have been too small to detect 

significant differences. In addition, GDF-15 is also known as apoptosis marker [22]. Therefore, 

its distinctive value during cancer therapy is probably limited. Nevertheless, it could be worth 

examining GDF-15 levels in a larger patient group with a moderate degree of pulmonary 

changes on CT scans after BEP chemotherapy. 

Hs-CRP could be an easily accessible biomarker for subclinical inflammation, but levels 

did not differ in patients with compared to patients without bleomycin-induced pulmonary 

changes. This concurred with steroid administration as anti-emetic drugs during chemotherapy. 

Therefore, hs-CRP is probably not an usable biomarker for bleomycin-induced pulmonary 

changes during chemotherapy. 

In conclusion, pulmonary radiological abnormalities suspect for bleomycin induced changes 

are very common on restaging CT scans after BEP chemotherapy for metastatic testicular cancer, 

occurring in two third (68%) of the patients. Most of these radiological abnormalities appear 

to resolve on follow-up CT scans. TGF-β1, GDF-15 and hs-CRP plasma levels before and during 

treatment were not significantly different between patients with and without radiological signs 

of pulmonary bleomycin-induced toxicity and therefore do not seem helpful as early predictive 

biomarkers.  
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suMMary

In recent years, great progress has been made in the development of targeted therapy against 

cancer. However, it is also more recognized that these treatments are often only successful 

in a subgroup of patients. One of the current challenges in oncology lies in identifying these 

patients and thereby avoiding treating patients with non-effective treatments and thus avoid 

side-effects of these drugs and reduce costs. Another challenge in oncology is to minimize the 

side effects of currently used therapies. Patients are at risk for developing (long term) and even 

deadly side effects of anticancer treatments and might need adjustments to their treatment 

schedule and specific follow up long after the end of treatment to timely recognize and address 

these. 

One of the targeted therapies that made its way into clinical research in recent years is the 

induction of apoptosis by agonistic antibodies or rhTRAIL via the extrinsic pathway. In preclin-

ical studies, these drugs have been shown to induce apoptosis as monotherapy and enhance 

the effectiveness of chemotherapy and radiotherapy. In chapter 2, we reviewed the phase 1 and 

phase 2 (combination) studies that have been performed with these drugs. Although rhTRAIL 

and the diverse agonistic antibodies against TRAIL-R1 and TRAIL-R2 all seem safe with only one 

maximum tolerated dose found for lexatumumab (elevations of serum amylase, bilirubin and 

transaminases), the effectiveness of these drugs both as monotherapy and in combination with 

chemotherapy is disappointing. However, we also describe novel approaches with TRAIL linked 

to a tumor specific antibody that might lead to better results in the clinic. Also, the combination 

of mapatumumab with chemotherapy and radiotherapy was investigated in a phase 1/2 study 

(NCT01088347). Results of this study are awaited. 

When the targeted drug imatinib entered the clinic in early clinical studies in patients with 

GIST it was noticed that within one to several days a remarkable change in FDG uptake in the 

tumors occurred. It was suggested that this change in uptake could serve as a predictive marker 

for the efficacy of this therapy. Several small studies with FDG-PET in this setting have been 

conducted since, leading to variable results. However, it has become clear that the majority of 

patients (85%) have clinical benefit from this treatment. A predictive test that identifies patients 

that have clinical benefit would therefore not be that informative, but a test that identifies 

patients that will not respond (primary resistance) is. In chapter 3 we retrospectively assessed 

the usefulness of FDG-PET scans made before start of imatinib and 1 week after start of imatinib 

for identification of non responders. Two out of 29 patients showed progressive disease on CT 

scan after 8 weeks as defined by the RECIST criteria. These patients also showed a response 

(defined as at least 25% decrease in standard uptake value (SUV)) on the FDG-PET scan. On the 

other hand the three patients who did not show a response on the FDG-PET scan all did have 

clinical benefit of imatinib. We therefore concluded that performing a FDG-PET scan is not useful 

in identifying patients with primary resistance against imatinib and that the early responses 

seen on FDG-PET scan might be caused by a change in glucose metabolism that is independent 

of the tumor response. 
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In glioblastomas the Macdonalds criteria are used for response assessment and the tumor 

is measured as the contrast enhancing area found on gadolinium enhanced MRI. Response 

assessment during and after treatment is hampered by the phenomenon of pseudoprogres-

sion: the MRI performed directly after completion of chemoradiotherapy shows increased 

contrast enhancement compared to the baseline MRI, but this enhancement remains stable or 

subsides on follow up scans without change of therapy. In chapter 4 we reported on a study 

that prospectively assessed FLT-PET scans made before start of treatment (after initial surgery) 

and 4 weeks after completion of chemoradiotherapy. 18F-FLT is a PET tracer that is taken up 

by proliferating cells and therefore it might potentially be of interest to use FLT-PET scans to 

discriminate between true tumor growth and pseudoprogression. In 24 evaluable patients, 

seven patients showed true progression and seven showed pseudoprogression on MRI. We 

observed no difference in (change in) FLT uptake between patients classified as true progression 

and patients classified as pseudoprogression. Therefore  FLT-PET scan in this setting cannot be 

used to discriminate between true disease progression and pseudoprogression in glioblastoma 

patients treated with chemoradiotherapy. 

In high grade gliomas successful targeted drugs are also eagerly awaited, as there is currently 

no standard therapy for recurrent disease and the median overall survival for the most common 

subtype (glioblastoma) is only 14 months. Numerous targeted agents have been investigated in 

recent years, but so far no therapy has improved the overall survival. A key question in systemic 

treatment of high grade gliomas is if the agents can reach the tumor because of the blood brain 

barrier. In chapter 5 we reported on a study in which a monoclonal antibody against TGF-β 

(fresolimumab) was labeled with Zirkonium-89. After the 89Zr-fresolimumab PET scan, patients 

were treated with intravenously administered fresolimumab. The goal of this study was to 

show that the antibody could reach the tumor and to quantify the uptake and correlate this 

uptake with the outcome of treatment with fresolimumab. In all 12 patients we saw uptake of 
89Zr-fresolimumab in tumor lesions, although not in all individual lesions. Of the lesions that 

were > 1 cm and not visible on the PET scan, 2 out of 3 were previously irradiated and might 

therefore not represent active tumor tissue with TGF-β signaling. We also found that over time 

the tumor to blood ratio increased in four patients who underwent a PET scan on both day 2 

and day 4 after the tracer injection. These findings suggest that the uptake of 89Zr-fresolimumab 

in the tumor is specific rather than just a perfusion related phenomenon. Treatment with 

fresolimumab was well tolerated by all patients, but it did not seem to be beneficial in terms 

of inducing tumor response as second line treatment. However, we did show that a labeled 

antibody is able to reach high grade gliomas. 

TGF-β is important in many processes in both health and disease. From preclinical research, 

we know that TGF-β plays an important role in the development of bleomycin induced 

pulmonary toxicity. This toxicity is a problem in testicular cancer patients that are treated with 

bleomycin containing chemotherapy regimens. This treatment has a very high cure rate, but 

in up to 10% of the patients bleomycin induced pulmonary toxicity occurs, which is fatal in 

10% of patients experiencing this toxicity. In chapter 6 we assessed the prevalence of lesions 
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suspect for bleomycin-induced pulmonary changes on restaging CT scans after treatment, 

and whether the fibrosis markers TGF-β1 and Growth Differentiation Factor -15 (GDF-15), and 

hs-CRP were predictive of this. We found signs of bleomycin-induced pulmonary changes on 

the restaging CT scan in 68% of the patients. Plasma levels of TGF-β1, GDF15 and Hs-CRP were 

not predictive for the occurrence and severity of CT alterations suspect for bleomycin toxicity or 

clinical pulmonary toxicity. We concluded that bleomycin-induced pulmonary changes are very 

common on restaging CT scans after BEP chemotherapy for metastatic testicular cancer, but 

plasma levels of TGF-β1, GDF15 and Hs-CRP cannot be used as biomarkers for this. 

future PersPeCtives

The recent rapid unraveling of tumor characteristics and the use of these insights for the 

application of targeted therapy has led to hope that cancer will become a chronic disease in the 

coming years [1]. In spite of this optimism, it has also become clear that new discoveries and 

developments raise new questions and challenges. 

In metastatic and irresectable GIST tumors, the introduction of the targeted drug imatinib 

spectacularly improved response rates compared to chemotherapy. Unfortunately, many 

targeted drugs that seemed promising in preclinical research did not live up to the expecta-

tions in phase 1 and 2 studies. Agonistic antibodies against TRAIL receptors and rhTRAIL are well 

tolerated and can be combined with chemotherapy. However, none of the randomized phase 

2 studies so far has shown an improvement of progression free survival or overall survival. This 

underlines the enormous challenges in finding drugable targets, identifying patients that will 

benefit from treatment with targeted drugs, the need for rational combination therapies and 

perseverance when clinical results do not directly live up to the expectations found in preclinical 

research. 

In glioblastomas, driver mutations and pathways are still not elucidated and there is no 

targeted agent available that does improve overall survival [2]. Although TGF-β is an important 

tumor promoter in these tumors, treatment with fresolimumab did not result in clinical benefit 

in our small study with pretreated patients. Since many pathways are deregulated in high grade 

gliomas, better results might be expected from combination treatment targeting multiple 

relevant pathways. Since we did show in our study that fresolimumab is able to reach brain 

tumors, other antibody-related drugs such as antibody-drug conjugates are also of potential 

interest for this indication (NCT01475006).

A key requirement in successful anticancer drug development is to establish the molecular 

and genetic characteristics of tumors. Studies in which biopsies are taken before and after 

(investigational) treatment with targeted agents are currently performed and will learn us more 

about tumor characteristics, patient selection and development of resistance mechanisms 

against targeted agents. In the future, this will lead to more personalized medicine, in which a 

patient receives a treatment based on the specific characteristics of the tumor.

However, it is also known that primary tumor lesions and metastatic lesions can have 

different characteristics and tumor characteristics can change over time [3]. Taking multiple 
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biopsies at different time points to characterize the heterogeneity will often not be feasible 

due to patient inconvenience and tumor lesions that cannot be approached safely. Molecular 

imaging is a more patient friendly approach to assess the characteristics of all different tumor 

lesions. Diverse studies show promising results with this approach [4,5]. However, we showed 

that the initial optimism about the use of FDG-PET to predict responses of imatinib in GIST has 

been premature. Furthermore, response criteria for PET imaging still need to be established and 

might be different for different PET tracers. More and larger studies establishing this and studies 

directly comparing PET results with pathology results are therefore urgently needed and are 

currently performed (NCT01957332). 

Since the introduction of targeted agents in the clinic it has also become clear that the current 

response assessment with CT scans may be suboptimal because targeted agents do not always 

induce a volume response. Initiatives to define new criteria in which also PET responses might 

be included are under investigation [6]. In brain tumors the Macdonalds criteria have already 

been replaced by the RANO criteria, in order decrease the number of pseudoprogression and 

pseudoresponses found [7]. However, for this indication also a combination of conventional 

imaging and molecular imaging will be needed to accurately assess responses of current and 

future therapies. We showed that serial FLT-PET scan was not helpful in discriminating pseudo-

progression from true progression in primary glioblastoma patients treated with chemoradio-

therapy. However, approaches using other parameters such as kinetic analysis may overcome 

the difficulty of discriminating between tracer uptake and leakage due to a disrupted blood 

brain barrier. Also other imaging modalities such as perfusion MRI and 11C-methionine-PET 

show promising results and are currently under more detailed investigation [8,9]. 

An interesting development in imaging that circumvents the irradiation burden of PET scans 

is optical imaging. Its use is currently limited by the tissue penetration of the optical tracers 

which makes whole body scanning impossible, but it is especially investigated for surgical appli-

cations. Since optimal surgical resection is one of the predictive markers for overall survival in 

glioblastoma, tumor resection using optical imaging with a specific tracer might be a promising 

tool to discriminate infiltrating tumor from normal brain tissue [10,11]. 

With the increasing number of cancer patients and improvements in treatment, the number 

of cancer survivors is also increasing [12]. Long term effects of anticancer treatments are 

therefore gaining more attention. We know that particular attention needs to be paid to cardio-

vascular diseases and secondary malignancies in long term cancer survivors [13]. Biomarkers 

may help to identify patients at risk for long term and harmful side effects. A challenge for the 

future will be to prevent predicted (long term) toxicity without jeopardizing the efficacy of 

anticancer treatments resulting in a balanced trade-off. 

In conclusion, notwithstanding the enormous challenges ahead, cancer medicine will 

become more and more personalized: new imaging techniques will be able to reveal tumor 

characteristics, specific drugs will be able target these, specific patients characteristics will be 

taken into account and the follow up of patients will be aimed at the specific long term effects 

based on the therapy and risk factors of the individual patient. 
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Er is in de afgelopen jaren veel vooruitgang geboekt in de ontwikkeling van ‘doelgerichte 

behandelingen’ tegen kanker. Helaas wordt ook steeds duidelijker dat deze behandelingen vaak 

alleen succesvol zijn in een subgroep van de patiënten. Eén van de belangrijkste uitdagingen 

in de oncologie op dit moment is het identificeren van deze patiënten, zodat kan worden 

voorkomen dat patiënten onnodig behandeld worden met voor die patiënt niet werkzame 

therapieën. Dit voorkomt bij patiënten onnodige bijwerkingen en bespaart kosten. Een andere 

uitdaging in de oncologie is het minimaliseren van bijwerkingen van huidige behandelingen. 

Antikankerbehandelingen kunnen ernstige en zelfs dodelijke (lange termijn) bijwerkingen 

hebben. Aanpassing van het behandelschema en specifieke follow up kunnen nodig zijn om 

bijwerkingen tijdig te herkennen, te behandelen en voorkomen. 

Eén van de doelgerichte antikanker behandelingen die in de afgelopen jaren onderzocht 

is, is het induceren van apoptose door agonistische antilichamen of rhTRAIL via de extrinsieke 

route. In preklinische studies is aangetoond dat deze middelen zowel als monotherapie 

apoptose kunnen veroorzaken, als de effectiviteit van chemotherapie en radiotherapie kunnen 

verbeteren. In hoofdstuk 2 hebben we de fase 1 en fase 2 (combinatie) studies die tot dusverre 

met deze middelen zijn uitgevoerd geanalyseerd. rhTRAIL en de verschillende agonistische anti-

lichamen tegen TRAIL-R1 en TRAIL-R2 lijken veilig te zijn. Alleen voor lexatumumab werd een 

maximale tolereerbare dosering gevonden. Helaas valt de effectiviteit van deze middelen zowel 

als monotherapie als in combinatie met chemotherapie en andere doelgerichte medicatie tegen. 

Nieuwe benaderingen waarbij TRAIL wordt gekoppeld aan een tumor specifiek antilichaam 

kunnen mogelijk tot betere resultaten leiden. Daarnaast is de combinatie van mapatumumab 

met chemotherapie en radiotherapie onderzocht in een fase 1/2  studie (NCT01088347). 

Toen het medicijn imatinib, een c-Kit-tyrosinekinaseremmer, voor het eerst werd toegepast 

bij patiënten met een GIST, viel het op dat binnen enkele dagen een verandering zichtbaar 

was in de hoeveelheid FDG die werd opgenomen door de tumoren. Mogelijk kon deze 

verandering in opname worden gebruikt als een predictieve marker voor de effectiviteit van 

de behandeling. Er zijn sindsdien verschillende kleine studies met FDG-PET gedaan in deze 

setting, met wisselende resultaten. Inmiddels is echter ook duidelijk geworden dat het grootste 

deel van de patiënten (85%) baat heeft bij behandeling met imatinib. Een predictieve test die 

patiënten identificeert die baat hebben bij de behandeling is daarom niet zo interessant, maar 

een test die patiënten identificeert die niet reageren op dit middel en zo primaire resistentie 

aantoont, wel. In hoofdstuk 3 beschreven we een retrospectieve studie waarin de bruikbaar-

heid van FDG-PET scans voor het identificeren van patiënten die niet op imatinib reageren is 

geanalyseerd. Deze FDG-PET scans werden gemaakt voor start van imatinib en 1 week na start 

van imatinib. Twee van de 29 patiënten hadden progressieve ziekte op de CT scan na 8 weken 

volgens de tumor respons RECIST criteria. Deze twee patiënten hadden echter ook een respons 

(gedefinieerd als tenminste 25% afname in ‘standard uptake value’ (SUV)) op de FDG-PET scans. 

Aan de andere kant hadden drie patiënten die geen respons hadden op de FDG-PET scans wel 

baat bij imatinib. We hebben daarom geconcludeerd dat een FDG-PET-scan niet bruikbaar is 
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voor het identificeren van patiënten met primaire resistentie tegen imatinib en dat de vroege 

veranderingen op FDG-PET scan mogelijk veroorzaakt worden door veranderingen in het gluco-

semetabolisme die niet direct verband houden met een tumorrespons. 

In glioblastomen worden de Macdonalds criteria, waarbij het gebied met gadolinium 

contrast opname op MRI wordt gemeten, gebruikt voor tumorrespons evaluatie. Deze evaluatie 

wordt echter bemoeilijkt door het fenomeen pseudoprogressie; op de MRI direct na chemo-

radiotherapie is een toegenomen gebied met contrast opname zichtbaar, maar dit gebied 

blijft stabiel of neemt af op volgende MRI scans zonder verandering in de behandeling. In 

hoofdstuk 4 beschreven we een studie waarbij we prospectief keken naar FLT-PET scans 

gemaakt voorafgaand aan (na primaire chirurgie) en 4 weken na chemoradiotherapie. 18F-FLT is 

een PET tracer die wordt opgenomen door prolifererende cellen en de FLT-PET scan kan daarom 

mogelijk gebruikt worden om onderscheid te maken tussen echte tumorgroei en pseudopro-

gressie. Van de 24 evalueerbare patiënten hadden er zeven echte progressie en zeven pseudo-

progressie. We vonden geen verschil in (verandering van) FLT-opname tussen patiënten met 

pseudoprogressie en echte progressie. De FLT-PET scan heeft geen directe waarde in het maken 

van dit onderscheid in deze patiëntengroep. 

Voor hooggradige gliomen wordt ook hard gezocht naar succesvolle doelgerichte 

behandeling. Er is dit moment geen standaardtherapie voor recidief tumoren. De mediane 

totale overleving voor het meest voorkomende subtype (glioblastoom) is slechts 14 maanden. 

In de afgelopen jaren zijn verschillende doelgerichte behandelingen onderzocht, maar tot nu 

toe heeft geen enkele behandeling de totale overleving verbeterd. Een essentiële vraag bij 

de systemische behandeling van hooggradige gliomen is of de medicatie de tumor wel kan 

bereiken vanwege de bloedhersenbarrière. In hoofdstuk 5 beschreven we een studie waarin 

een monoklonaal antilichaam tegen TGF-β (fresolimumab) gelabeld werd met Zirkonium-89. 

Na het ondergaan van 89Zr-fresolimumab PET scans werden patiënten behandeld met fresoli-

mumab. Het doel van deze studie was om aan te tonen dat het antilichaam de hersentumor 

kon bereiken, de opname van deze tracer in de tumor te kwantificeren en deze opname te 

correleren aan de uitkomst van de behandeling. In alle 12 patiënten zagen we opname van 
89Zr-fresolimumab in tumorlaesies. Echter, niet in alle individuele laesies werd opname gezien. 

Van de 3 laesies die groter waren dan 1 cm en niet zichtbaar op de PET scan, waren er 2 eerder 

bestraald en doordoor mogelijk radionecrose in plaats van actief tumorweefsel, waardoor er 

geen 89Zr-fresolimumab opname zichtbaar was. We zagen ook dat de tumor-bloedratio toe nam 

in de vier patiënten die een PET scan hadden ondergaan op zowel dag 2 en dag 4 na trace-

rinjectie. Deze bevindingen suggereren dat de tumoropname van 89Zr-fresolimumab specifiek 

is en niet een aan perfusie gerelateerd fenomeen. Behandeling met fresolimumab werd goed 

verdragen door patiënten, maar het induceerde geen tumorresponsen. We hebben met deze 

studie echter wel aangetoond dat een gelabeled antilichaam in staat is om hooggradige 

gliomen te bereiken.   

TGF-β is belangrijk voor diverse fysiologische en pathologische processen in het lichaam. Uit 

preklinisch onderzoek is bekend dat TGF-β een belangrijke rol speelt in de ontwikkeling van door 
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bleomycine geïnduceerde longtoxiciteit. Deze toxiciteit vormt een probleem voor patiënten met 

testiskanker die worden behandeld met chemotherapie waarvan bleomycine een onderdeel is. 

Deze behandeling is heel vaak curatief, maar in ongeveer 10% van de patiënten ontstaat long-

toxiteit door bleomycine, die in 10% van de gevallen fataal is. In hoofdstuk 6 hebben we de 

spiegel van TGF-β1, GDF-15 en Hs-CRP in het plasma van testiskankerpatiënten voor, tijdens 

en na behandeling met bleomycine geanalyseerd. We analyseerden ook de prevalentie van 

afwijkingen die verdacht waren voor door bleomycine geïnduceerde longtoxiciteit op de resta-

geringsscans. We vonden radiologische veranderingen verdacht voor toxiciteit van bleomycine 

bij  68% van de patiënten. De hoeveelheid TGF-β1, GDF-15 en Hs-CRP in het plasma was niet 

voorspellend voor het ontstaan en de ernst van de radiologische veranderingen verdacht 

voor toxiciteit van bleomycine of voor klinische tekenen van longtoxiciteit. We concludeerden 

daarom radiologische veranderingen verdacht voor toxiciteit van bleomycine veel voorkomen, 

maar dat de onderzochte markers niet als biomarkers voor het ontstaan hiervan kunnen worden 

gebruikt. 
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