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Remodeling of the adult human vitreous 

and vitreoretinal interface 

- a dynamic process -

Th.L. Ponsioen 



Stellingen 

bij het proefschrift 

Remodeling of the adult human vitreous 

and vitreoretinal interface 

- a dynamic process 

I. Het verouderingsproces van het humane glasvocht is dynamisch en niet slechts een 
samenklontering van collageen. (dit proefschrift) 

2. Door de Muller eel is de retina als producent van glasvochtcollageen weer in beeld. 

( dit proefschrift} 

3. Het gebruik van enzymen voor het creeren van een achterste glasvochtmembraan

loslating (PVD) is een riskante aangelegenheid. (dit proefschrift} 

4. Als het antigeen in het glasvocht gemaskeerd is, blijft de chemie tussen het antigeen en 

zijn specifieke antilichaam afwezig. (dit proefschrift} 

5. In de immuno-transmissie elektronenmicroscopie is de zilverversterking een gouden 

standaard. ( dit proefschrift) 

6. Het zien van Abraham of Sarah betekent voor het glasvocht-collageen het enzymatisch 

hoogtepunt. ( dit proefschrift) 

7. De definitieve boekvorm van het proefschrift draagt bij aan duurzame CO
2 

opslag. 

8. Als we wisten wat we deden, was er geen onderzoek. 

9. You can't depend on your eyes when your imagination is out of focus. 

I 0. Life is all about priorities, first things first - Marlies Ponsioen 

I I .  If the whole materia medica could be sunk at the bottom of the sea it would be all the 

better for mankind and all the worse for the fishes. 

Holmes ( 1891) 

12. Live today, cause yesterday is gone and tomorrow may never come. 

Dr Donald "Ducky" Mallard, NCIS 

Dirk Ponsioen 

Groningen, 19 mei 2008 



The research presented in this study was financially supported by: 

De Prof. Mulder stichting, De Rotterdamse Yereniging Blindenbelangen, De Stichting 

Oogheelkundig Onderzoek 's-Gravenhage, De Algemene Nederlandse Yereniging ter 

Yoorkoming van Blindheid, De Stichting Oogheelkundig Onderzoek Nederland. 

Publication of this thesis was financially supported by: 

Alcon Netherlands B.Y., Allergan, Becton Dickinson B.Y. Medical Ophthalmic Systems, 

De Prof. Mulder Stichting, De Rijksuniversiteit Groningen, Dutch Ophthalmic Research 

Center International B.Y., Lameris Ootech B.V., Landelijke Stichting voor Blinden en 

Slechtzienden, Merck Sharp & Dohme B.Y., Nederlandse Yereniging voor Matrix Biologie, 

Novartis Pharma B.Y., Oculenti, Thea Pharma, Tramedico B.Y .. 

Copyright© 2008 Th.L. Ponsioen 

All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system, 

or transmitted, in any form or by any means, electronical, mechanical, photocopying, 

recording, or otherwise, without the written permission of the author and the publisher 

holding the copyright of the published articles. 

ISBN: 978-90-71382-30-7 

Printed by: Gildeprint BY, Enschede 

Cover Design: Het zuidelijke einde van de gletsjertong Breioamerkurjokull een onderdeel 

van ljslands grootste gletsjer, de Yatnajokull, met hetgletsjermeer Breioarl6n 

(Huwelijksreis 2006). 

Lay-out: Nicole Konjer, Gildeprint BY, Enschede 



/ 
rijksuniversiteit 
gron1ngen 

Remodeling of the adult human vitreous 

and vitreoretinal interface 

- a dynamic process -

Proefschrift 

ter verkrijging van het doctoraat in de 
Medische Wetenschappen 

aan de Rijksuniversiteit Groningen 
op gezag van de 

Rector Magnificus, dr. F. Zwarts, 
in het openbaar te verdedigen op 

maandag 19 mei 2008 
om 14.45 uur 

door 

Theodorus Leonardus Ponsioen 

geboren op 12 januari 1977 
te Leiden 

Ccnlrale 

:Mcdische 

Bibliotheck 

Groningen 

u 
M 
C 

G 



Promotores: 

Copromotor: 

Prof. dr. J.M.M. Hooymans 

Prof. dr. M.J.A. van Luyn 

Dr. L.I. Los 

Beoordelingscommissie: Prof. dr. P.N. Bishop 

Prof. dr. V. Everts 

Prof. dr. J.C. van Meurs 



Paranimfen: D. Keijzer 

R.J. Flobbe - van der Worp 

llavra pd Kaz ovbcv µcvcf 

(Alles stroomt en niets blijft) 

Herakleitos van Efese 

Aan vader en moeder 
Voor Rosette en onze Marius 





Table of contents 

Chapter I 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Chapter 9 

General Introduction 

Packages of vitreous collagen (type II) in the human 

retina: an indication of collagen turnover? 

Collagen distribution in the human vitreoretinal interface 

In vitro phagocytosis of collagens by immortalised human 

retinal Muller cells 

Human retinal Muller cells synthesize collagens of the 

vitreous and vitreoretinal interface in vitro 

The mature enzymatic collagen cross-links 

hydroxylysylpyridinoline and lysylpyridinoline in the aging 

human vitreous 

Remodeling of the adult human vitreous and vitreoretinal 

interface - a dynamic process - (review) 

Summary 

Nederlandse samenvatting 

List of abbreviations 

Dankwoord 

Curriculum Vitae 

9 

29 

47 

65 

85 

103 

121 

145 

153 

162 

164 

167 





General Introduction 



Chapter I 

The vitreous body (or vitreous) of the human eye is the clear gel, which is located behind 

the lens and is surrounded by and attached to the retina (Fig. I ). The vitreous is the 

largest structure of the eye, represents approximately 80% of its volume, and consists 

of 98-99% water, of 1% inorganic salts with organic lipids of low molecular weight and of 

just 0.1% macromolecules, such as glycosaminoglycans (GAGs), 1 proteoglycans (PGs),2•3 

glycoproteins4 (GPs; such as opticin5·6), collagens7-15 and noncollagenous structural 

proteins4•5•16•17 (e.g. fibrillin5). The most important macromolecules are the collagens and 

the GAG, hyaluronan (HA).18• 19 Collagen types present in the vitreous are types 11,7•8 

V/Xl,9-11 Vl, 11 •20 and IX.8• 10- 15 A collagen network of heterotypic fibrils (types 11, V/Xl, and 

IX) presumably maintains the gel structure and HA fills the spaces between these collagen 

fibrils and stabilizes the gel.5·7•21 

SC 

Figure I Macroscopic overview of a Technovit embedded human donor eye. Cb: ciliary body, le: lens, os: ora 

serrata, ch: choroid and retinal pigment epithelium, vb: vitreous body, sc: sclera, and re: retina. Bar = 2.5 mm. 

The vitreous has a refractive index of 1.3349 and a specific gravity of 1.0053-

1.0089 g/ml.22 It has several (supposed) functions including involvement in growth of 

the embryonic eye and media transparency. The vitreous transmits 90% of light with a 

wavelength between 300 and 1400 nm. In addition, the vitreous plays a physiological role in 

lens transparency and metabolism, which can be divided in a depository for nutrients and 

metabolic wastes and a scavenger of free radicals.23•24 Other functions include protection 

of eye structures during a mechanical trauma through its viscoelastic properties and it 
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General Introduction 

can have a preventive effect in the case of a retinal detachment (the cortex can close a 

fresh hole). Finally, it could inhibit angiogenesis by the presence of low molecular weight 

growth inhibitors of endothelial cells and by its high concentration of ascorbic acid.25•26 On 

the other hand, the vitreous can almost completely be removed by vitrectomy without 

marked damage to the eye (nuclear sclerotic cataract can be induced), and the gel does not 

reform to any significant degree. 5 

With aging, the vitreous is subjected to progressive morphological changes. 

In adult extracellular matrices (ECMs) other than the vitreous, morphological changes 

have been described as matrix remodeling.21-30 Supported by some recent biochemical 

and morphological publications, which find evidence of collagen turnover (synthesis and 

breakdown) in the vitreous and in the vitreoretinal interface, the concept of matrix 

remodeling could also apply to the aging vitreous.3 1-37 

Because the development of the eye is almost complete before birth except for the 

macula, we will start with a summary of the vitreoretinal embryology (I. I ). Subsequently, 

some anatomical features of the vitreous will be highlighted ( 1.2). This is followed by 

observations about the postnatal vitreous from the newborn through the elderly (1.3). 

Finally, our research topics are introduced ( I  .4). 

1.1 The human embryonic vitreous 

In the earliest stages of the human embryo (4-5 mm stage or third to fourth week), 

evidence for vitreous formation has been found when the neural ectoderm separates from 

the surface ectoderm in the optic vesicle. Fibrils or proteoplasmic protrusions, which are 

continuous with the retina and lens, fill the narrow space between the lens vesicle and 

the inner retinal layer: the primordial vitreous. In the lentiretinal space of the optic cup, 

the primary vitreous develops along with the hyaloid vasculature in the I 0-13 mm stage 

(fifth week). It consists of ectodermal components, which are the fibrils produced by the 

inner layer of the future sensory retina and the posterior side of the lens vesicle. At this 

stage, it is a matter of debate whether the primary vitreous also consists of mesenchymal 

components, which enter posteriorly with the hyaloid blood vessels and anteriorly through 

the space between the anterior rim of the optic cup and the lens vesicle. 18• 19•38-4 1 The cells 

of the inner layer of the cup differentiate into an inner and outer neuroblastic layer, which 

both will develop into retinal neurons and glia whereas the outer layer will also form rods 

and cones.42-44 
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Together with the closure of the optic fissure around the 14 mm stage (end of the 

sixth week), the period of the secondary vitreous (avascular vitreous) begins.18• 19•39•41 For a 

long time, it was generally accepted that the secondary vitreous and primary vitreous are 

spatially separated structures (Fig. 2A). The former appears on the inside of the sensory 

retina pushing the primary vitreous and the hyaloid system forward and inward, except at 

the periphery and optic disc. 18• 19•39•4 1  In contrast to the theory of strict spatial separation 

between primary and secondary vitreous, there is also evidence that retracting hyaloid 

blood vessels may act as a scaffold along which fibers of the definite vitreous organize 

themselves (Fig. 28).45-49 Both in human and rabbit vitreous, the course of vitreous fibrils 

and lamellae can be retranslated into the course of the hyaloid blood vessels of the primary 

vitreous.4 5-48 This latter theory implies a gradual remodeling of the primary into the 

secondary vitreous. The secondary vitreous is in essence an ECM that consists primarily of 

type II collagen.19•39•5° From the retina, processes of Muller cells start to unite and form the 

internal limiting lamina (ILL), which begins in the posterior pole. The ILL is not a surface 

of separation yet and Muller cells seem continuous with the vitreous fibrils.18• 19"" 1 The foot

plates of the Muller cells are supposed to be concerned in the synthesis of vitreous fibrils 

during the growth of the eye. Mesenchymal cells accompanying the hyaloid blood vessel, 

which grows in the vitreous as an arteriole giving off a complicated system of branches 

(vasa hyaloidea propria and tunica vasculosa lentis), may also contribute to the formation 

of vitreous.4 1  Around 40-48 mm (ninth week) the maximum size of the hyaloid system is 

reached, the atrophy of the posterior vasa hyaloidea propria has begun and the primary 

vitreous has ceased to grow. This is followed by degeneration of the tunica vasculosa 

lentis.18• 19•41 The hyaloid artery persists much longer and increases with the growth of the 

whole eye, because it is attached to the lens and to the center of the optic disc. At the 

place where primary vitreous (adhering to the blood vessel and consisting of a looser 

meshwork) and secondary vitreous meet, a transition can be seen: the wall of Cloquet's 

canal. 39•4 1  Between 70-100 mm (fourth month), the tertiary vitreous or zonular system is 

produced at the level of the developing ciliary body by surface ectoderm and fibroblasts. 19•4 1  

Around 240 mm (seventh month) the blood flow in the hyaloid artery ceases, followed 

by glycogen and lipid deposition in the endothelial cells, and, finally, cells in the blood 

vessel wall become atrophic and are phagocytozed by mononuclear phagocytes.18•19•39•51 At 

birth, all blood vessels have disappeared from the vitreous. The eye itself is then almost 

completely developed except for the macula, which reaches its adult configuration at 45 

months. 39,52-55 
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General Introduction 

Figures 2A-B Schematic representation of two views on the development of the primary and secondary 
vitreous during human embryology in the tenth week or 50 mm stage. A. Primary (#) and secondary (*) vitre
ous are spatially separated structures. 18

•
19

•
39

•
4 1 B. Primary vitreous (#) is gradually replaced by secondary vitreous 

which forms around the retracting hyaloid blood vessels (*).45
•
49 

1.2 Macroscopic and microscopic anatomy of the 

vitreous body 

The ECM structure of the vitreous is preserved by interactions between its main 

macromolecules.2•21•56•58 Concerning the anatomy of the vitreous body, there is no absolute 

distinctness in the literature, which might be explained by the high water content of the 

vitreous, by the use of different preservation methods (fixatives), and by the variable 

visualization techniques. For example, fresh vitreous has no structure when examined 

unstained with the light microscope. 18 

The vitreous body (Fig. 3) is almost spherical apart from the patellar fossa where 

the posterior part of the lens indents the vitreous anteriorly. At the edge of this fossa, a 

firm attachment of 1-2 mm in width and 8-9 mm in diameter is located between the vitreous 

and the lens, which is known as the ligamentum hyaloideocapsulare or Wieger's ligament. 59 

Between the posterior lens capsule and the patellar fossa and within the attachment zone 

of the Wieger's ligament is a potential space: the space of Berger.60 

Within the vitreous body, {i) the basal vitreous, (ii) the vitreous cortex, and {iii) 

the central vitreous are recognized. The vitreous base is a three dimensional annular 

zone, which extends 1.5-2 mm anteriorly to the ora serrata and 1-3 mm posteriorly to the 

ora serrata.61 The basal vitreous is composed of dense bundles of collagen fibrils, which 

firmly adhere to the retina and to the non-pigmented ciliary epithelium. Upon aging, the 
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posterior edge of the vitreous base enlarges posteriorly.37•62 The increase in width of the 

posterior vitreous base is greater in the nasal half than the temporal half of the eye.37 

The cortex ( I  00-300 µm) surrounds the central gel and adjoins the retina. It is 

composed of the anterior vitreous cortex, which runs forward from the anterior vitreous 

base to cover the central part of the posterior surface of the lens, and of the posterior 

vitreous cortex, which runs posteriorly from the posterior vitreous base and is adherent 

to the retinal surface. The posterior vitreous cortex is absent over the optic disc and 

thinned over the macula.5•63 A prepapillary hole can sometimes be visualized clinically 

when the posterior vitreous is detached from the retina (Weiss' ring). Strong vitreoretinal 

adhesions have been described at the vitreous base,64 at the macula,65 at the optic disc,65·66 

and over retinal blood vessels.67 From the cortex to the central vitreous, the concentration 

of collagen fibrils decreases: from a high density in the cortex via an area with intermediate 

density to a loose-meshed network in the center.68•69 

Figure 3 Anatomical considerations and lamellar organization of the vitreous. I. cornea; 2. iris; 3. lens; 4. 
zonules; 5. ciliary body; 6. ora serrata; 7. space of Berger; 8. patellar fossa; 9. Wieger's ligament; I 0. basal vitre
ous; 11. (supposed) Canal of Cloquet; 12. vitreous cortex; 13. macula; 14. optic nerve; IS. equatorial area. 

The central vitreous is the largest part and could still contain the canal of Cloquet 

(Fig. 4A), which represents the remnant of the embryonic hyaloid vasculature (see also 

vitreoretinal development).5• 18 In opposite, some studies question the existence of the canal 

of Cloquet as described above. Several ink injection studies show a distinct morphology 

of transvitreal channels in the adult eye, i.e. central canal(s) which end behind the ciliary 
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body (Fig. 48).70·72 The embryonic and early postnatal Cloquet's canal disappears around 

the third postnatal month.69 

Furthermore, spaces and condensations have been described in the vitreous 

body. Spaces are found in the vitreous cortex in front of the optic disc, the macula, and 

blood vessels. However, the latter finding remains unclear.64•6s.73 Within the vitreous body, 

several authors have observed sacs,74 tracts,6s.75 and cisterns, which are spaces at different 

levels in a circular arrangement.64 The presence of these structures as components of 

vitreous anatomy has not generally been accepted. 

Figures 4A-C Three different concepts of "Cloquet's Canal". A. The papilla-lenticular canal through the 
central vitreous represents a remnant of the embryonic hyaloid blood vessel.5

•
18 B. Two cilio-papillo-macular 

channels run through the intermediate vitreous and extend towards the retrociliary area.72C. A relatively large 
central canal begins in the posterior pole and ends in the perilenticular or retrociliary area.71 

Most tissue condensations found in the vitreous cortex follow a course parallel 

to the retina, while some follow a course perpendicular to the retina.69 In the area with 

an intermediate density, condensations come from the vitreous base. They are changeably 

described as tracts,6s.75 septa, 64•70 lamellae,69·76•77 membranes,6s·69•7s and fiber bundles.79·so 

Their origin, organization pattern and contents are still discussed in literature. Via slit lamp 

microscopy, condensations were thought to be collagenous in origin.so By transmission 

electron microscope (TEM), vitreous collagen fibrils could aggregate into bundles.so In a 

more recent study, however, structures in the vitreous were not just fiber bundles but 

more complex lamellae.72 

Cells in the vitreous 

The adult vitreous body contains only a small number of cells predominantly located in the 

vitreous cortex. Hyalocytes represent approximately 90% of the cells and fibroblasts the 

other I 0%. In the region of the vitreous base, the highest cell density of hyalocytes is found 
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followed by the posterior pole, with the lowest density at the equator. 81·82 There is also a 

preferential location of these cells along retinal blood vessels. 82 Hyalocytes are I 0-15 µm in 

diameter with a lobulated nucleus and depending on their activity and location, these cells 

can be round, oval, spindle-shaped, or flattened.83·84 These cells contain a well-developed 

Golgi complex, a moderate amount of mitochondria, basophilic Periodic Acid Schiff 

(PAS)-positive granules (0.2-2.0 µm), lysosomes, and smooth and rough endoplasmatic 

reticulum phagosomes. 18·83 In hyalocyte granules, several substances are found: GAG, GP, 

nucleic acid, acid phosphatase, beta-glucuronidase, and alkaline phosphatase.85•86 

In the posterior vitreous cortex, laminocytes were found.87 These cells were 

predominantly present at the side of the ILL and absent from the rest of the vitreous. They 

could be involved in maintaining the adhesion between the posterior vitreous cortex and 

the ILL. 

Fibroblasts are localized in the cortex at the ciliary processes, vitreous base, 

and adjacent to the optic disc. 88•89 They differ form hyalocytes by the presence of 

longer extensions (with a maximum length of 260 µm) and the absence of PAS-positive 

granules. 24·63·82 

The tertiary vitreous 

In embryology, the zonules are traditionally classified as the tertiary vitreous, because of 

their intimate association with the vitreous body. From an anatomical point of view, the 

posterior zonular fibers run (partly) through the anterior vitreous. However, the zonular 

system is in fact neither structurally nor biochemically part of the vitreous: the zonules 

are the suspensory system through which the ciliary muscle can alter the curvature of the 

lens.90 

The vitreoretinal interface 

The vitreoretinal interface is the area of contact between the vitreous body and the retina. 

Centrifugally, the interface consists of a vitreous cortex, retinal ILL, and Muller cell endfeet. 

Muller cells are radially oriented macroglia that traverse the retina from its inner (vitreal) 

border to the outer limiting membrane. They have many local functions: they stabilize the 

retinal architecture, provide an orientation scaffold, give structural and metabolic support 

to retinal neurons and blood vessels, and prevent aberrant photoreceptor migration into 

the subretinal space.91
•
92 It has been suggested that they are responsible for the production 

of vitreous and ILL collagens during growth and in adulthood, but this remains a matter of 

debate. 7,41,43,93-100 
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1.3 Aging of the postnatal vitreous 

At birth, the human vitreous has an ultrasonic length of I 0.48 mm and I 0.22 mm for 

males and females, respectively. Through the years, this difference is preserved. After fast 

growth in the first three postnatal years (around 3.5 mm), growth slows down and the 

vitreous is almost full-grown at the age of 13 with measurements of 16.09 mm for males 

and 15.59 mm for females.101 ,102 

With aging, two morphological changes in the vitreous have been described: a 

progressive increase in the volume of liquefied spaces (synchisis)103- i os and an increase in 

optically dense areas (syneresis).68•69•106-108 Synchisis generally starts in the central part and 

is characterized by the replacement of vitreous gel by liquefied vitreous, which is typically 

free of collagen fibrils and surrounded by optically dense structures or condensations ( Fig. 

SA). 57•108 As these morphological alterations progress with age, they may locally interfere 

with the passage of light and cause symptoms referred to as 'mouches volantes' or floaters. 

Furthermore, posterior vitreoretinal attachments weaken,73 while anterior vitreoretinal 

adhesions develop with aging.37•62 Finally, these processes may lead to a posterior vitreous 

detachment (PVD), a separation between the vitreous cortex and the retina. In most eyes, 

PVD is not a serious condition, but it may induce pathology, such as retinal tears, retinal 

detachment (Fig. SB), intravitreal hemorrhage, and cystoid macular edema.109-11 1 PVD is 

particularly associated with senescence and the amount of liquefied spaces, 104• 1 06 and less 

with myopia, which mainly causes an earlier onset, 1 09•112•113 female gender,104 ischemia of 

Muller cells, 114 and several metabolic disturbances, e.g. diabetes mellitus. 1 14-1 1 6  

Figures SA-B A. Vitreous aging with an increase in  the volume of  liquefied spaces (*) and an increase in  opti
cally dense structures (closed arrowheads). B. A PVD induces a retinal hole followed by a retinal detachment 
starting at the place where the vitreous cortex has a firm attachment with the retina (arrow). Liquefied and 
collapsed vitreous (*), vitreous cortex (open arrowhead), detached retina (#), attached retina (##). I. lens; 2. 
macula; 3. optic nerve. 
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Chapter I 

The (patho)physiological mechanisms underlying the morphological changes 

and PY O have not yet been clarified. Generally, synchisis is supposed to start with 

changes in the noncollagenous components of the matrix and to result in aggregation of 

collagen fibrils.2 •5 •2 1 •56•57• 1 08 Following this theory, synchisis and syneresis are the structural 

manifestation of a destabilization of the vitreous matrix.2 1 • 1 03 • 1 08 Based on more recent 

studies, we propose an alternative hypothesis, in which breakdown of vitreous matrix 

(synchisis) 1 1 7 would coincide with synthesis of vitreous collagen3 1 •36 leading to an increase 

in optically dense structures upon aging (syneresis). Since collagens are held responsible 

for the preservation of the gel structure, 5 these macromolecules are of primary interest. 

This hypothesis is also in line with adult ECMs other than the vitreous (e.g. gingiva and 

cartilage), in which collagens undergo turnover (synthesis and breakdown).21•30 

In those ECMs, collagen breakdown follows mainly an intracellular route for 

remodeling under physiological conditions.29 When large amounts of collagen have to be 

broken down in a relatively short interval (i.e. inflammation), extracellular breakdown is 

more important with a main role for matrix metalloproteinases (MMPs). 1 18· 1 1 9 However, in 

the vitreous, physiological collagen breakdown could also follow the extracellular route, 

because cellular structures are absent near liquefied spaces, where collagen fragments are 

found.1 17 

Fibril-forming collagens (e.g. type II) are synthesized intracellularly and in general 

procollagen molecules are secreted into the ECM, where collagen fibrils assemble and 

collagen cross-link formation occurs.29• 1 20• 1 2 1  The formation of fibrils may not always apply 

to the vitreous, since procollagens were observed in adult human, rabbit and bovine 

vitreous.3 1 •32 •34•35 In addition, mature bovine vitreous contained more immature collagen 

cross-links than articular cartilage, indicating a slower or incomplete maturation process 

and/or a more active synthesis of collagen in the former. 33 

1.4 Aim and outline of this thesis 

Since the first moment the vitreous is formed, its structure is not static, but subject to 

changes. During embryonic development, the vitreous progresses from the primordial 

(avascular) via the primary (vascular) into the secondary (avascular) vitreous. From the 

age of four onwards, the first evidence for synchisis is described1 03 and besides synchisis, 

syneresis occurs.68•69• 1 06• 1 0 8  Both processes progress slowly with aging and 45% of the 

persons between 60-69 years old have at least 50% liquefaction. 1 05 The pathogenesis of 
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General Introduction 

aging of the human vitreous is a process that still needs to be elucidated. The morphological 

changes, synchisis and syneresis, are traditionally seen as the structural manifestation of 

a destabilization of the vitreous matrix. The alternative proposed hypothesis, in which 

collagen turnover, i.e. synthesis and breakdown, plays a role, will be a central feature in this 

thesis. Our main goal is to find and add evidence to the dynamic view of collagen turnover. 

To achieve our goal we study: 

(i) the human vitreous and its interaction with the vitreoretinal interface, 

(ii) retinal Muller cells to determine their possible role in collagen turnover, and 

(iii) the role of enzymatic collagen cross-links in the human vitreous with aging. 

Chapter 2 is an LM and TEM study on the morphology of the vitreoretinal 

interface in the (pre-)equatorial area of the human eye. It discusses vitreoretinal 

attachments and provides additional information on newly synthesized intraretinal collagen 

(networks and packages).37 In most eyes, Muller cells were closely related to the collagen 

packages. According to our morphological observations, these cells could be involved in 

the breakdown and synthesis of intraretinal collagen. 

In chapter 3, the presence of types I-VI I ,  IX, XI, and XV I II collagen in the 

vitreoretinal interface is studied in fresh retinectomy samples from the equator and in 

human donor eyes at the pre-equator area, equator area, and posterior pole. We use 

reverse transcriptase-polymerase chain reaction (RT-PCR) to detect mRNA of above

mentioned collagens and LM immunohistochemistry to localize the collagens. Important 

findings include the detection of type V I  collagen in the ILM (internal limiting membrane, 

an LM description) and type V II collagen in superficial retinal layers. 

In chapter 4, human retinal Muller cells are evaluated to elucidate their possible 

role in collagen breakdown. Cultured Muller cells (MIO-M 1 1 22) are exposed to fluorescent 

latex beads coated with types II (vitreous) and IV ( ILL) collagen. To influence phagocytosis, 

cytochalasin B and anti-integrin subunits (al , a2, and � I )  are added to the cells. Phagocytosis 

is evaluated by TEM, flow cytometry, and confocal microscopy. 

Chapter 5 discusses whether cultured Muller cells (MIO-Ml )  can be involved 

in the synthesis of types I-V II, IX, XI, and XVII collagen. Type XVII collagen is not related 

to the natural vicinity of the retinal Muller cell. We use RT-PCR, immunohistochemistry 

(LM) and Western Blotting to detect (a) the presence of collagen mRNA, (b) the cellular 

expression of collagens, and (c) the secretion of collagens, respectively. 

Chapter 6 describes the mature enzymatic collagen cross-links, 

hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), in the human vitreous with aging. 

The pyridinoline cross-links form the last enzymatic step in collagen maturation. They 
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provide physical and mechanical strength to the collagen network and thus contribute 

to its integrity.123 Whole human vitreous bodies are analyzed by high performance liquid 

chromatography {HPLC). Our findings can contribute to the insight in the age-related 

processes synchisis and syneresis in the concept of collagen turnover. 

Chapter 7 is a general discussion and a review of recent literature addressing 

remodeling of the human vitreous and vitreoretinal interface with aging. 

Chapters 8 and 9 provide an English summary and a Dutch summary, 

respectively. 
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Chapter 2 

Abstract 

The purpose of this study was to evaluate the vitreoretinal border in the (pre-)equatorial 

area in nonpathologic human donor eyes, because the majority of retinal defects induced 

by posterior vitreous detachment (PVD) are located there. Nine eyes (24-80 years) were 

fixed and embedded in Technovit 8100. After evaluation by light microscope, areas of 

interest were selected for immunotransmission electron microscope. Anti-type II collagen 

antibody was used to stain vitreous fibrils and lamellae; anti-type IV collagen antibody was 

used to identify the internal limiting lamina (ILL); anti-vimentin and anti-CD-68 antibodies 

stained retinal Muller cells and macrophages, respectively. Observations included fusing 

of lamellae with the ILL, an intravitreal course of the ILL, and clear focal interruptions in 

the ILL. In addition, an obvious finding was the presence of intraretinal packages of type II 

collagen. Interestingly these collagen packages were closely related to Muller cells and, in 

several eyes, also to macrophages, cell debris and interruptions in the ILL. In our opinion, 

the collagen packages can reflect the net result of a process of interactive remodelling, in 

which both breakdown and synthesis of vitreous and ILL collagens take place. Connections 

between vitreous and intraretinal collagen networks can make the (pre-)equatorial area 

more vulnerable to tearing and retinal detachment in the case of liquefaction and PVD. 
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Vitreous collagen in the human retina 

I .  I ntroduction 

The vitreoretinal interface is the area of contact between the vitreous body and the retina. 

Centrifugally, the interface consists of a vitreous cortex, retinal internal limiting lamina (ILL), 

and Muller cell endfeet.The clinical importance of this area becomes apparent from interface 

pathology induced by posterior vitreous detachment (PVD), such as retinal tears, retinal 

detachment, and intravitreal haemorrhage. PVD is mostly associated with senescence and 

the amount of liquefied spaces (Foos, 1972a; Foos and Wheeler, 1982), and less with myopia, 

which mainly causes an earlier onset (Linder, 1966; Jaffe, 1968; Akiba, 1993), female gender 

(Foos and Wheeler, 1982), ischaemia of Muller cells (Sebag, 1987a), and several metabolic 

disturbances, e.g. diabetes (Akiba et al., 1993; Deguine et al., 1998; Sebag, 1987a). 

On ageing, the human vitreous undergoes two morphological changes in matrix 

structure. One is a progressive increase in liquefied spaces (synchysis) (Favre and Goldmann, 

1956; O'Malley, 1976; Foos and Wheeler, 1982; Balazs and Denlinger, 1982); the other is an 

increase in optically dense structures (syneresis) (Szent Gyorgyi, 1917; Eisner, 197 1; Foos, 

1972a; Oksala, 1978; Sebag, I 987b). In general, liquefaction starts in the central vitreous (Sebag, 

1987b). At the border of liquefied spaces, aggregation of proteoglycans and fragmentation 

of collagen fibrils have been described (Los et al., 2003). In the end, synchysis leads to PVD 

(Favre and Goldmann, 1956; Foos, I 972a,b; O'Malley, 1976; Foos and Wheeler, 1982). 

The (patho)physiological mechanisms underlying these processes have not yet been 

clarified. 

Whether a PVD will induce interface pathology depends on the nature of 

vitreoretinal adhesions and the thickness of the ILL. Strong adhesions have been described at 

the vitreous base (Teng and Chi, 1957), the equator (Worst, 1977), over retinal blood vessels 

(Foos, 1977), at the optic disc (Grignolo, 1952; Foos and Roth, 1973) and macula (Grignolo, 

1952). Transmission electron microscopic (TEM) studies revealed a regional variability in 

thickness of the ILL, consisting of an increase in thickness from the vitreous base towards 

the macular area with a focal thinning over the fovea and optic disc (Foos, 1972b; Heegaard, 

1997). Foos ( 1977), and Spencer and Foos ( 1970) further observed thinning of the ILL and 

Muller cell processes in areas overlying retinal blood vessels. Furthermore, attachment 

plaques (i.e. hemidesmosomes) were present in the equator and absent from the posterior 

pole with exception of the fovea (Foos, 1972b). In the vitreous base area, which is known 

for its extremely strong vitreoretinal attachments, several variations in the vitreoretinal 

border have been described. These include direct insertions of vitreous fibrils into Muller 

cells and/or into crypts between adjacent Muller cells (Foos, 1972b; Gloor and Daicker, 1975; 
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Malecaze et al., 1985). These and other variations have been interpreted as degenerative or 

interactive remodelling of the vitreoretinal juncture (Foos, 1972b; Malecaze et al., 1985). By 

scanning electron microscopy, Wang et al. (2003) observed sublaminar collagenous fibres 

expanding into collagen networks, which increase on ageing. 

The present study focuses on the vitreoretinal border in the (pre-)equatorial area, 

because the majority of retinal defects induced by PVD are located there (Sebag, 1989). 

Donor eyes were embedded in Technovit 8100; morphology and immuno-TEM identified 

specific structures and cells in the vitreoretinal border. Previous immunohistochemical 

studies on ILL composition have shown the presence of the noncollagenous components 

laminin, fibronectin, proteoglycans, and several glycoconjugates (Kohno et al., 1987; Russell 

et al., 199 1  ), as well as type I and type IV collagens 0erdan et al., I 986). The latter authors 

were not able to demonstrate type II collagen in the ILL. Here, the location of the ILL and 

vitreous collagen is determined with an anti-type IV collagen antibody and an anti-type II 

collagen antibody, respectively. Studying lamellae inserting on the ILL in the equatorial area 

by TEM, we discovered packages of type II collagen in the retina.Therefore, we also focus on 

these collagen packages and related accessory findings. 

2. Materials and methods 

2. 1 . TB I 00 embedding procedure 

Nine human eyes (nine donors) with ages varying between 24 and 80 years (mean age 62 

years; Table I) and with no known ophthalmic disorder were obtained from the Cornea Bank 

(Amsterdam, The Netherlands) after removal of the corneas for cornea transplantation. 

The eyes were studied by light microscope (LM) and by immunotransmission electron 

microscope (immuno-TEM). Eyes were fixed by immersion within 48 hr post mortem in 

2% paraformaldehyde (PF, Polysciences Inc., Warrington, UK) diluted in 0. 1 M phosphate 

buffer, pH 7.4 for I hr. After removal of small parts of the globe, the eyes were fixed for an 

additional 4 hr in PF. In order to avoid vitreous loss, washing, dehydration and infiltration 

steps were promoted by gently rotating the specimens. The eyes were washed in 6.8% 

sucrose in phosphate buffered saline (PBS) for 16 hr, briefly in doubly distilled water, 

dehydrated in acetones (30-100%) and embedded in Technovit 8100 (T8100, Heraeus 

Kulzer, Wehrheim, Germany). After infiltration with T8 I 00A (without accelerator) at 

4°C, the specimens were transferred to -20°C for infiltration with T8100ACB (with 

accelerator), and again to 4°C for polymerisation. 
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The embedded eyes were cut and sections of 3-4 µm thickness were stained with 

toluidin blue (TB) for evaluation by LM. Areas of interest were selected for morphological 

and immunohistochemical evaluation by TEM. Sections with a thickness of approximately 

200 nm were mounted on formvar-coated nickel grids, subjected to the immuno-TEM 

procedures described below, counterstained with uranyl acetate in 25 cp methylcellulose, 

and evaluated in a Philips 20 I TEM operated at 80 kV. 

2.2. lmmunohistochemica/ staining 

The following primary antibodies were used: goat polyclonal antibodies against human 

type II collagen (vitreous; Southern Biotechnology Associates (SBA), Birmingham, USA) 

and type IV collagen (ILL; SBA) and mouse monoclonal antibodies against human vimentin 

(retinal Muller cells; DAKO, Glostrup, Denmark) and CD-68 (macrophages; DAKO). 

The immuno-TEM procedure was as follows: thin sections were pretreated 

with 0.1% (for anti-type IV collagen antibody) and 0.01% (for the remaining antibodies) 

trypsin (Gibco, Paisley, Scotland) in Tris-HCI, pH 7.8 containing 0. 1 %  CaCl2, for 15 min at 

37°C. The sections were then washed in PBS pH 7.4, incubated in 0.1 M citric acid pH 3 

(for anti-type II collagen antibody containing 0.5 mg ml - 1 pepsin (Boehringer Mannheim, 

Mannheim, Germany)) for 45 min at 37°C, washed in PBS, incubated in PBS with 0.15% 

glycine, 5% Bovine Serum Albumin (BSA; CLB, Amsterdam, The Netherlands), 2% rabbit 

serum (for both anticollagen antibodies) or 2% mouse serum (for antivimentin and 

anti-CD-68 antibodies) for 30 min at room temperature (RT) to block nonspecific binding 

of the primary antibody. Thereafter, sections were incubated with the primary antibody 

diluted in PBS ( 1: 150) with 1% BSA-c (Aurion, Wageningen, The Netherlands) first for 

2 hr at 37°C, and then overnight at RT. The next day, sections were washed in PBS, 

incubated in Rabbit anti-Goat lgG or Rabbit anti-Mouse IgG conjugated to 6 nm gold 

(Aurion, Wageningen, The Netherlands) diluted in PBS ( 1: 150) for 60 min at RT, washed in 

PBS, fixed in 2% glutaraldehyde/PBS for 2 min and finally washed in doubly distilled water. 

This step was followed by incubation with silver enhancement solution (Aurion R-gent 

enhancer, Aurion, Wageningen, The Netherlands) for 5 min at RT. After washing in doubly 

distilled water, the sections were counterstained as described above. Control sections 

underwent the entire procedure, except for the substitution of the primary antibody. 
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w Table I Overview of the donor eyes 9 

Donor Age Section Distance col pack Length of col Lamellae Lamellae Interruption MUiier cell Macrophage 

eye location to ILL (µm) pack (µm) perpendicular parallel ILL N 

70 702 24 Equator 7- 1 0  4-7 + +  + n.p. n.p. n.p. 

70 734 29 Pre-equator 0-44 2- 1 7  + + n.p. n.p. n.p. 

8 1  778 56 Pre-equator 0-24 6-25 n.p. n.p. + n.p. + 

8 1  79 1 67 Pre-equator 0-38 3- 1 8  + n.p. +, ** + + 

85 1 1 7 70 Pre-equator 30-36 1 -4 + + + + n.p. 

76 587 74 Equator 0-2 3-24 + +  + + ,  **  + ,  displaced + 

8 1  784 77 (Pre-)equator 0-20 2-28 + + + ,  ** + ,  displaced + 

85 1 1 6 77 Pre-equator 0-28 5-25 + + + ,  ** + ,  displaced + 

74 656 80 Equator 0-20 6- 1 1  + + + + ,  ** + n.p. 

Col, collagen (type II); pack, package; CC, many present; C, present; K, negative; n.p., not present in the (labelled) sections; **, type II collagen filling or passing through the inter-
ruption; displaced, clear displacement of Muller cell processes by collagen packages. 
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3. Results 

3. 1 .  Light microscope 

Cross-sections and longitudinal sections revealed that in every eye at least part of the 

retina with the pigment epithelium detached from the choroid and sclera, probably as a 

result of the embedding procedure (Fig. I) .  The vitreous remained largely in the eyeballs, 

although two holes were cut in the sci era for impregnation with TS I 00. In all eyes, the 

vitreoretinal border was intact and thus no (complete) PVD was observed. Lamellae were 

visible as thick threads crossing through the vitreous partly inserting on the ILL, and 

together with (larger) superficial retinal blood vessels they proved to be good landmarks 

for TEM evaluation. 

Furthermore, the vitreous base of each specimen had a clear and thick attachment at the 

ora serrata. After the novel finding of intraretinal packages of type II collagen by TEM (see 

below), many larger packages were seen under the ILL in LM sections (Fig. 2). 

Figure I Macroscopic overview of eye 85 1 17. The box shows the evaluated equatorial and pre-equatorial 
areas. Co, cornea; cb, ciliary body; le, lens; os, era serrata; ch, choroid and retinal pigment epithelium; vb, 
vitreous body; sc, sclera; and re, retina. 
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Figure 2 LM of eye 81 784: overview of the vitreoretinal border containing perpendicular lamellae 
(arrowheads) on the side of the vitreous body (vb). In the retina (re), many collagen packages (*; see Fig.3 for 
type II collagen staining) are located subjacent to the ILL. Note the displacement of the Muller cell processes 
(arrows). Bar= IO µm. 

3.2.Transmission electron microscope 

3.2 .  I .  General observations 

Details of the LM selections of the vitreoretinal border, which contained part of the 

vitreous and the retina, were evaluated by (immuno-)TEM and clarified part of the 

vitreoretinal morphology, because the same areas were compared after staining with 

different antibodies (Table I ). 

Vitreous and collagen packages were positive for type II collagen in all eyes. By the 

use of pepsin in the pretreatment, the morphology was of a lesser quality (Fig. 3A). 

The retinal basement membrane ( ILL) was positive for type IV collagen (Fig. 3B). 

The ciliary basement membranes, retinal blood vessels and the lens capsule also contained 

type IV collagen (not shown). 

In six cases, anti-vimentin antibody staining resulted in a clear distinction of Mi.iller 

cells and their processes in the retina. The characteristic triangular endfeet adjacent to the 

ILL were hardly seen, instead of that we found, in half of the cases, clear displacements of 

Mi.iller cell processes by collagen packages (see below; Fig. 3C). 

36 



Vitreous collagen in the human retina 

Macrophages, demonstrated by an anti-CD-68 antibody labelling, were clearly 

observed in five eyes, and in those cases they appeared to be closely related to collagen 

packages in the vitreoretinal border (Figs. 3D and 4). In these eyes, other parts of the 

peripheral retina without light microscopic collagen packages did not contain any 

macrophages. 

All control sections (i.e. without primary antibody) were negative (not shown). 

3.2.2. Vitreoretina/ interface 

A striking observation in these human donor eyes was the variability in structure of 

the vitreoretinal interface in the (pre-)equatorial areas. Even though the expected 

organisation pattern, consisting of vitreous cortex-retinal ILL-retinal Muller cell surfaces, 

was most frequently seen, we also observed vitreous lamellae fusing with the I LL, direct 

vitreoretinal adhesions without ILL interpositioning, and focal interruptions in the ILL as 

described below ( 1 -3): 

Figure 3 lmmuno-TEM of eye 8 1  784 shows details of the vitreoretinal border. (A) Anti-type II collagen 
antibody indicates the vitreous body (vb) and typel l  collagen positive packages (*) in the retina (re). (B) 
Anti-type IV collagen antibody clearly stains the I LL (open arrowheads) with a few thickened notches (open 
arrows). There is also a little nonspecific staining. (C) Anti-CD-68 antibody ind icates a macrophage (>) located 
near collagen packages (*) in the retina (re) with probably cell debris (double arrow) and a CD-68 positive 
cell process (>) in the vitreous body (vb). The dotted line indicates the position of the I LL .  (D) Anti-vimentin 
antibody shows the intracellular filaments of a Muller cel l (mu) and the displaced processes (arrows) in between 
the collagen packages (*). Again, cell debris (double arrow) is probably present in the vitreous body (vb). 
Re, retina. Bars=2 µm. 
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Figure 4 lmmuno-TEM CD-68 staining shows: (A) (eye 8 1  778) intraretinal (re) macrophages (>) near the 
collagen packages (*) and (B) (eye 76 587) a macrophage (>) located under the I LL (open arrowheads) between 
packages of collagen and a positive cell process within the vitreous body (vb). Bars= I µm. 

I. In eight donor eyes {all except 81 778), vitreous lamellae perpendicular to the ILL 

were seen. In seven of these eyes (all except 8 1  79 1 ), there were also lamellae parallel 

to the retina (see Table I ). Vitreous lamellae running parallel to the retina were clearly 

fusing with the ILL in three eyes (70 702, 70 734, and 74 656). In these areas, the ILL and 

vitreous lamella ran separately over large areas, while sometimes an overlap between the 

two structures was noted. In 70 702, type II collagen fibres also penetrated through the 

ILL, and these were connected with a fine-meshed type II collagen network in the retina 

(Fig. SA and B). 

2. In four cases the ILL had an intravitreal course. This was observed in the pre-equatorial 

(70 734, 81 784, and 85 1 16) and equatorial (76 587) retina. In all instances, vitreous 

collagen was located between the retinal Muller cells and the elevated ILL, resulting in 

focal vitreoretinal adhesions. 

3. Clear focal interruptions within the (elevated) ILL were observed in seven eyes (all 

except 70 702 and 70 734). In these observations, anti-type IV collagen labelling played a 

crucial role in detecting breaks in the ILL. In five eyes (74 656, 76 587, 8 1  784, 81 791, and 

85 1 1 6), vitreous collagen filled or passed through the interruption (Fig. 6A and C). This 

was shown by comparing the same areas after anti-type II collagen antibody and anti-type 

IV collagen antibody staining in each eye (Fig. 6A and B). 
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Figure 5 lmmuno-TEM of eye 70 702: (A) Anti-type II collagen antibody demonstrates the presence of 
fine type II collagen fibres (arrowheads), which pass through the I LL and make contact with a fine-meshed 
intraretinal type II collagen network (*). The insertion shows details of the type II collagen fibres. (B) Anti-type 
IV collagen indicates the ILL, with which vitreous fibrils (arrowheads) fuse. Loose (vitreous) fibrils are located 
directly under the I LL (arrowheads). Re, retina and vb, vitreous body. Bars=S00 µm. 

Figure 6 lmmuno-TEM of eye 76 587: (A) Staining of the vitreoretinal border shows a clear interruption 
(between open arrowheads) in the type IV collagen positive ILL and, partly, an intravitreal course of the I LL. (B) 
Type II collagen staining of the same area shows that the vitreous collagen (type II positive) is partly enclosed by 
an aberrantly running ILL (open arrowheads). (C) In another area with an intraretinal package of col lagen (*), 
anti-type IV collagen antibody staining indicates an interruption in the type IV collagen positive ILL (between 
open arrowheads). Re, retina and vb, vitreous body. Bars=2 µm. 
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3.2.3. Intra retinal packages of vitreous collagen 

In all donor eyes, type II collagen packages were observed in the retina. The distance of 

these packages to the ILL ranged from O to 44 µm and their diameter varied from about I 

to 28 µm (Table I). The collagen fibrils in different packages ran parallel and perpendicular 

to retina and vitreous. In addition, collagen fibrils in most packages appeared to be more 

densely packed than in the vitreous. 

During the analysis of collagen packages, we repeatedly found, besides some 

vitreous lamellae inserting perpendicular on the retina, cells, cell processes, and electron

dense structures (most probably cell debris) in their surrounding. It appeared that the 

ILL over the collagen packages was largely intact, and focal interruptions were mainly 

observed in their neighbourhood. In five eyes (76 587, 8 1  778, 81 784, 81 791, and 85 

1 16), the vitreous cortex and retina adjacent to packages contained macrophages 

(CD-68 positive cells), and in three (76 587, 8 1  784, and 85 116) displacements of Muller cell 

processes (vimentin positive) embracing intraretinal collagen were clearly visible. Because 

Muller cells were also observed in the vicinity of the collagen packages in three other eyes 

(74 656, 81 791, and 85 117), most collagen packages, both superficially, i.e. close to the 

ILL, and deeper in the retina, seemed to be surrounded by Muller cell processes. 

4. Discussion 

For the evaluation of the vitreoretinal border, our main focus was on adhesions between 

vitreous lamellae and the retinal surface and on the course of the ILL in the (pre-)equatorial 

area. Before vitreous fibrils, lamellae, ILL, and intraretinal packages of type II collagen are 

discussed in more detail (see below), it should be noticed that the postembedding labelling 

procedure on T8 I 00 (Los et al., 2000) played an essential role in determining the exact 

course and location of the above-mentioned structures and the position of the retinal 

Muller cells and macrophages. Morphological research on LM and TEM level alone could not 

have convincingly demonstrated this. Postembedding labelling thus appeared to be a very 

useful tool to study the nature and distribution patterns of collagens in the vitreoretinal 

interface. Postembedding labelling studies commonly encounter the masking of epitopes, 

which need (enzymatic) pretreatment steps for the unmasking of epitopes. With various 

pretreatment steps, specific labelling patterns were obtained for each antigen/antibody. 

Pepsin pretreatment was desirable in anti-type II collagen antibody labelling, but it affected 

overall cell morphology. This step can be skipped in the other labelling procedures. 
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After specific labelling with anticollagen antibodies, we focussed firstly on 

vitreous lamellae, which can be considered as local condensations of vitreous fibrils. Due 

to their structure, lamellae are the most likely candidates to cause focal traction upon the 

retina leading to tear formation. Macroscopically, they present themselves as sheet-like 

structures; by LM, they are visible as groups of parallel-running collagenous threads, and 

by TEM they appear as concentrations of vitreous fibrils, in a mainly parallel organisation, 

with occasional smaller fibrils crossing the spaces between parallel fibrils (Los, 1997; Los 

et al., 2000). In eight of nine eyes, lamellae inserted clearly perpendicular to the retina. In 

one case, vitreous fibrils passed the I LL (70 702). 

Secondly, the course of the ILL was followed by immunohistochemical staining 

with anti-type IV collagen antibody, which showed, besides variability in structure of the 

ILL, clear interruptions and an intravitreal course. We established clear fusing of vitreous 

lamellae with the ILL, which was accompanied in some places by vitreous fibrils passing 

through the ILL (Fig. 5). Furthermore, we observed and via immuno-TEM expanded on 

impressions described by Foos ( 1972b) in the (pre-)equatorial area, i.e. macrophages, cell 

debris, and interruptions in the ILL with collagen fibres trying to penetrate. 

Finally, we found intraretinal collagen packages positive for type II collagen in the 

(pre-) equatorial area. Moreover, these packages were closely surrounded by Muller cells. 

Our results correspond and add information to the SEM findings of Wang et al. ( 2003), 

who observed collagen fibres, without cellular relations, under the ILL developing into 

dense collagen knots on ageing in the basal area. Their findings were interpreted as de 

novo synthesis of collagen. Although the sample size in our study was too small to detect 

age-related phenomena, the youngest eye (70 702) contained an intraretinal fine-meshed 

collagen network (Fig. 5), and the oldest eyes (e.g. 81 784) contained much denser collagen 

packages (Fig. 3A). 

A few decades ago, Foos ( 1972b), Gloor and Daicker ( 1975),and Malecaze et al. 

( 1985) described direct adhesions between vitreous fibres and Muller cells at the vitreous 

base and the ora serrata, so-called crypts. In the equatorial area, Malecaze et al. ( 1 985) 

also observed widening of intracellular spaces partly filled with fibres adhering to Muller 

cells, which were covered by an ILL. These and other variations had been interpreted 

as degenerative or interactive remodelling of the vitreoretinal juncture (Foos, 1972b; 

Malecaze et al., 1985). The results of our study differ to some extent as to the location of 

the interruptions, the depth and size of the collagen packages, and their close relation to 

the Muller cells. Furthermore, these packages were observed in the vicinity of inserting 

lamellae, but a direct connection between collagen packages and vitreous lamellae was not 

found. 
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To explain the intraretinal packages, our findings are placed in a more current view 

of extracellular matrix (ECM) remodelling. Several studies have described remodelling in 

adult EC Ms other than the vitreous (Svoboda et al., 1981; Everts et al., 1996; Antoniou et al., 

1996; Blair et al., 2002). Collagens, which are also the main macromolecular components 

of the vitreous (type II) and vitreoretinal border (type IV), appear to undergo turnover, 

which means that there is some synthesis and breakdown. Collagen breakdown follows 

primarily an intracellular route in case of remodelling in physiological conditions (Everts 

et al., 1 996). When large amounts of collagen have to be degraded in a relatively short 

interval (i.e. inflammation), extracellular breakdown is more important with a main role 

for matrix metalloproteinases (MMPs) ( Everts and Beertsen, 1992; Nagase and Woessner, 

1999). Collagen synthesis occurs intracellularly, and in general procollagen molecules 

of fibrillar collagen types (e.g. type 11) are secreted into the extracellular space, where 

collagen fibrils are formed (Alberts et al., 1994; Everts et al., 1996). The formation of fibrils 

may not always apply to the vitreous, since Bishop et al. ( 1994) observed procollagens in 

mature bovine vitreous. In addition, Snowden et al. ( 1982) found more immature collagen 

cross-links in mature bovine vitreous than in articular cartilage, indicating a slower or 

incomplete maturation process and/or a more active synthesis of collagen in the former. 

The observed type II collagen packages could thus be the net result of a process 

of interactive remodelling, in which both breakdown and synthesis of vitreous and 

ILL collagens take place. Phenomena suggestive of breakdown include the presence of 

macrophages, cell debris and focal interruptions in the ILL. A strong argument in favour of 

net synthesis of collagen is the observation by Wang et al. ( 2003) of intraretinal collagen 

networks expanding upon ageing. In addition they showed continuities between vitreous 

collagen fibres and sublaminar collagen networks. Because we used different techniques, 

we were only able to confirm this finding once (70 702). Since mechanical forces in general 

are well known for their ability to induce matrix remodelling (e.g. in bone and cartilage), 

we propose that vitreous base and equator remodelling, resulting in the formation of a 

collagenous intraretinal network, occurs in response to forces exerted upon this area, 

i.e. most likely vitreous movements and vitreoretinal tractional forces induced by eye 

movements (Hilding, 1954). In the light of eye mechanics, this remodelling could be 

aimed to decrease the effect of forces and strengthen the vitreous base. However, on 

ageing, connections between vitreous collagen and intraretinal collagen can make the 

(pre-)equatorial area more vulnerable to tearing and retinal detachment in the case of 

liquefaction and PVD. Whether Muller cells, which are closely related to the packages 

of vitreous collagen and the ILL, are involved in the synthesis and/or breakdown (e.g. 

phagocytosis) of this intraretinal collagen network, is currently under research. 
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Abstract 

Purpose 

This study evaluates the presence of types I-V I I, IX, XI ,  and XVI I I  collagen at the posterior 

pole, the equator and the pre-equatorial area in human donor eyes, since collagens are 

important macromolecules contributing to vitreoretinal adhesion at the vitreoretinal 

interface. 

Methods 

Freshly isolated human retinectomy samples from the equator were used for reverse 

transcriptase-polymerase chain reaction to detect mRNA of the above-mentioned 

collagens. In addition, human donor eyes and equatorial retinectomy samples were 

embedded in paraffin, stained with antibodies against the above-mentioned collagens and 

evaluated by light microscopy (LM). 

Results 

Retinectomy samples express mRNA of all tested collagen types. By LM, vitreous cortex 

is positive for types II, V, IX, and XI collagen. In all three regions within the donor eyes 

and in the retinectomy samples, the internal limiting membrane (ILM) shows types IV, VI, 

and XVIII collagen, the retinal vasculature is positive for types I-VI and XVIII collagen in 

most specimens, and retinal layers show condensed spots of type V II collagen. In addition, 

type VII collagen increases in density and in distribution over the retinal layers towards 

the posterior pole. 

Conclusions 

Staining patterns of types 1-V, IX, XI ,  and XVI I I  collagen are conform previous observations. 

Important new findings include the presence of type V I  in the ILM and type VII in several 

layers of the retina. Both collagens can anchor matrix components and could be involved 

in vitreoretinal attachment. Furthermore, the presence of collagen mRNA in human 

retinectomy samples might be an indication of postnatal collagen production by retinal 

cells. 
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I ntrod uction 

The vitreous body (or vitreous) of the human eye is the transparent extracellular matrix 

(ECM) located between the lens and the retina. The vitreous is the largest structure of the eye 

and consists of 98-99% water and of just 0.1 % macromolecules, such as glycosaminoglycans 

(such as hyaluronan),1 proteoglycans,2·3 glycoproteins4 (such as opticin5·6), collagens,7-15 and 

noncollagenous structural proteins4·5·16·17 (e.g. fibrillin5). The most important macromolecules 

are the collagens, which form a network of heterotypic fibrils (types II, V/XI ,  and IX) and 

presumably maintain the gel structure.5·7· 18·19 Collagen types present in the vitreous are types 

11,7,8 V/Xf,9-11 v1,11,20 and IX.8,10-1S 

The vitreous cortex is located against the internal limiting membrane ( ILM) of 

the retina. Strong vitreoretinal adhesions have been described at the vitreous base, 21 at 

the equator, 22 over retinal blood vessels, 23 at the optic disc24·25 and macula. 24 Furthermore, 

morphological studies revealed a regional variability in thickness of the ILM, consisting of 

an increase in thickness from the vitreous base towards the macular area with a thinning 

over the fovea, optic disc, and retinal blood vessels.23·26-28 Finally, attachment plaques (i.e. 

hemidesmosomes) were present in the equator and absent from the posterior pole with 

the exception of the fovea.26 In the vitreous base area, which is known for its very strong 

vitreoretinal attachments, direct insertions of vitreous fibrils into Muller cells and / or into 

crypts between adjacent Muller cells were found.26·29·30 lmmunohistochemical studies on 

ILM composition have shown the presence of the non-collagenous components laminin, 

fibronectin, proteoglycans, and several glycoconjugates31·32 as well as types I, IV, and XVI I I  

collagens. 33-35 

In the adult human retina, collagen types that have been described (starting from 

the photoreceptor layer to the ILM) are types I-Vl26·36·37--41 and type XVlll.35 In retinas of 

non-pathological donor eyes, isolated packages of type II collagen were described in the 

pre-equatorial and equatorial area. 26 In several studies, type II collagen was also present 

in retinal blood vessels, 37·39·41 although this was not unambiguous. 38 It was also unclear 

whether there was preference for an anterior location as suggested in a histopathological 

pilot study on inherited rhegmatogenous retinal detachment.41 Types I, Ill, IV, V, V I, and 

XVI I I  collagen were described as components of retinal vasculature.35-40 

The present study focuses on the presence and distribution of types I-VI I, IX, XI ,  

and XVII I  collagen in the vitreoretinal interface at the pre-equatorial area, the equator 

and the posterior pole by studying human donor eyes and human retinectomy samples. 

The knowledge about the distribution of collagens can be useful in understanding the 
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(patho)physiology of a spontaneous, mechanical, or enzymatically induced posterior 

vitreous detachment (PVD). 

Materials and methods 

Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) 

Four fresh retinectomy samples (70, 74, 86, and 87 years) were acquired from patients 

with exsudative macular degeneration during a surgical procedure in which a full-thickness 

healthy equatorial autologous retinal pigment epithelium (RPE) and choroid graft is 

transplanted to the macular area and in which the retina of the graft is not used for this 

procedure.42•43 Informed consent was obtained prior to surgery with the approval of the 

medical ethical committee in accordance with the ethical standards laid down in the 1964 

Declaration of Helsinki. The retinectomy samples were taken from the equatorial retina 

at the 12 o'clock position and were immediately put into lysis buffer (Qiagen, Venlo, the 

Netherlands). Total RNA from the samples was extracted by RNeasy Mini kit method 

(Qiagen) according to the manufacturer's instructions. To eliminate DNA contamination, 

RNA samples were treated with DNase treatment Ambion-kit (DNA-free). RNA 

concentration and purity were determined on a spectrophotometer (Nanodrop, lsogen, 

Maarssen, the Netherlands) by calculating the ratio of optical density at wavelengths of 

260 and 280 nm. 2 µg RNA was reverse transcribed into cDNA using M-MuLV reverse 

transcriptase (MBI Fermentas, St. Leon-Rot, Germany) according to manufacturer's 

protocol (total reaction 20 µI). 

For the PCR reaction, I µI cDNA was added to 23 µI 'master mix' consisting 

of 2.5 µI IOxPCR buffer, 2.5 µI 2 mM dNTP mix, 1.5 µI 25 mM MgCl
2

, 0.25 µ I  (5 U/ 

µI) Taq DNA polymerase (Fermentas) and 16.25 µI  milli-Q water. Finally, a total of I 

µI of the two specific flanking primers (50µ M) was added (Table I). The mixtures were 

initially denatured at 94°C for five minutes. The PCR consisted of 35 cycles at the following 

conditions: denaturation at 94°C for 0.5 minute, annealing at 55°C (for types I, 11, Ill, V, 

and IX collagen) and 58°C (for types IV, V I, V II, XI, and XVIII collagen) for I minute, and 

an extension period at 72°C for I minute. These cycles were followed by a final extension 

period at 72°C of IO minutes. PCR products were analyzed by agarose gel electrophoresis 

( 1%) with 500 ng/ml ethidium bromide. Human GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase) and P-actin were used as internal positive controls. No amplification was 

obtained from the water controls (data not shown). 
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Table I Primers used in the RT-PCR analyses. 

Collagen Forward Primer: 5'73' Reverse Primer: 5'73' Size 

COL I A I  TCG GCG AGA GCA TGA CCG ATG GAT GAC GCT GTA GGT GM GCG GCT GTT 254 bps 

COL2A I GTG GM GAG TGG AGA CTA CTG TGT ACG TGA ACCTGCTATTG 4 1 9  bps 

COL3A I ACC GAT GAG ATT ATG ACTTCA CT CTG CAC ATC MG GAC ATC TTC AG 369 bps 

COL4A2 ATC GGC TAC CTC CTG GTG AA GCT GAT GTG TGT GCG GAT GA 648 bps 

COL5A I GAC TAC GCG GAC GGC ATG GM CCT GCC AGG CCA CTG ACT GGT A 454 bps 

COL6A I GGA GCT CM GGA AGC CAT CM G TCC TCC AGC AGC TCT GCA TAG T 342 bps 

COL7A I CCG AGG ACG AGA TGG TGA AGTTG CTG GCT CCA GGT CCT GTG TCT AC 26 1 bps 

COL9A I GCC TCT GGT GM GM GGT GM TGC TGA TCT GTC GGT GCT CTA 245 bps 

COL I  I A I  CAG CAG GCT CGG ATT GCT CTG A GGC CAT CTA CAC CTG CCA TAC C 460 bps 

COL l 8A I  TCT ACG TGG ACT GTG AGG AGTT CTG CTC CTC GAC TTC TCCACTT 380 bps 

Paraffin embedding procedure 

Three human eyes (3 donors) from 44, 55, and 74 years with no known ophthalmic disorder 

were obtained from the Cornea Bank (Amsterdam, The Netherlands). After removal of 

small parts of the globe, eyes were fixed by immersion within 36 hours post mortem in 2% 

paraformaldehyde (PF, Polysciences Inc., Warrington, U.K.) in phosphate buffered saline 

(PBS) overnight at 4
°
C. In order to achieve good penetration of the fixatives, washing, 

dehydration and infiltration steps were promoted by gently rotating the specimens. The 

eyes were washed in PBS and dehydrated by ethanols (50-100%). Finally, the specimens 

were embedded in paraffin. In addition, three retinectomy samples of 3 patients (74, 75(A), 

and 75(8) years) were put into 2% PF immediately after surgical removal and embedded in 

paraffin according to above-mentioned procedure. 

Figure I Schematic overview of an eye. Boxes I ,  2, and 3 indicate the pre-equatorial area, the equator and 
the posterior pole, respectively. Co: cornea, le: lens, sc: sclera, on: optic nerve, ch: choroid, re: retina, os: era 
serrata, vb: vitreous body. 
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lmmunohistochemistry 

The pre-equatorial area, the equator, and the posterior pole were selected from the donor 

eyes (Fig. I). Both the selected areas and the equatorial retinectomy samples were cut in 

sections of 5 µm thickness and studied by light microscopy (LM). Slides were deparaffinised 

by the addition of xylene followed by short hydration steps with ethanols ( I 00-50%). After 

washing with demiwater, I% type XXIV protease (Sigma, St. Louis, USA) was added for 

30 minutes. Sections were washed with PBS and endogenous peroxidases were blocked. 

Then, sections were exposed to PBS with 2% bovine serum albumin (BSA; Sanquin, 

Amsterdam, the Netherlands) and 5% serum of the producer of the secondary antibody at 

room temperature. The primary antibody was diluted 1:50 in PBS with 1% BSA and added 

for I hour. The primary antibodies included (i) rabbit polyclonal antibodies against human 

types I, 111, V (Abeam, Cambridge, UK), and XI collagen (a kind gift from J. Oxford, Boise 

State University, Boise, Idaho, USA) and against endostatin, the product of the C-terminal 

of type XVI I I  collagen (Abeam), (ii) biotinylated rabbit polyclonal antibody against human 

type VI collagen (Abeam), (iii) goat polyclonal antibodies against human types II and IV 

collagen (Southern Biotechnology Associates (SBA), Birmingham, USA), and (iv) mouse 

monoclonal antibodies against human types V II (Abeam) and IX collagen (USBiological, 

Massachusetts, USA). After washing, the peroxidised secondary antibody diluted to I: I 00 

in PBS, 1% BSA and 2% human serum was added for I hour at room temperature. Secondary 

antibodies included goat- and swine-anti-rabbit peroxidases (GARPO and SARPO; DAKO, 

Glostrup, Denmark), a rabbit-anti-goat peroxidase (RAGPO; DAKO), and a rabbit-anti

mouse peroxidase (RAMPO; DAKO). For biotinylated anti-type V I  collagen antibody, a 

streptavidin peroxidase (SAPO; DAKO) was used. After washing with PBS, sections were 

stained with 3-amino-9-ethylcarbazole (AEC; Sigma) and hematoxylin. 

Negative controls underwent the entire procedure, except for the substitution 

of the primary antibody. Three human corneas were used as positive controls for types IV 

and VI collagen (not shown). As an extra control for type V II collagen, a different rabbit 

polyclonal antibody against type VII collagen (Calbiochem, Darmstadt, Germany) was used 

to confirm the data of the mouse monoclonal antibody against type VII collagen. 

Morphological analysis 

The morphological data were semiquantitatively analyzed as follows: within each donor 

eye (n=3) the pre-equatorial area, the equator, and the posterior pole were identified. 

One author (RJW) took pictures from the collagen labeling in the three areas in the 

donor eyes and from the retinectomy samples. All pictures were randomly and digitally 

presented at the same magnification to two independent masked observers (TLP and LIL). 
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Collagen labeling intensity was defined on a scale from 0 to 2 (0 was negative, I weakly 

positive, and 2 strongly positive). 

Results 

RT-PCR 

The retinectomy samples expressed mRNA of all tested collagen types (Fig. 2). Amplimers 

were seen at the expected positions, which are for COL/A l at 254 base pairs (bps), for 

COL2AI at 4 1 9  bps, for COL3A I at 369 bps, for COL4A2 at 648 bps, for COLSA I at 454 bps, 

for COL6A I at 342 bps, for COL7A I  at 261 bps, for COL9AI at 245 bps, for COLI IA / at 460 

bps, and COL/BAI  380 bps. 

700

11 
600 
500 
400 

I I  

--

I l l  IV V VI VII IX  XI XVII I  J3-actin GAPDH 

Figure 2 RT-PCR on an equatorial retinectomy sample (74 year-old patient). From left to right, bands indicat
ing the positions of types I, 1 1 ,  I ll ,  IV, V, VI ,  V I I ,  IX, XI, and XVI I I  collagen are depicted. At the left margin, a I 00 
bps DNA ladder is  added. H uman P-actin and GAPDH were positive. 

Light Microscopy 

General observations 

Cross-sections and longitudinal sections through donor eyes revealed that in each eye at 

least part of the retina with the pigment epithelium had detached from the choroid and 

sclera, probably as a result of the embedding procedure. Sections through the retinectomy 

samples showed no adhering vitreous because of the preceding vitrectomy. In addition, the 

retinectomy samples contained no fragments of the RPE layer. The judgments of the masked 

observers were very similar in positive or negative scores, but showed differences in the 

intensity of positivity (weak or strong). Since quantitative results on immunohistochemical 

pictures appeared less reliable, we only used positive or negative scores in our results. In 

the cases that the pre-equatorial area, the equator, and the posterior pole stained positive 

or negative, the intervening areas (not shown) were likewise stained. 

Vitreoretinal interface 

The vitreoretinal interface is the area of contact between the vitreous body and the retina. 
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The vitreous cortex when present was clearly positive for type II (Fig. 38) collagen and 

variably for types V, IX, and XI collagen (Figs. 3E,G,H). The vitreous cortex showed no 

staining with the antibody against type VI collagen (Fig. 3F). The ILM was clearly positive 

for types IV, VI, and XVIII collagen in all three regions ( Figs. 3D, F,I). The staining patterns 

of types IV  and VI collagen at the ILM were the same. In the case of type II collagen, the 

ILM could not be discerned as a separate entity from the vitreous cortex (Figs. 38,D). This 

was only possible at places with a local vitreous detachment. The retinectomy samples 

confirmed the presence of types IV and VI collagen and the absence of type II collagen in 

the ILM (not shown). Human corneas stained specifically for types IV and V I  collagen (not 

shown).44 

A 8 C 

.. .. ..._ 
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� �,.:\, \ . • :" ·. · , vb 

G H 

Figure 3 lmmunohistochemical analyses at the equator of human donor eyes evaluated by LM. A:Type I collagen 
(SSyr) is present in the smaller and larger retinal blood vessels. B:Type II collagen (74yr) is found in the vitreous 
cortex and in retinal blood vessels. The ILM shows no type II collagen at the place where the VB is detached from 
the retina (*). C:Type I l l  collagen (SSyr) is visible in the retinal blood vessels. D:Type IV collagen (74yr) is present 
in the ILM and retinal blood vessels.At the site of the local vitreous detachment (*), the ILM remains positive for 
type IV collagen and the vitreous cortex does not stain. E:Type V collagen (SSyr) is found in retinal blood vessels 
and vitreous cortex. F:Type VI collagen (55yr) is clearly present in retinal blood vessels and in the ILM, whereas the 
vitreous cortex shows no staining. G: In this section, type IX collagen is present in retinal vasculature and in the 
vitreous cortex (SSyr). H:Type XI collagen (arrows) is faintly stained in the ganglion cell layer in the posterior pole 
(69yr). l:Type XVI I I  collagen is present as a faint staining in the ILM (arrowheads) and retinal blood vessels (arrows; 
SSyr).Vb: vitreous body, re: retina. Bars = 50 µm. 

54 



Collagen distribution in the vitreoretina/ interface 

Retinal blood vessels 

In almost all retinal layers and in all three regions, small and large blood vessels were 

present. In the donor eyes, blood vessels were strongly positive for types IV and V I  

collagen and positive for types I, II, Ill, and XVIII collagen and for type V collagen in two 

eyes (55 and 74 years; Figs. 3A-F, I). However, type IX collagen was only found in the pre

equatorial area and the equator in two eyes (74 and 55 years, respectively; Fig. 3G). The 

results of the retinectomy samples were very similar, except for type IX collagen which 

was not detected. 

vb 

A B 

C D 

vb 

.: -r'� # 

,·:-
''.r 

Figure 4 The distribution of type VI I  collagen in the 74- year-old donor eye (A-C) and in the equatorial reti
nectomy sample (D) is shown (results of the mouse monoclonal antibody are shown). In the pre-equatorial area 
(A), type VI I  collagen was not found. In the equator (B), type VI I  collagen is visible as small positive spots in the 
ganglion cell layer (GCL) and inner plexiform layer (IPL), whereas, in the posterior pole (C), type VI I collagen is 
present in nerve fiber layer, the GCL, the I PL and the outer plexiform layer. Arrows indicate the dotted aspect 
and arrow heads the circular spots and the inlays show circular spots ( I )  and dotted spots (2) positive for type 
VII collagen. In the equatorial retinectomy sample (D), type VI I  collagen was also found in the outer plexiform 
and outer nuclear layers. Arrows indicate the spots with the dotted aspect and arrow heads the circular spots. 
Vb: vitreous body, re: retina. Bars = 50 µm. 

Retina from the photoreceptor layer to the I LM 

In all three donor eyes, both antibodies against type V II collagen (Fig. 4) showed multiple, 

positive, and circular spots occasionally in the nerve fiber layer (NFL), ganglion cell layer 
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(GCL), inner plexiform layer (IPL), and inner nuclear layer (INL). Besides the circular 

spots, dotted spots positive for type V II collagen were found more often in the vicinity of 

a nucleus. An obvious finding was the increase in the amount as well as the spread over the 

retinal layers of type V II collagen positive spots towards the posterior pole (Fig. 4A-C). In 

the 69-year-old donor eye, type XI collagen was faintly present in the GCL in the posterior 

pole and the equator (Fig. 3 H). 

In the retinectomy samples, type VII collagen was found in a spot-like configuration 

variably in the NFL, GCL, IPL, and INL, outer plexiform layer (OPL), and outer nuclear 

layer (ONL). 

Discussion 

By immunohistochemical staining and LM evaluation, we were able to detect the collagens 

of interest. Our interest was primarily in collagens with a potential role in vitreoretinal 

adhesion. These can be subdivided into those collagens present both in the vitreous 

cortex and the retina (such as types II, V, VI, and XVIII collagen) and collagens which in 

other tissues are known to mediate anchoring of one tissue structure to another (e.g. 

type VII collagen). New findings in this study are that type VI collagen is located in the ILM 

(previously only described in retinal blood vessels)39•45 and that type VII collagen is widely 

distributed in several retina layers with increasing density from the pre-equatorial area 

towards the posterior pole. Furthermore, type II collagen was present in human retinal 

vasculature and probably absent from the ILM. In addition, previous published observations 

on collagen distribution in the vitreous and retina were confirmed. 

In retinectomy samples, mRNA of al-chains from types I-VII, IX, XI, and XVIII 

collagen was found. The presence of collagen mRNA in this equatorial part of the retina 

is an indication that these collagens can be synthesized by cells present in the sample (e.g. 

(Muller) glial and endothelial cells). Besides the ciliary body, which is often indicated as a 

possible source of ILM and vitreous collagens,46-49 equatorial retinal cells may be able to 

synthesize vitreous and ILM collagens. A comment should be made that only types 11, Ill, 

V II, and XVI I I  collagen consist of three identical procollagens (al ) and thus types I, IV, V, 

V I, IX, and XI collagen may also require other chains to build up a functional triple helical 

molecule. 36 

As previously described, the vitreous cortex was positive for types II, V/XI, and 

IX collagen. 5 We did not find type VI collagen in the vitreous cortex, although this collagen 
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was previously been reported to be present in the vitreous.20 The light microscopic 

absence of type VI collagen in the vitreous cortex and the variable presence of types V, 

IX, and XI might be explained by the small amount present or by a masked epitope. At the 

vitreoretinal interface, it was impossible to distinguish between the vitreous cortex and 

the ILM, sometimes making it difficult to determine whether labeling was at the vitreous 

cortex, the ILM, or both. The difficulty to discriminate both structures is a known problem 

described in previous studies. 34·50 Based on specimens with a local vitreous detachment 

and on the retinectomy samples after vitrectomy, it was concluded that the ILM contained 

types IV, V I, and XVIII col lagen, but not type II collagen. 

Type VI col lagen is essentially a glycoprotein which belongs to the non-fibril 

forming col lagens and forms a (beaded) filamentous network in most ECMs.5 1 •52 It has a 

predominant role in linking cel ls and matrix macromolecules.53•54 Type V I  col lagen showed 

specific interactions with (i) hyaluronan in calf skin, which is interesting since vitreous is 

also rich in hyaluronan, 55•56 (ii) the striated col lagen fibers of the inner and outer layers of 

Bruch's,40 (iii) types I, I l l ,  and V collagen within the scleral and the corneal stromal col lagen 

network, 57-59 (iv) type IV col lagen in Bowman's layer, 58•59 and (v) pericytes at the choroidal 

side of the choriocapil laris.60 In human iris and ciliary body, type VI collagen was found 

in the direct vicinity of the basement membranes, but not in the vicinity of the epithelial 

basement membranes of the ciliary and iris muscle cel ls.6 1  From the present study, based 

on the widespread presence of type VI col lagen throughout the ILM, we conclude that the 

entire vitreous is likely surrounded by this type of col lagen, which thus could mediate an 

overall anchoring between the ILM and vitreous cortex. 

Type XVIII col lagen (of which endostatin, a potent angiogenesis inhibitor, is a 

proteolytical ly derived fragment) was found in the ILM, as previously described.35·62 Based 

on mice studies, its function may be twofold: (i) part of an anchoring complex between 

the vitreous fibril lar col lagens and the ILM, and (ii) responsibility for the disappearance of 

vitreous hyaloid vasculature in the embryonic period.63 Thus, its presence could theoretical ly 

be associated with a protection against PVD or against vascular neovascularisation. It 

would therefore be interesting to study type XVI I I  collagen/endostatin on ageing and in 

diseases characterized by retinal neovascularisation. 

Retinal blood vessels contained types I -VI and XVI I I  col lagen, whereas types V 

and IX col lagen were variably present, which is largely in agreement with previous studies 

on human retinal vasculature. Previous immunohistochemical studies could not uniformly 

confirm the presence of types I I  and IX col lagen.35•36•38-40 In our study, the presence of 

type IX collagen was very variable and needs further investigation. With regard to type 
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II collagen,  one study38 questioned its presence, which could be explained by the used 

antiserum, and another only found type II collagen in the peripheral vasculature.4 1 However, 

Western Blot analysis on bovine retinal blood vessels, confirmed the presence of types 1-V 

collagen, of which types II and IV collagen were prominently present.37 

The presence of type II collagen is interesting in the light of (i) strong 

interconnections between vitreous and retinal vasculature23 and (ii) the possible source of 

the type II collagen. As a consequence of the strong connection, vitreous hemorrhage can 

occur during a posterior vitreous detachment.64 The presence of mRNA COL2A I in freshly 

isolated human retina could indicate the retina as a possible production place of type II 

collagen. The producing cell of type II collagen has still to be established, but Muller cells 

are good candidates, since they are attached to the retinal vasculature and ILM65 and their 

endfeet are closely related to sublaminar intraretinal type II collagen.34 

Surprisingly, we found a condensed appearance of type VII collagen, an anchoring 

fibril, in the retina. The staining pattern, consisting of dotted spots and larger globular 

structures in multiple retina layers, differed clearly from the superficial linear staining 

pattern previously found by LM in other tissues (e.g. cornea}.66 The presence of type VII 

collagen in the retina is a new finding and it is as yet unknown whether it is located intra

or extracellularly. As far as is known from other tissues (e.g. skin and cornea},67 functional 

type VII collagen is an extracellular matrix component; it is the primary structural element 

of anchoring fibrils and it forms anchoring plaques (connection areas between several 

anchoring fibrils) together with type IV collagen.68 Because its staining pattern is at variance 

with patterns found in other tissues, where it connects ectodermal and mesodermal tissue 

components, its retinal function is not immediately clear and has to be determined in 

future studies. 

Types V I, V II, and XVIII collagen are all able to anchor matrix components to 

each other. Their presence in the retina and their functions suggest an involvement in 

the (posterior) vitreoretinal attachment and thus also in the mechanism of (posterior) 

vitreoretinal detachment. At the moment, several types of enzymes (e.g. (micro)plasmin 

and collagenase) are used to pharmacologically induce liquefaction and PVD in humans 

and animals both therapeutically and experimentally, but in most cases the mechanism 

of action remains unclear.69-72 When we focus on collagens: (i) subtypes of collagenases 

should be able to degrade specific collagens,72 (ii} nattokinase can hydrolyze vitreous 

collagen fibers,73 (iii) thrombin and plasmin can cleave type V collagen74 and (iv} exogenous 

plasmin can activate matrix metalloproteinase-2,75 which is capable to degrade types IV 

and V II collagen.76 Care should be taken when enzymes are used to induce liquefaction and 
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PVD. Little is known about their mechanism of action on the vitreoretinal interface and it 

is questionable whether the action of these enzymes will stop at the ILM. 

The presently described distribution patterns of different collagen types in the 

human vitreoretinal interface emphasize the possible interactions between the vitreous 

cortex and retina. Future research should determine the exact roles of the various 

collagens in (i) vitreoretinal adhesions and interface pathology, (ii) the process resulting in 

PVD, and (iii) the potential effects of enzymatic vitreolysis on the vitreoretinal interface 

and retina. 
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Chapter 4 

Abstract 

Purpose 

This study is a first step to investigate phagocytosis of collagens by human retinal Muller 

cells, since Muller cells could be involved in remodelling of the vitreous and vitreoretinal 

interface in the human eye. 

Methods 

Muller cells in culture were exposed to 2.0 µm fluorescent latex beads coated with BSA 

and human types I, II, and IV collagen and to non-coated beads for 2, 12, 24, and 48 h. 

To influence phagocytosis, cytochalasin B and anti-integrin subunits (a.I, a.2, and Pl )  were 

added to the cells. Phagocytosis was evaluated by flow cytometry, transmission electron 

microscopy (TEM) and confocal microscopy. 

Results 

Muller cells preferred to phagocytose beads coated with type II collagen compared 

with type IV collagen-, BSA- and non-coated beads. Phagocytosis of type I collagen

coated beads was intermediate. TEM and confocal microscopic evaluation confirmed 

phagocytosis of the beads. No significant differences were observed in phagocytosis of 

type II collagen-coated beads in the case of addition of cytochalasin B and anti-integrin 

subunits. lmmunohistochemical analyses revealed that Muller cells were positive, under 

all tested circumstances, for vimentin and CRALBP. Less than 5% of the cells tested were 

G FAP positive. 

Conclusions 

Our observations demonstrate that human Muller cells in culture prefer to phagocytose 

type II collagen. In contrast, the phagocytosis of type IV collagen is comparable with 

the control coatings. We speculate that the relatively limited collagen phagocytosis by 

Muller cells supports a possible role for Muller cells in the slow process of vitreoretinal 

remodelling in adult human eyes. 
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Introduction 

The interface between the vitreous body and the retina of the human eye has been studied 

extensively to find agerelated changes that could explain vitreoretinal lesions of diverse 

cause. Centrifugally, the interface consists of a vitreous cortex (mainly type II collagen), 

retinal internal limiting lamina ( ILL, mainly type IV  collagen), and Muller cell endfeet ( Fig. 

I a,b). Foos [5] was the first to describe degenerative remodelling of the vitreoretinal 

juncture in the peripheral retina, which consisted of gaps in the ILL and penetration of 

vitreous fibrils into Muller cells. Gloor and Daicker [8] described atrophy of neuroglia 

in the same area, which caused intercellular gaps becoming filled with cords of collagen 

fibrils connecting vitreous and retina. Malecaze et al. [14] found widening of intercellular 

spaces filled with fibrils adhering to Muller cells in the middle part, but the lesions were 

smaller than described before and not associated with gaps in the ILL. More recently, 

Wang et al. [35] observed, mainly by scanning electron microscopy, progressive invasion 

of the innermost peripheral retina by bundles of collagen fibrils, initially as characteristic 

collagen fibres spreading out under the ILL and eventually as a dense mat of collagen in 

the elderly. Furthermore, collagen fibrils penetrated the ILL through localised defects and 

intertwined with those in the basal vitreous. Since the amount of collagen expanded on 

ageing, intraretinal synthesis of collagen fibrils could have occurred. Recently, our light 

microscopic (LM) and transmission electron microscopic (TEM) evaluation of the equatorial 

area gave comparable findings [24]. lntraretinal packages of vitreous collagen were closely 

related to Muller cells (Fig. I c) and often associated with macrophages, cell debris and focal 

interruptions of the ILL. This was interpreted as the net result of a process of interactive 

remodelling, in which both phagocytosis and synthesis of vitreous and ILL collagens occur 

and in which Muller cells possibly play a role [24]. 

Muller cells are the principal glial cells in the retina, having similar functions to 

astrocytes, oligodendrocytes, and ependymal cells in other regions of the central nervous 

system [19]. They are radial macroglia that pass through the retina from its inner (vitreal) 

border to the distal end of the outer nuclear layer, and because of their cell processes, 

they surround neuronal cell bodies, axons and blood vessels. Muller cells have many 

local functions: they stabilise the retinal architecture, provide an orientation scaffold, 

give structural and metabolic support to retinal neurons and blood vessels, and prevent 

aberrant photoreceptor migration into the subretinal space [19, 27]. They have also been 

found to phagocytose a variety of substances. 
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Figure I a Overview of a Technovit 8 1 00-embedded donor eye. Le lens; vb vitreous body; re retina; sc sclera; 
bar 2.5 mm. b LM detail of an area in the posterior pole (B in I a). Arrows indicate Muller cell endfeet subjacent 
to the internal limiting lamina. Vb vitreous body; re retina; bar I µm. c LM detail of the peripheral retina (C in I a). 

Under the I LL, collagen packages (*) are located between the ILL and displaced Muller cell processes (arrowheads). 
Vb vitreous body; re retina; bar I µm. 

Friedenwald and Chan [7] first described in vivo phagocytic activity by Muller 

cells more than 7 decades ago. Their histological study reported that Muller cells 

internalised pigment granules injected into the vitreous cavity of rabbits. Subsequently, 

it was shown that rabbit Muller cells in vivo were able to phagocytose copper, carbon, 

egg-lecithin-coated silicone, and erythrocyte particles [ I ,  18, 20, 26]. In the latter three, 

the I LL was thinned, interrupted or had disappeared so that their cell processes were able 

to make contact with the foreign bodies. Additionally, Muller cells could phagocytose both 

melanin granules in a rabbit model of experimental retinal detachment and erythrocytes 

in a rat model of subretinal haemorrhage [6, 12]. Cultured rabbit Muller cells were able to 

phagocytose latex beads [31]. In a goldfish model, Wagner and Raymond [34] demonstrated 

phagocytosis of latex beads by Muller cells in vitro, although no uptake was observed in 

vivo. In human fetal eyes, Muller cells phagocytosed cell debris derived from apoptotic 

cells in the developing retina [23]. In eyes with chalcosis , human intraretinal glial cells 

internalised copper particles [25]. Furthermore, they were capable of phagocytosis of cell 

debris, latex beads, and fluorescent carboxyl microspheres, in culture [ I 5]. 

At present, it is not known whether Muller cells can phagocytose collagens in vivo 

68 



Collagen phagocytosis by human retinal Muller cells 

and in vitro. Since collagen phagocytosis is an important aspect in ECM remodelling under 

steady-state conditions [4] and might play a role in age-related vitreoretinal remodelling 

[24], we performed an in vitro study to test the capability of human retinal Muller cells to 

phagocytose collagens. The focus was on the main collagen types of the vitreous and the 

ILL, types II and IV collagen, respectively. The main goal was to determine whether human 

Muller cells can phagocytose the abovementioned collagens and if they have a preference 

for either one of them. Furthermore, we tried to influence the phagocytosis process. 

Table I Overview of the Muller cell experiments 1 

MUiier cells 

Characteristics (LM) Flow cytometry CM TEM 

General lntegrins I) Time-related phagocytosis 

(2, I 2, 24, 4 h); col 1 1-, 

IV-, BSA-, non-coated beads * 

Anti-vimentin Anti-ct l  2) Phagocytosis o f  col I and 

Anti-CRALBP Anti-ct2 II (24 h); col 1-, II-, 

Anti-GFAP Anti- /3 1  BSA-coated beads * 

Cell viability Control cells: 3) Blocking of phagocytosis (24 h): 

H BL- 1 00 a) Cytochalasin B: col 1 1-, 

Fibroblasts BSA-coated beads 

b) Anti-integrins: col 1-, 1 1-, IV-, 

BSA-coated beads 

Internalisation of col II

coated beads by MUiier 

cells stained with 

Confirmation 

internalised 
col II, IV, BSA, 

anti-vimentin, anti-GFAP, non-coated beads 

and DAPI 

1 LM light microscopy; TEM transmission electron microscopy; CM confocal microscopy; Col collagen; and 
* : fibroblasts used as controls. 

Materials and methods 

Culture of Muller cells 

The human Muller cells, MIO-MI, were kindly provided by G.A. Limb (Moorfields/lnstitute 

of Ophthalmology, London, UK). The MIO-MI cells were very well characterised 

as human retinal Muller cells [ 1 3]. The cells were cultured to confluence in Dulbecco's 

modification of Eagle's medium (DMEM) high glucose containing L-glutamax I (Life 

Technologies Inc., Rockville, USA), 1 0% fetal bovine serum (FBS; Life Technologies Inc.) 

and 1 %  penicillin/streptomycin. Table I gives an overview of all experiments performed 

with the Muller cells. 

Culture of control cells 

Human fetal lung fibroblasts (primary cell line) were used in most experiments as a control 
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for our phagocytosis model. The cells were cultured till confluence in DMEM containing 

10% FBS, 1% glutamin, and 1% gentamicin. 

Characteristics of Mi.ii/er cells 

The Muller cells were initially characterised during each passage, but after five passages 

with similar results, only every fifth passage was identified. Their characteristics were also 

evaluated after the different phagocytic assays. Cells were checked for their morphology 

and their main characteristics: expression of glial fibrillary acidic protein (GFAP), cellular 

retinaldehyde binding protein (CRALBP) and vimentin. To determine the presence of 

integrins, Muller cells were stained with antibodies against integrin subunits al, a2, and P l .  

Cell viability was checked routinely after our experiments (see Phagocytosis assays). 

Cells were seeded for 48 h in glass chamber slides. Muller cells were fixed, after 

washing with phosphate buffered saline (PBS), with I: I acetone/methanol for IO min at 

-20°C. After fixation, cells were washed with PBS and preincubated for 30 min with 2% 

serum of the producer of the secondary antibody in PBS with I% BSA (Sanquin, Amsterdam, 

the Netherlands), followed by incubation for I h with primary antibodies diluted I: I 00 

in PBS with 1% BSA. The primary antibodies included a rabbit polyclonal anti-CRALBP 

antibody (UWSS, a kind gift from J.C. Saari, University of Washington, Seattle, Wash., 

USA) and mouse monoclonal antihuman antibodies against vimentin (DAKO, Glostrup, 

Denmark), GFAP (Sigma, St Louis, USA), and integrin subunits al, a2, and � I  (Chemicon, 

Temecula, USA). After incubation and washing with PBS, endogenic peroxidases were 

blocked. In the case of integrin subunit staining, this step was followed by blocking steps 

with avidin and biotin. Secondary antibodies included a swineanti-rabbit peroxidase 

(SARPO; DAKO), a rabbit-anti-goat peroxidase (RAGPO; DAKO), a rabbit-anti-mouse 

peroxidase (RAMPO; DAKO) and a goat-anti-mouse-biotin (GAMbio, DAKO). Secondary 

antibodies were diluted I: I 00 with PBS and 2% human serum and added for I h at room 

temperature. GAMbio was followed by incubation with ABC complex HRP (DAKO). 

Finally, cells were stained with 3-amino-9-ethylcarbazole (AEC; Sigma) and haematoxylin. 

The human fibroblasts were also tested for integrin expression. In preliminary studies, 

we tested the specificity of the anti-integrin subunits on human normal mammary cells, 

HBL-100 ([28]; a kind gift from A. Sonnenberg, NKI Institute, Amsterdam, The Netherlands). 

Negative control sections underwent the entire procedure except for substitution of the 

primary antibody. In addition, MOC3 I, a monoclonal biotinylated antibody against the 

human epithelial glycoprotein-2 and irrelevant to Muller cells, was used to determine 

antibody specificity [17]. 
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Coating of beads 

The latex beads used were 2.0 µm Fluoresbrite yel low-green microspheres 

(Polysciences, Warrington ,  Pa., USA). The coating of the beads was performed 

according to previously described methods [I 6, 22, 36] .  Beads were incubated with 

(i) 0.20 µg/ml bovine serum albumin (BSA; S igma) dissolved in 0.5 M acetic acid, (i i) 

the solution fluid 0.5 M acetic acid (non-coated) and (i i i) 0.20 µg/ml human type I 

(Southern Biotechnology Associates (SBA), B irmingham, USA), type I I  (Biogenesis, 

Poole, UK), and type IV (SBA) col lagens (d issolved in 0.5 M acetic acid), at 37°C for 75 

min.  After i ncubation,  the beads were centrifuged for 5 min at I 0,000 rpm and washed 

with PBS. 

Collagen coatings were evaluated, at different time points, by 

immunohistochemical stain ing. The type I, II and IV collagen-coated beads were 

incubated with goat polyclonal antibodies against human types I, I I ,  and IV col lagen 

(SBA) di luted I :SO in PBS with I %  BSA-c (Aurion, Wageningen,  The Netherlands) at 

37°C for I h. The beads were washed with PBS and i ncubated with a TRITC-label led 

rabbit antigoat antibody (Sigma) di luted 1 : 1 00 in PBS with 1 %  BSA-c for 30 min at room 

temperature. Beads were evaluated with a Leica DC300F (Rijswijk, The Netherlands). 

lmmunohistochemical analysis showed collagen coating of beads (Fig. 2). 

Figure 2 lmmunohistochemical staining (red) of type II collagen-coated beads (green). All other collagen 
coatings gave similar staining patterns. 
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Phagocytosis assays 

To study the phagocytosis of coated beads by human retinal Muller cells and fibroblasts, 
5 5 

cells were seeded in 6-well plates (6.Sx IO Muller cells/well and 9.0x IO fibroblasts/well) 

with medium containing I 0% FBS for 24 h at 37°C. Thereafter, cells were washed and 

received medium with 5% FBS, which was replaced after 24 h by medium supplemented 

with 4.0 mg/ml BSA. After 24 h serum-free incubation, beads were vortexed and briefly 

sonicated to separate bead clumps in order to calculate the bead concentration with a 

Burker-Turker counter. In every experiment, five beads per cell were added to each well. 

Muller cells were used in all assays mentioned below, while fibroblasts were only used in 

the experiments of time-related phagocytosis and phagocytosis of types I and II collagen. 

Time-related phagocytosis 

After incubation periods of 2, 12, 24, and 48 h with BSA-, non- and type II and IV 

collagen-coated beads, cells were washed 3 times with PBS and trypsinised with 

trypsin-EDTA (0.5% trypsin and 0.2% EDTA; Sigma) for 8 min. By this procedure, 

non-internalised beads were removed from the cell membrane [9, 16, 22] .  The cells were 

then centrifuged for 5 min at 1,600 rpm. For flow cytometry analysis, cell pellets were 

dissolved, resuspended in 200 µ I  PBS, and measured. Cells were categorised into one of 

the following groups: cells with one, two, three or more than three beads. 

Phagocytosis of types I and I I collagen 

After the time-related phagocytosis, we compared phagocytosis of beads coated with 

types I and II collagen with phagocytosis of BSA-coated beads after incubation for 24 h. 

Blocking of phagocytosis 

For blocking experiments with (i) cytochalasin B (concentrations up to 0.6 µg/ml) and (ii} 

antibodies against human integrin subunits al, a2, and Pl (5.0 µg/ml as used by Zhao et al. 

[36]), Muller cells were seeded in 6-well plates (i) and in 24-well plates (ii), respectively, 

for 24 h. Beads were coated with type II collagen and BSA (i) and with BSA and types I, II, 

and IV collagen (ii), respectively. 

Cell viability 

In order to determine cell viability, Muller cells and their medium were harvested after 

passing the above-mentioned phagocytic assays with an incubation period of 24 h. A 

72 



Collagen phagocytosis by human retinal Muller cells 

well with I 0% FBS served as a reference and was compared with a well with 0% FBS 

supplemented with 4.0 mg/ml BSA with or without addition of stimuli. Dead cells were 

stained with trypan blue, counted in a Burker-Turker counter, and compared to viable 

cells. 

Flow cytometry 

In all assays, the quantity of phagocytosis was determined by flow cytometry using an 

Epics-Elite (Coulter), with 488 nm excitation (laser power 1 5  mW) and a 525 nm band

pass filter in the emission path. Forward and side scatter characteristics were used to 

gate the intact cells from dead cells, cell debris, and free beads. To set the gate in each 

experiment, untreated Muller cells and fibroblasts were used, and, in general, for a flow 

cytometry run at least 20,000 cells were gated and in the case of the blocking experiments 

at least 5,000 cells. Results are presented as percentage of cells containing beads. 

Transmission electron microscopy 

Transmission electron microscopy (TEM) was used to verify that Muller cells and fibroblasts 

had really phagocytosed the different beads. After culturing Muller cells and fibroblasts for 

24 and 48 h in the presence of coated beads (BSA and types II and IV collagen) and noncoated 

beads, the medium was discarded and cells were washed with PBS. Cells were fixed for 24 h 

with 2% glutaraldehyde (GA, TAAB Laboratories, Aldermaston, UK) at 4°C. Then, cells 

were washed with PBS and 6.8% sucrose (pH 7.4), postfixed at 4°C in 1 %  osmiumtetroxide 

(OsO4) dissolved in 1 .5% potassium hexacyanoferrate( II) trihydrate (Merck, Darmstadt, 

Germany) in 0. 1 M PBS, washed with distilled water, dehydrated through a graded series of 

ethanol, and embedded in EPON 81 2 (Serva Feinbiochemica, Heidelberg, Germany). 

Ultrathin sections were cut on a Sorvall microtome (Sorvall, Newtown, Conn., 

USA) and contrasted with uranyl acetate and lead citrate and evaluated in a Philips 20 I 

TEM (Philips, Eindhoven, The Netherlands) operated at 60 kV. 

Confocal microscopy 

Muller cells were exposed to beads coated with type 1 1  collagen for 24 h, fixed with methanol/ 

acetone at -20°C for 1 0  min and stained with anti-vimentin and anti-GFAP antibodies 

(see Characteristics of Muller cells) for confocal microscopic evaluation. Trypsinisation to 

remove adherent beads was not possible in this experiment, since this would also detach 

the cells. The secondary antibody was a TRITC-labelled antimouse antibody (Sigma) and 

nuclei were visualised with 4',6'-diamino-2-phenylindole (DAPI; Sigma). Cells were analysed 
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by a LEICA TCS SP2 3channel confocal laser scanning microscope, equipped with lasers 

providing 488 nm and 543 nm laser lines for FITC and TRITC visualisation, respectively. 

DAPl-stained nuclei were visualised with UV laser and corresponding UV optics. Stack 

sections were chosen to obtain a z-resolution of 0.5 µm or less. 

Surface charge of coated beads 

In order to evaluate an effect of surface charge, the zeta potential, a measure for surface 

charge, of coated and noncoated beads was determined at room temperature by particulate 

microelectrophoresis. Beads with different coatings were suspended in 30 ml medium 

with 0% FBS supplemented with BSA 4.0 mg/ml to a concentration between five and I 0 

million beads per ml. The electrophoretic mobilities were measured at 150 V in a Lazer 

Zee Meter 50 I (Pen Kem, USA) and converted into apparent zeta potentials according to 

the Helmholtz-Smoluchowski equation [ I  I]. 

Statistical analysis 

Each assay was repeated at least 3 times. The percentage of cells that phagocytosed beads 

was globally analysed using analysis of variance (ANOVA) to study whether significant 

differences were present between the coatings (assays I and 2), between incubation times 

(assay I), and between the different anti-integrin subunits (assay 3). The corresponding 

interactions were also taken into account in the various assays. In the case of a global 

significance, post hoc tests were performed to specify the differences between pairs of 

coatings, incubation times (for each coating separately}, or anti-integrin subunits. For the 

time-related phagocytosis (assay I ), the number of internalised beads was tested by means 

of linear regression to evaluate whether the percentage of cells with a specified number 

of beads phagocytosed increased linearly with incubation time. This was done separately 

for one, two, three, or more than three beads per cell. Differences were considered 

significant if P<0.05. 

Results 

Light microscopy and immunohistochemistry 

LM results revealed that the beads were coated with their respective collagens (not 

shown), that 90% of the Muller cells were viable under all conditions of this study, and that 

they preserved their morphology and characteristics in the different phagocytic assays. 
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Approximately I 00% of the cells stained positive for vimentin and CRALBP and less than 

5% of the cells were GFAP positive ( Fig. 3a-c). All Muller cells were positive for integrin 

subunits al and a2 and weakly positive for subunit Pl ( Fig. 3d-f). Fibroblasts were also 

positive for these integrin subunits (not shown). All control sections (i.e. without primary 

antibody and sections stained with MOC31 )  were negative (not shown). 

Figure 3 lmmunohistochemical analysis of Muller cells shows positive staining for (a) vimentin, (b) CRALBP, 

(c) GFAP (<5%), (d) integrin subunit a l ,  (e) integrin subunit a2, and (f) integrin subunit P l .  Bars 30 µm. 

Phagocytosis assays 

Time-related phagocytosis 

Muller cells (Fig. 4a) and fibroblasts ( Fig. 4b) were exposed to non-coated beads and 

beads coated with BSA or human types II and IV collagen for 2, 12, 24, and 48 h. The 

phagocytosis by fibroblasts is about I O  times higher compared with Muller cells. In the 

case of Muller cells, the phagocytosis of type II collagen-coated beads increased from an 

average of 1.9% (±SD of 0.5%) after 2 h to 6.5% (± 1.4%) after 48 h, while the average of 

the other coatings, including type IV collagen, remained lower than 3% after 48 h. The 

percentage of phagocytosing cells significantly differed between incubation times for the 

collagen coatings (P=0.004 and P=0.036 for type II and type IV collagen, respectively) and 

suggestively for BSA (P=0.054), which is visible as an increase in time, and also between 

the coatings (P<0.00 1 ). Post-hoc tests on differences between phagocytosis of differently 

coated beads indicated that uptake of type II collagen-coated beads differed from type IV 
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collagen, BSA, and non-coated beads, but that no difference was observed between the 

type IV collagen, BSA, and non-coated beads. These findings imply that the difference 

between coatings was completely caused by type II collagen. Significant increases in 

phagocytosing cells incubated with type I I  collagen-coated beads were found between 2 

and 24 h (P=0.007) and between 2 and 48 h (P=0.008). 

A Phagocytosis of (coaled) ti.ids by MONer cells in lime 

Col II Col IV BSA Non-coated 

B 
Phagocytosls of (coaled) beads by ftbroblasla In time 

1 :  
s 30 

! �+-1-nl��---*------� 
;;. 10 

0 +Jlm:;;.L!L.1.--.-J-...a...;.;L.,.-.-�..L..,.---� 
Col II Col IV BSA Non-c:oated 

Figure 4 Percentages of cells containing beads coated with type II collagen, type IV collagen and BSA and non
coated beads per incubation time of 2, 12, 24, and 48 h. a Mi.iller cells. b Fibroblasts. * P<0.05 and ** PS0.005 

compared with 2 h and# P<0.05 and ## P<0.005 compared with 12 h. Col collagen. Bars indicate the SD of three 
measurements unless indicated separately with a number in the bar. Note scale difference between a and b. 

Fibroblasts (Fig. 4b) also showed a significant increase in phagocytosis up to 24 h: 

from an average of 16.0% (±7.8%) after 2 h to 44.6% (±5.8%) after 24 h for type II collagen 

coated beads (P=0.001). Because fibroblasts died of serum deprivation after 48 h, we 

excluded that time-point. Phagocytosis of beads coated with type IV collagen was 14.2% 

(±4.0%) after 24 h and comparable with BSA- and non-coated beads with I 0.7% (±3.2%) 

and 13.0% (±2.7%), respectively. 

A Amour( of collagen type II-coated beads per MOiier cell In time 

.Jm5 
>3 

number of beads per cell 

1 ··-
c12 hours 

C24 hours 

C48hours 

B Amollll of collagen type II-coaled beads per fibroblast in time 

2 >3 

number of beads per cell 

Figure 5 Percentages of cells containing type II collagen-coated beads divided in groups with I, 2, 3, or 
>3 beads per cell per incubation time of 2, 12, 24, and 48 h (latter only for Muller cells). a Muller cells. b 
Fibroblasts. * P<0.05; ** P<0.005; and *** P<0.0005. Bars represent the SD of three measurements unless 
indicated separately with a number in the bar. Note scale difference between a and b. 

From the spikes (representing the number of beads per cell) obtained by the 

flow cytometry (not shown), the number of internalised type II collagen-coated beads 
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per cel l  were evaluated. Most cel ls contained one bead and with ongoing incubation 

time, we observed an increasing percentage of Mul ler cel ls with internalised beads for 

one and two beads per cel l  and of fibroblasts for one, two, three, and more than three 

beads per cel l (Fig. Sa,b). 

Phagocytosis of types I and II collagen 

This second assay was performed to evaluate whether the Mul ler cells (Fig. 6a) and 

fibroblasts (Fig. 6b) had a preference for types I or I I col lagen. Beads coated with types I 

and I I  collagen were compared with BSA-coated beads and the cells were analysed after 

an incubation period of 24 h. Muller cells phagocytosed 4.6% (± 1 .0%) type I col lagen-, 6.0% 

(± I .  I%) type II col lagen- and 3.0% (± 1 .0%) BSA-coated beads. Significant differences between 

the coatings were demonstrated global ly (P=0.00 1 )  and between BSA and type I I  col lagen 

coating (P=0.00 1 )  specifically (between BSA and type I collagen coating P=0.067 and 

between type I col lagen and type I I col lagen coating, P=0. I 0). As far as fibroblasts are 

concerned, 67.9% (±8.3%) of these cel ls phagocytosed type I col lagen-, 73 .3% (±3.5%) type 

II collagen-and I 8.5% (± 1 .2%) BSA-coated beads. Between the two collagen coatings, no 

significant difference was observed, but BSA-coated beads differed significantly from type 

I collagen (P<0.00 1 )  and type II collagen (P<0.00 1 ). These data showed that phagocytosis 

of beads by fibroblasts proved to be 8- 12  times h igher than by Mul ler cel ls . 

Fibroblasts showed a h igher phagocytosis for type I I col lagen and BSA in this assay 

than in the time-related phagocytosis assay, but the ratio between type II collagen and BSA 

remained comparable at 3 .96 and 3.63, respectively (Figs. 4 and 6). 

Phagocytosis of coated beads by Muller cells after 24 holJ'S Phegocytosis of coated beads by fibroblasts after 24 holn 
B 

80 

Lo 
°! 40 

## 

t 20 
# 

Col II Cot I BSA Col u Cot I BSA 

Figure 6 Percentages of cells containing BSA-, type I collagen-, and type II collagen-coated beads after an 
incubation time of 24 h. a Muller cells. * P=0.00 I. b Fibroblasts. # P<0.00 I and ## P <0.00 I. Co/ collagen. Bars 
represent the SD of three measurements unless indicated separately with a number in the bar. Note scale 

difference between a and b. 
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Blocking of phagocytosis 

In the two blocking assays, no significant differences were observed. In the case of 

anti-integrin subunits, percentages of phagocytosis were low in combination with relatively 

large standard deviations (not shown). In the case of cytochalasin B, the suggested dose for 

an effect (2.0- 5.0 µg/ml [3, 22] )  was very toxic in our model. The highest concentration not 

affecting Muller cell viability was 0.6 µg/ml. However, at this concentration, phagocytosis 

was not notably influenced (not shown). 

Transmission electron microscopy and confocal microscopy 

TEM analyses showed beads internalised in Muller cells (Fig. 7) and fibroblasts. Beads were 

found within membrane-bound vacuolar structures in the cytoplasm. 

Figure 7 a Transmission electron micrograph showing a phagocytosed type II collagen-coated bead in the 
cytoplasm of the Muller cell after 24 h incubation. Bar I µm. b Detail: the bead is surrounded by an electron 
dense membrane, indicating its position inside a phago-lysosome. Bar 200 nm. 

For confocal microscopy, Muller cells were fixed in situ and stained according to 

the above-mentioned protocol. Washing without trypsinisation as used in this experiment 

caused most of the beads to remain in situ lying on the cell surfaces. In all, I 00% of the 

Muller cells were positive for vimentin and less than 5% positive for GFAP. To visualise 

whether beads had also been taken up by the cells, cells positive for vimentin within a 

(random) microscopic field (50 cells) were closely examined for the possible internalisation 

of beads by scanning from the top of the cells facing the medium to the bottom of the 

well (Fig. 8a-h). Within this field, two cells contained one intracellular bead each and 
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one cel l  contained two. Only five cel ls positive for GFAP were found and analysed. The 

GFAP-positive cel ls seemed to be detaching from the bottom of the wel l .  These cel ls 

contained no beads. 

Surface charge of coated beads 

BSA-coated beads had the most negative zeta potential around -27 mV. All Collagen 

coatings were comparable in the range from -Ste -IO mV. 

Figure 8 Confocal microscopic pictures (a-h) of two human Muller cells incubated for 24 h with type II 
collagen-coated beads (yellowgreen). The cytoplasm is stained with anti-vimentin (red) and the nucleus with 
DAPI (blue). Scanning through the cell (a=cell surface and h=cell bottom) two internalised beads will appear. 
First, one bead is visible (b-d), then both (e and f), and finally only the second bead and its scattering (g and 
h). Bars 5 µm. 

Discussion 

This study shows phagocytosis of type II col lagen by human retinal Muller cel ls in a fluorescent 

latex bead model. Comparing al l experiments, cultured Muller cells phagocytose beads 

coated with type 11 collagen better than beads coated with BSA or types I and IV col lagen and 

noncoated beads. These findings may be adduced in support of the hypothesis that Muller 

cel ls could be involved in the slow process of vitreoretinal remodel ling, which has been 

described as interactive or degenerative remodelling, predominantly in the peripheral 

retina, [5, 8, 14, 24, 33, 35] and which is very slowly progressive on ageing [33, 35]. In 
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a lifetime, the width of the vitreous base increases only with approximately 2 mm [35]. 

Vitreous liquefaction has been described from the age of 4 [2], and O'Malley [2 1] reported 

that 45% of people between 60 and 69 years old had at least 50% liquefaction. 

A phagocytic model for ECM components was chosen, because phagocytosis is 

important during remodelling processes under steady-state conditions [4] . In our model, 

Muller cells preserved their immunohistochemical and morphological characteristics, as 

described by Limb et al. [13], although serum was withdrawn from the medium. Previously, 

the model with collagen-coated beads had successfully been used in phagocytosis studies 

with retinal pigment epithelial cells and fibroblasts [16, 22, 36]. In the present study, collagens 

attached well to the fluorescent latex beads as observed by immunohistochemistry. 

Phagocytic experiments were reproducible both quantitatively by flow cytometry and 

qualitatively by TEM and confocal microscopy. By TEM, membranes in the cytoplasm 

of the Muller cell were clearly visible around beads, indicating that they are located 

within phagosomes. When results of the confocal microscopy and flow cytometry were 

compared, the effect of trypsin on detaching adherent beads was obvious. Without trypsin 

treatment as in the confocal microscopic evaluations, almost every Muller cell showed 

beads attached to the cell membrane, but only three cells (out of 50) had internalised beads. 

After trypsinisation, flow cytometry showed a comparable 6% phagocytosis, confirming 

that effective removal of cell membrane adherent beads had taken place and that thus our 

results were not disturbed by adherent beads. 

The phagocytosis of all types of beads by human Muller cells is about IO times lower 

compared with human fibroblasts. One of the main functions of fibroblasts is phagocytosis 

of ECM components to remodel ECMs [4, 32]. The clear difference in phagocytosis 

between the two cell types indicates a lower phagocytic capacity of Muller cells. The 

latter might not be unexpected since the highest amount of intracellular collagen is found 

in those tissues, which are characterised by a rapid collagen turnover (i.e. the periodontal 

ligament and gingiva [4]). Lower levels are found in tissues with a slower turnover such 

as skin [32]. In the case of vitreoretinal remodelling, the intracellular collagen level is not 

known, but is probably even lower. Currently, the rate of phagocytosis by Muller cells in 

vivo is not known. Three in vivo studies describe phagocytosis by Muller cells after I week: 

two following particle injection in the vitreous [18, 20] and one after retinal detachment 

[6] .  

Fibroblasts in the assay of phagocytosis of types I and I I  collagen showed a higher 

phagocytosis for type II collagen and BSA than in the time-related phagocytosis assay, 

although the ratio between type I I  collagen and BSA remained comparable. Because a 

primary cell line of fibroblasts with a limited number of passages was used, these cells 
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were defrosted several times to acquire new cells which probably led to differences in the 

amount of phagocytosis. This phenomenon was not seen in our experiments with Muller 

cells, which came from a immortalised cell line [13]. 

The assays of the time-related phagocytosis and the phagocytosis of types 

I and II collagen showed that Muller cells preferentially phagocytosed type I and II 

collagen-coated beads. We should, however, remark that the difference between 

phagocytosis of type I collagen- and BSA-coated beads was only suggestive in our data 

set (P=0.067). These results led to the hypothesis that the phagocytosis was receptor 

mediated. lntegrins were a likely candidate since different integrin subunits (al ,  a2, and 

P l )  can be involved in binding of cells to types I, II, and IV collagen [29, 30]. In addition, 

Muller cells expressed the integrin subunits al, a2, and P l, which is in accordance with 

human Muller cells described by Guidry et al. [ 10]. Unfortunately, we were not able to 

show significant differences in phagocytosis by blocking integrin subunits al ,  a2, and 

P l  by adding adequate concentrations of anti-integrins [36] and thus not able to prove 

the involvement of integrins. Furthermore, cytochalasin B, which can interfere with 

microfilament polymerisation, had no effect. Cytochalasin B was lethal to Muller cells 

in the previously published doses [3, 22] .  Possibly, its effect diminished by decreasing 

the concentration. Finally, the difference between the phagocytosis of BSA-coated and 

collagen-coated beads by both Muller cells and fibroblasts can be explained by differences 

in surface charge. BSA-coated beads are more negatively charged than the collagen-coated 

beads, which may cause repulsion between the beads and the also negatively charged cells. 

The difference in the phagocytosis between the different collagen-coated beads cannot 

be explained by the zeta potentials because they are similar. In conclusion, the exact 

mechanism for the differences in collagen phagocytosis still needs to be established. 

We speculate that the relatively low percentage of type II collagen phagocytosis 

by Muller cells observed in our in vitro study may support a role of Muller cells in the slow 

process of vitreoretinal remodelling in adult human eyes. Whether these cells also prefer 

phagocytosis of type II collagen in vivo, needs further confirmation. 
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Chapter 5 

Abstract 

Purpose 

To investigate the capacity of cultured Muller cells to synthesize collagens, since previous 

studies indicated that Muller cells could be involved in collagen remodeling at the 

vitreoretinal border in adult human eyes. 

Methods 

Spontaneously immortalized cultured human MUi ier cells were analyzed for the presence 

of mRNA of types I-VII, IX, XI, and XVII collagen by RT-PCR. Furthermore, MUiier 

cells were immunocytochemically stained for light microscopic (LM) evaluation of these 

collagens and their main characteristics. Finally, cell extracts and culture medium were 

evaluated by western blot (WB) analysis using anticollagen antibodies. 

Results 

Cultured MUi ier cells contained mRNA for types I -V I I ,  IX, and XI collagen, but not 

for type XVII collagen. LM and WB confirmed the intracellular expression of all the 

above-mentioned collagens with the exception of type XVI I. Collagen secretion into the 

medium was established for types I-VII, IX, and XI collagen. 

Conclusions 

Cultured MUi ier cells can synthesize internal limiting lamina and vitreous collagens. 

Possible collagen production by MUi ier cells could explain and expand on previous in 

vivo morphological findings in the embryonic and postnatal period and in pathologic 

conditions. 
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Introduction 

Muller cells are radially oriented macroglia that traverse the retina from its inner (vitreal) 

border to the outer limiting membrane. These cells have many local functions: they stabilize 

the retinal architecture, provide an orientation scaffold, give structural and metabolic 

support to retinal neurons and blood vessels, and prevent aberrant photoreceptor 

migration into the subretinal space [1,2]. In vivo and in vitro, Muller cells can produce and 

express several cytokines, growth factors, and receptors [2]. Other features of Muller 

cells are the expression of cellular retinaldehyde binding protein (CRALBP), vimentin, and, 

on activation, glial fibrillary acidic protein (GFAP) [3,4]. A possible role in the production 

of vitreous macromolecules during growth and in adulthood has been suggested [5,6] ,  but 

little is known about their capability to produce vitreous and internal limiting lamina ( ILL) 

collagens postnatally. Whether Muller cells are capable of producing basement membrane 

components is a matter of debate. Some studies find evidence hereof [7-12], while others 

fail to confirm it [13-15]. 

Recently, turnover and remodeling of vitreous collagen was described in human 

donor eyes. Evidence for collagen breakdown in matrix areas bordering liquefied spaces 

was found in the human vitreous [16]. In addition to collagen breakdown, a study on 

vitreous collagens and two studies on the vitreoretinal interface found evidence of postnatal 

collagen synthesis in the human eye. The first detected type II procollagens in the vitreous 

[ 17] and the latter two described intraretinal fibers and isolated packages of vitreous 

collagen (type II) [18,19]. On aging, intraretinal collagen fibers expanded under the ILL at 

the vitreous base into networks and made contact with the basal vitreous, leading to the 

formation of vitreoretinal collagen connections [18]. We observed comparable intraretinal 

packages of vitreous collagen, often associated with surrounding Muller cell processes, 

focal interruptions of the ILL, and the presence of macrophages and cell debris. These 

findings could be consistent with a process of interactive remodeling with a net synthesis 

of vitreous collagens. Because of their close proximity to collagen packages, Muller cells 

may be involved in this process of matrix remodeling [19]. 

The present study evaluates the in vitro capacity of the human Muller cell line, 

MIO-M I [4], to synthesize ( I) known vitreous collagens (i.e., types II, V/XI ,  VI, and IX) 

[20], (2) ILL collagens (types IV and V I; unpublished data of our group) [19,21], (3) type VII 

collagen [22] (which appears to be present in the human retina by immunohistochemical 

staining; unpublished data of our group), (4) collagens described in epiretinal and vitreoretinal 

membranes (types IV) [23,24], and (5) a collagen not related to the vitreoretinal interface 
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(the hemidesmosomal transmembrane type XVII collagen found in basement membranes 

of stratified and pseudostratified epithelia) [25]. In this in vitro model, we demonstrate the 

capacity of Muller cells for collagen production, cytoplasmic expression of collagens, and 

their secretion into the cell medium. 

Table I Overview of all primers used in the RT-PCR analysis 

Collagen 
mRNA Forward primer 5 43'  Reverse primer 5'�3' 

Size 
(bp) 

COL / A l  
COL2A I 
COL3A I 
COL4A2 
COLSA I 
COL6A I 
COL7A I 
COL9A I 
COL I I A /  
COL I 7A I 

TCG GCG AGA GCA TGA CCG ATG GAT GAC GCT GTA GGT GAA GCG GCT GTT 254 
GTG GAA GAG TGG AGA CTA CTG TGT ACG TGA ACC TGC TAT TG 4 1 9  

ACC GAT GAG A TT ATG ACT TCA CT CTG CAC ATC AAG GAC ATC TIC AG 369 

ATC GGC TAC CTC CTG GTG AA GCT GAT GTG TGT GCG GAT GA 648 

GAC TAC GCG GAC GGC ATG GAA CCT GCC AGG CCA CTG ACT GGT A 454 

GGA GCT CAA GGA AGC CAT CAA G TCC TCC AGC AGC TCT GCA TAG T 342 
CCG AGG ACG AGA TGG TGA AGT TG CTG GCT CCA GGT CCT GTG TCT AC 26 1 
GCC TCT GGT GAA GAA GGT GAA TGC TGA TCT GTC GGT GCT CTA 245 
CAG CAG GCT CGG A TT GCT CTG A GGC CAT CTA CAC CTG CCA TAC C 460 
ATG GAG CTG CTC ATC ATG AC AGG AGT AGC AGC CAG GTG AG 364 

COL I A I indicates mRNA of the a I chain of type I collagen. 

Methods 

Culture of cells 

The spontaneously immortalized human Muller cell line MIO-MI (a kind gift of G.A. Limb, 

Moorfields/lnstitute of Ophthalmology, London, UK) has all the characteristics of human 

retinal Muller cells [4]. The cells were cultured to confluence in Dulbecco's modification 

of Eagle's medium (DMEM) high glucose containing L-glutamax I (Life Technologies Inc., 

Rockville, MD), 10% fetal bovine serum (FBS; Life Technologies Inc.) and 1% penicillin/ 

streptomycin. 

For western blot (WB) analyses of the supernatant, Muller cells were cultured 

in DMEM high glucose containing L-glutamax I without FBS and supplemented with 1% 

GS (Life Technologies Inc.), 0.2 mM B-aminopropionitrilefumurate salt (B-APN; Sigma, 

St. Louis, MO), 0.2 mM ascorbic acid (Sigma), and 1% penicillin/streptomycin, since 10% 

FBS caused clotting of the medium after our concentration procedure. The serum-free 

medium with supplements was introduced after 24 h to allow uniform attachment of the 

Muller cells. Ascorbic acid promotes the intracellular hydroxylation of prolyl and lysyl 

residues during collagen synthesis [26], whereas B-APN inhibits the enzyme lysyl oxidase 

in the extracellular space thus preventing collagen cross-link formation [27]. 
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Reverse transcriptase-polymerase chain reaction 

Total RNA from the Muller cells was extracted by RNeasy Mini kit method (Qiagen, 

Venlo, the Netherlands) according to the manufacturer's instructions. To eliminate DNA 

contamination, we treated RNA samples with DNase treatment Ambion-kit (DNA-free). 

RNA concentration and purity were determined on a spectrophotometer (Nanodrop, 

lsogen, Maarssen, the Netherlands) by calculating the ratio of optical density at wave 

lengths of 260 and 280 nm. Two µg RNA was reverse transcribed into cDNA using 

M-MuLV reverse transcriptase (MBI Fermentas, St. Leon-Rot, Germany) according to 

manufacturer's protocol for a total reaction of 20 µI. 

For the PCR reaction, I µI cDNA was added to 23 µI "master mix" consisting of 

2.5 µI IOxPCR buffer, 2.5 µI 2 mM dNTP mix, 1.5 µI 25 mM MgCl2, 0.25 µI (5 U/µI) Taq 

DNA polymerase ( Fermentas) and 16.25 µI milli-Q water. Finally, a total of I µI of the 

two specific flanking primers (50 µM) was added (Table I ). The mixtures were initially 

denatured at 94 °C for 5 min. The PCR consisted of 35 cycles at the following conditions: 

denaturation at 94 °C for 0.5 min, annealing at 55 °C (for types I, II, 111, V, and IX collagen) 

and at 58 °C (for types IV, V I, VI I, XI, and XVII collagen) for I min, and an extension period 

at 72 °C for I min. These cycles were followed by a final extension period at 72 °C of 

10 min. PCR products were analyzed by agarose gel electrophoresis ( 1%) with 500 ng/ml 

ethidium bromide. Keratinocytes were used as positive control for type XVII  collagen. 

/mmunocytochemistry 

By light microscopy (LM), Muller cells were identified by their morphology and by their 

expression of CRALBP, vimentin, and GFAP. The expression of cellular characteristics 

was measured in at least three microscopic areas at a magnification of 10 times. To 

determine the intracellular expression of collagens, we specifically stained Muller cells with 

antibodies against human types I-VII, IX, XI, and XVII  collagen. 

For immunocytochemical staining, cells were seeded for 48 h in glass chamber 

slides. After fixation with I: I acetone/methanol for IO min at -20 °C, the slides were 

washed with phosphate buffered saline (PBS) and pre-incubated for 30 min with 3% 

serum of the producer of the secondary antibody in PBS with 2% BSA (Sanquin, 

Amsterdam, the Netherlands), followed by incubation for I h with primary antibodies 

diluted 1:50 in PBS with 1% BSA. In the case of types V I, VI I, IX, and XI collagen, the 

latter step was preceded by blocking steps with avidin and biotin. The primary antibodies 

included the following: rabbit polyclonal antibodies against CRALBP (UW55, a kind 

gift from J.C. Saari, University of Washington, Seattle, WA) and human types I, Ill, V 
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(Abeam, Cambridge, UK), and XI collagen (a kind gift from J. Oxford, Boise State 

University, Boise, Idaho); a biotinylated rabbit polyclonal antibody against human type VI 

collagen (Abeam); goat polyclonal antihuman antibodies against types II and IV collagen 

(Southern Biotechnology Associates, Birmingham, AL); and mouse monoclonal antihuman 

antibodies against vimentin (DAKO, Glostrup, Denmark), GFAP (Sigma), and types Vi l  

(Abeam), IX (USBiological, Swampscott, MA), and XVII collagen (IA°C [28]; a kind gift 

from K. Owaribe, Nagoya University, Japan). Subsequently, cells were washed with PBS and 

endogenous peroxidases were blocked. Secondary antibodies included a swine-antirabbit 

peroxidase (DAKO), a biotinylated goat-antirabbit (GARbio, DAKO), a rabbit-antigoat 

peroxidase (DAKO), a rabbit-antimouse peroxidase (DAKO), a biotinylated goat-anti mouse 

lgG I (GAMbio, SBA), and a biotinylated goat-anti mouse lgG2a (GAMbio, SBA). Secondary 

antibodies were diluted 1: 100 with PBS containing 2% human serum was derived from a 

pool of human volunteers and added for I h at room temperature. Biotinylated type VI 

collagen, GARbio, and GAMbio (lgG I and lgG2) were followed by incubation with ABC 

complex horse radish peroxidase (DAKO) for 20 min. Finally, cells were stained with 

3-amino-9-ethylcarbazole (AEC; Sigma) and hematoxylin. Negative controls underwent 

the entire procedure, except for the substitution of the primary antibody . 

700 
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400 
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...__.. 
� --
� --- -- ----

I l l  IV V VI VII IX XI XVII 

Figure I RT-PCR on Muller cel l  extracts. From left to right, bands indicating the positions of types I, I I ,  1 1 1 ,  
IV, V, V I ,  VI I ,  IX ,  X I ,  and XVI I col lagen are depicted. At the left margin, a I 00 bp DNA ladder has been added. 

Isolation of cell extract and supernatant concentration 

Cells were harvested in sodium dodecyl sulfate PAGE (SOS-PAGE) denaturation buffer 

( 10 mM Tris-HCI, pH 7 containing I mM EDTA, 2.5% SDS, 5% 2 mercaptoethanol, and 

I 0% glycerol). The extract was heated for 5 min at I 00 °C to unfold the collagen helices 

into separate a-chains. 

After dead cells and cellular debris were removed by centrifuging at 1,600 rpm 

for 5 min, the supernatant was concentrated by ultrafiltration with an Amicon membrane 

( 100,000 kDa cut-off; Millipore, Billerica, MA) and, in the case of collagen XI, with a 

Vivaspin 0.5 ml concentrator (30,000 kDa cut-off; Vivascience, Hannover, Germany). 
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Figure 2 lmmunocytochemical analyses of cultured Muller cells in medium with fetal bovine serum. A: Type 

I collagen shows a granular staining with a variable intensity between cells. B: Type II collagen is seen as a faint 
staining in the cytoplasm. C: Type Ill collagen is positive in all cells. D: Type IV collagen is visible as a strong 
granular cytoplasmic staining. E: Type V collagen shows mainly staining in the cytoplasm. F: In the case of type 
VI collagen, the cells are predominantly stained in the cytoplasm. G: Type VII collagen is faintly positive in the 
cytoplasm. H: Type IX collagen is also present in the cytoplasm. I :  Type XI collagen is primarily seen in the 
cytoplasm. Bars in all panels equal 50 µm. 

Table 2 Overview of the western blot results 
Collagen Molecular weight of collagen Molecular weight of collagen Molecular weight of collagen bands 

Type I 
Type I I 
Type I l l  
Type IV 
Type V 
Type VI 
Type VII 
Type IX 
Type XI 

Type XVII 

bands in MUiier cells bands in culture medium after type VI I collagenase 

1 40 kDa 1 40 kDa None 
1 50 kDa 1 50 kDa None 
1 80 kDa 1 80 kDa None 

1 30 and 2 1 0  kDa 1 30 and 2 1 0  kDa 75, 90, I I 0, and 250 kDa 
260 kDa 260 kDa None 

1 20 and 230 kDa 1 20 and 230 kDa 1 50 kDa 
270 kDa 270 kDa 1 30, 1 35, and 1 40 kDa 
200 kDa 1 50 and 200 kDa None 

I 00, 1 50, and 200 kDa 1 50 kDa None 
None None None 

By SDS-PAGE, collagen secretion into the medium was established for types I-VII, IX, and XI collagen. The specific 
collagen antibodies detected the collagen bands (in kDa) obtained before and after treatment with type VII cotlagenase. 
The results of both Muller cell extracts and medium with GS are shown. The results after type VII collagenase concern 
Muller cell extracts and confirm the collagen nature of the bands as seen by WB. "None" indicates no collagen bands 
were detected. 
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lmmunob/otting procedure 

Polyacrylamide SDS electrophoresis was performed according to the method of Laemmli 

[29], using 3.9% and 5% slab gels and a 72-mm wide 2D gel comb in the Bio-Rad Mini 

Protean 11 electrophoresis apparatus (Bio-Rad, Hercules, CA). After separation, the gel 

was blotted to nitrocellulose using the Mini Protean II blotting unit (Bio-Rad) with 22 

mM Tris, 168 mM Glycine, 0.05% SDS, and 20% methanol as a transfer buffer. After the 

transfer, the nitrocellulose was blocked for I h in TBS-buffer (20 mM Tris-HCI and 500 

mM NaCl; pH 7.5) containing 3% BSA. Primary antibodies (Table 2) were diluted I :500 

in TBS and added to the blot. After incubation overnight, the blot was washed with TBS 

containing 0.05% Tween-20 (TTBS), and then secondary antibodies (Table 2) diluted 1:500 

in TTBS were added. After I h incubation, the blot was washed with TTBS and incubated 

with alkaline phosphatase (AP) conjugated tertiary antibody (Table 2) diluted 1:250 in 

TTBS for another hour. After washing with TTBS and AP buffer ( 100 mM Tris-HCI, 100 

mM NaCl, and 5 mM MgCl2, pH 9.5), the blot was developed with nitre blue tetrazolium 

and 5-bromo-4-chloro-3-indolyl phosphate in AP buffer. All incubation and washing steps 

were performed at room temperature. 

Col/agenase digestion 

Cell extracts were mixed with CaCl2 to a final concentration of IO mM to inactivate EDTA. 

Type V II collagenase (high purity grade, Sigma) was added in increasing concentrations 

(0-30 units/ml) to 60 µI cell extract and incubated for I h at 37 °C. Previously, the absence 

of nonspecific proteases in this collagenase batch had been confirmed [30]. To confirm 

that type V II collagenase specifically cleaves collagen, we exposed Muller cell extracts 

to this collagenase, after which vimentin and CRALBP expressions were checked. After 

incubation, samples were mixed with SDS-PAGE sample buffer to inactivate collagenase 

activity. 

Cell viability 

To determine cell viability, Muller cells and their medium supplemented with 1% GS, 0.2 

mM J3-APN, and 0.2 mM ascorbic acid were harvested and compared to a well with I 0% 

FBS, which served as a reference, after an incubation period of 48 h. Dead cells were 

stained with trypan blue, counted in a Burker-Turker counter (W. Schreck, Hofheim, 

Germany), and compared to viable cells. 
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Results 

Reverse transcriptase polymerase chain reaction 

Muller cells expressed mRNA of all tested collagen types, except for type XVI I  collagen 

(Figure I ). Amplimers were seen at the expected positions, which are for COL/A l at 254 

bps, for COL2A I at 419 bps, for COL3AI at 369 bps, for COL4A2 at 648 bps, for COLSA I 

at 454 bps, for COL6AI at 342 bps, for COL7AI  at 261 bps, for COL9A I at 245 bps, and for 

COLI IA / at 460 bps. COL /7AI  gave no product band as expected. Keratinocytes contained 

COL/ 7A I  (figure not shown). 

Jmmunocytochemistry 

LM results revealed that Muller cells preserved their morphology and characteristics 

under the culture method with FBS. They were all positive for vimentin and CRALBP, and 

less than 5% of the cells were GFAP positive (pictures not shown). In the case of collagen 

staining, the cytoplasm of all Muller cells was positive for all collagens with the exception 

of type XVII collagen (Table 3; Figures 2A- I). The pattern of the cytoplasmic staining varied 

in intensity and had a granular to fibrillary aspect. Types V, V I, and XI collagen also stained 

positively outside the cell - e.g., as small granules and fibers. All negative controls showed 

no staining (not shown). 

0 1 0  30 0 1 0  30 0 1 0  30 

-+ 

250 kd 

1 50 kd 
-+ 
-+ 
-+ 

A B C 

Figure 3 Examples of western blot analyses: Mi.il ler cell extracts with the addition of type VII collagenase 

(0, I 0, and 30 units/ml). A: The specific band of type II collagen is shown at 1 50 kDa and d isappears without 

formation of new bands when type VI I collagenase is added. B: At 1 80 kDa, the specific band of type 1 1 1  collagen 

disappears gradually on the addition of type VII collagenase. C: Addition of type VII collagenase to type VI I 

collagen results in the gradual disappearance of the specific band at 270 kDa and the appearance of breakdown 

products at 1 30, 1 35, and 140 kDa. Specific bands are indicated with arrows. 
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Figure 4 lmmunocytochemical analyses of cultured Muller cells in medium with GS. Types I (A) and V (C) 

collagen show clear extracellular fibrillar threads and less intracellular staining compared to Figures 2A and 2E, 
respectively. Types II (B) and XI (D) collagen show some fine extracellular threads and small granules (arrows) 
and decreased intracellular staining compared to Figures 2B and 21, respectively. In the inlays of Figures 4B and 
4D, the extracellular collagen is magnified two times. Bars in each panel equal 50 µm. 

Western blot 
Cell extracts of Muller cells were immunoblotted for the presence of types I-V II, IX, 

XI, and XVII collagen and showed specific collagen bands (Table 2; Figures 3A-C), which 

disappeared on treatment with increasing doses of type V II collagenase, except for type 

XVII collagen which showed no band. In the case of types IV, V I, and V II collagens (Figure 

3C), new product bands were detected after collagenase treatment. The collagenase had 

no effect on the bands of CRALBP and vimentin (not shown). 

Analysis of conditioned growth medium with GS 
Without FBS but with GS, Muller cells preserved their immunocytochemical characteristics, 

although, morphologically, they appeared a little stretched. Cell viability remained above 

95% with a slightly diminished proliferation rate compared to conditions with I 0% FBS. In 

comparison with cells grown in the medium with FBS, the RT-PCR results were similar. 
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LM results were comparable but showed less intense intracellular and more extracellular 

staining for types I, II, V, and XI collagen. Types I and V collagen were visible outside the 

cell as fibrillar threads and types II and XI collagen also, but to a lesser extent and they had 

a more granular aspect (Figures 4A-D). In the medium, we found specific collagen bands 

(Table 2) similar to those detected in the cell extracts except for type IX collagen where 

in addition to the 200 kDa band a weak band at 150 kDa was present. For type XI collagen, 

only the 1 50 kDa band was detected in the medium. 

Table 3 lmmunocytochemical analysis of human retinal Muller cells 

Collagen Cytoplasm staining Extracellular staining Cytoplasm aspect 
FB S GS FBS GS FBS GS 

Type I ++ + n.d. ++ Granular Granular 
Type 1 1  + + n.d. + Diffuse Diffuse - granular 
Type 1 1 1 + + n.d. n.d. Diffuse Diffuse 
Type IV  ++ ++ n.d. n.d. Granular Granular 
Type V ++ + Granules ++ Granular - frbrillar Diffuse 
Type V I  + ++ Granules - fibers n.d. Granular Granular 
Type VI I + ++ n.d. n.d. Diffuse Granular 
Type IX  ++ ++ n.d. n.d. Diffuse Diffuse 
Type XI ++ + Small granule s ++ Diffuse Diffuse 

Type XVI I n.d. n.d. 

Muller cells were pxed on glass chamber slides and stained with specipc antibodies against types I-VII, IX, XI, and XVII

collagen. LM conprmed the intracellular expression of all the above-mentioned collagens except type XVII collagen. The 
aspectof the collagen staining differed in aspect ( diffuse, granular, or pbri/lar) and intensity. In the table, the following symbols 
andabbreviations are used: strongly positive (++), positive (+), negative (-), not detected (n.d.), medium with I 0% fetal bovi
neserum (FBS), and medium with I %  GS (GS). 

Discussion 

This study shows collagen synthesis by human retinal Muller cells in vitro. Muller cells 

expressed mRNAs coding for typesl-VII, IX, and XI collagen. At the protein level, these 

collagens were demonstrated by immunocytochemical staining and shown to be present 

in the cytoplasm with LM. WB analysis of the cell extracts and of the medium in which 

the cells had been cultured confirmed the intracellular production and demonstrated 

that types I-V II, IX, and XI collagen were also secreted into the medium. The detected 

collagen bands could be procollagen chains as well as collagen chains, but we did not 

analyze this. Muller cells did not express type XVII collagen, a basement membrane 

protein that was recently demonstrated near photoreceptor synapses and its outer 

segments [25]. Apparently, Muller cells synthesize those collagens that are found in their 

natural vicinity (vitreous, ILL, and retina). 
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Although the spontaneously immortalized Muller cells have been well 

characterised [4] and shown to keep their main characteristics, cell models in general 

have as a major limitation that they are artificial in vitro systems unlike an in vivo model. 

Cultured Muller cells therefore might display somewhat deviant behavior because the cells 

are not in their natural surrounding, since they are growing on medium and moreover have 

shown spontaneous immortalization. To confirm our findings, primary isolated Muller cells 

could provide additional information, but in vivo data would be preferable. 

For the WB experiments with Muller cells, ascorbic acid and B-APN were added 

to stimulate collagen synthesis and prevent extracellular collagen cross-linking, respectively 

[27, 3 1, 32] . The differences in collagen staining observed by LM - the increased extracellular 

staining for types I, II, V, and XI collagen paralleled by a decreased intracellular staining -

were most likely the effect of ascorbic acid. The digestion experiments with collagenase 

confirmed the collagen nature of the bands as seen by WB. 

We hypothesize that the in vitro capability of Muller cells to produce the 

aforementioned collagens might ( I) adduce support to previously described morphological 

findings in the embryonic period [5,6], (2) contribute to the stable level of postnatal 

vitreous collagen [33], and (3) explain, in part, the origin of epiretinal membranes in 

pathology (see below) [7,8, 34-36]. 

In the embryonic vitreous, the neural retina and sometimes specifically Muller 

cells are indicated as possible sources of vitreous and ILL collagens. In chicken embryos, 

retina was involved in collagen (e.g., type II) synthesis [37,38]. In the developing mouse 

neural retina, mRNA of types II and IX collagen has been detected [39-41]. In the human 

embryo, Muller cells seemed continuous with the vitreous fibrils (primarily collagen type 

11) present at the vitreal side [6,42,43] . The production of vitreous fibrils during embryonic 

growth of the eye was ascribed to Muller cells and other cell types [5,6] . Also, Muller cells 

were supposed to contribute to the formation of the ILL in the human embryo [6] . 

The postnatal vitreous has long been regarded as an almost inert extracellular 

matrix, in which hardly any production or breakdown of its macromolecular components 

occurs [20, 33,44]. Recent studies question the inertness of the vitreous body and 

suggested turnover of vitreous components [16, 18, 19,45-52]. Currently, two hypotheses 

on vitreous aging are postulated. The first is a concept of vitreous destabilization on 

aging because synchisis (liquefaction) and syneresis (aggregation of vitreous matrix 

components) lead to the formation of spaces and aggregated collagens; the second is 

a view that extracellular breakdown of vitreous matrix [16] (synchisis) would coincide 

with production of vitreous collagen [53-55], leading to an increase in optically dense 
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structures over time. In both views, the total amount of collagen in the human vitreous 

appears to remain stable during life [33], which, for the latter theory, may indicate that 

collagen synthesis and collagen breakdown are in equilibrium. The in vitro capacity of the 

Muller cell to synthesize vitreous collagens suggests a possible role in postnatal vitreous 

collagen synthesis. In addition, our in vitro results support the possible role of Muller cells in 

the formation of sublaminar vitreoretinal collagen complexes expanding on aging [11, 18, 19]. 

Muller cells are found in epiretinal membranes in pathological circumstances such 

as massive retinal gliosis, preretinal macular fibrosis, idiopathic epiretinal membranes, 

and retinal injuries or degeneration [7,8,34-36]. These membranes can contain types 

1-V collagen [23,24]. In morphological studies, Muller cells appear to contribute to the 

formation of pathological membranes [7,8,34]. However, they may not be the only type 

of cell involved since glial cells, astrocytes, fibrocytes, and retinal pigment epithelium 

have also been observed in epiretinal membranes [24,56-59]. 

In summary, the finding that immortalized human Muller cells synthesize collagens 

in vitro indicates that they might also be involved in this process in vivo. Collagen synthesis 

by Muller cells could explain and expand on previous morphological findings in the 

embryonic and postnatal period as well as in pathologic conditions. In vivo experiments 

will be necessary to validate our results. 

Acknowledgements 

The authors thank Marja Brinker, jelleke Dokter-Fokkens, Marco Harmsen, Guus 

Kloosterhuis, and Peter Terpstra for their practical and technical assistance. 

97 



Chapter 5 

References 

I .  Newman E ,  Reichenbach A .  The Muller cell: a functional element of the retina. Trends Neurosci 1 996; 

1 9:307- 1 2. [PM I D: 8843598] 

2. Sarthy V, Ripps H. The Retinal Muller Cell, Structure and Function. New York: Kluwer Academic / Plenum; 

200 1 .  p. 1 -65. 

3. Willbold E, Layer PG. Muller glia cells and their possible roles during retina differentiation in vivo and in 

vitro. Histol Histopathol 1 998; 1 3:53 1 -52. [PM ID: 9589907] 

4. Limb GA, Salt TE, Munro PM, Moss SE, Khaw PT. In vitro characterization of a spontaneously immortalized 

human Muller cell line (MIO-M l). Invest Ophthalmol Vis Sci 2002; 43:864-9. [PM I D: 1 1 867609] 

5. Swann DA. Chemistry and biology of the vitreous body. Int Rev Exp Pathol 1 980; 22: 1 -64. [PM I D: 

7005 1 42] 

6. Mann IC. The vitreous and suspensory ligament of the lens. The development of the human eye. London: 

Cambridge University Press; 1928. p. 15 1 -89. 

7. Laqua H, Machemer R. Glial cell proliferation in retinal detachment (massive periretinal proliferation). Am 

J Ophthalmol 1 975; 80:602- 1 8. [PM I D: 8 1 0029] 

8. Nork TM,  Ghobrial MW, Peyman GA, Tso MO. Massive retinal gliosis. A reactive proliferation of Muller 

cells. Arch Ophthalmol 1 986; 1 04: 1 383-9. [PM ID: 3092790] 

9. Hogan MJ, Alvarado JA, Weddell J E. Retina. Histology of the human eye.Philadelphia: W. B. Saunders 

Company; 1 97 1 .  p. 393-522. 

1 0. Ramirez J M, Trivino A, Ramirez Al, Salazar JJ, Garcia-Sanchez J. Structural specializations of human retinal 

glial cells. Vision Res 1 996; 36:2029-36. [PM ID: 8776469] 

1 1 . Gartner J .  Pathology of the basal lamina at the peripheral vitreoretinal junction. Dev Ophthalmol 1 98 1 ;  

2:353-62. [PM I D: 7262421 ]  

1 2. Hollander H, Makarov F, Dreher Z ,  van Driel D ,  Chan-Ling T L, Stone J. Structure o f  the macroglia o f  the 

retina: sharing and division of labour between astrocytes and M uller cells. J Comp Neural 1 99 1 ;  3 1 3:587-

603. [PM I D: 1 783683] 

1 3. Foos RY, Gloor BP. Vitreoretinal juncture; healing of experimental wounds. Albrecht Von Graefes Arch 

Klin Exp Ophthalmol 1 975; 1 96:21 3 -20. [PM I D: 1 082254] 

1 4. Walburg H, Willbold E, Layer PG. Muller glia endfeet, a basal lamina and the polarity of retinal layers form 

properly in vitro only in the presence of marginal pigmented epithelium. Cell Tissue Res 1 99 1 ;  264:437-5 1 .  

[PM I D: 1 8685 1 9] 

15. Sarthy V. Collagen IV mRNA expression during development of the mouse retina: an in situ hybridization 

study. Invest Ophthalmol Vis Sci 1 993; 34: 1 45-52. [PMI D: 7678834] 

98 



Collagen synthesis by human retinal Muller cells 

1 6. Los LI, van der Worp RJ , van Luyn MJ , Hooymans JM.  Age-Related Liquefaction of the Human Vitreous 

Body: LM and TEM Evaluation of the Role of Proteoglycans and Collagen. Invest Ophthalmol Vis Sci 2003; 

44:2828-33. (PM ID: 1 282421 9] 

1 7. ltakura H, Kishi S, Kotajima N, Murakami M. Vitreous collagen metabolism before and after vitrectomy. 

Graefes Arch Clin Exp Ophthalmol 2005; 243:994-8. [PM ID: 1 5900480] 

1 8. Wang J ,  McLeod D, Henson DB, Bishop PN. Age-dependent changes in the basal retinovitreous adhesion. 

Invest Ophthalmol Vis Sci 2003; 44: 1 793-800. [PM ID: 1 27 14607] 

1 9. Ponsioen TL, van der Worp RJ , van Luyn MJ , Hooymans JM,  Los LI. Packages of vitreous collagen (type 1 1 )  

in the human retina: an  indication of  postnatal collagen turnoverr Exp Eye Res 2005; 80:643-50. (PM ID: 

1 5862 1 7 1 ] 

20. Bishop PN. The biochemical structure of mammalian vitreous. Eye 1 996; 1 0:664-70. (PM ID: 909 1 36 1 ] 

2 1 .  lhanamaki T, Pell iniemi LJ , Vuorio E. Collagens and collagenrelated matrix components in the human and 

mouse eye. Prog Retin Eye Res 2004; 23:403-34. [PMID: 1 52 1 9875] 

22. Myllyharju J, Kivirikko Kl. Collagens, modifying enzymes and their mutations in humans, flies and worms. 

Trends Genet 2004; 20:33-43. [PM ID: 1 46986 1 7] 

23. Scheiffarth OF, Kampik A, Gunther H. von der MK. Proteins of the extracel lular matrix in vitreoretinal 

membranes. Graefes Arch Clin Exp Ophthalmol 1 988; 226:357-6 1 .  [PMID:  3049258] 

24. Okada M,  Ogino N, Matsumura M,  Honda Y, Nagai Y. Histological and immunohistochemical study of 

idiopathic epiretinal membrane. Ophthalmic Res 1 995; 27: 1 1 8-28. [PM ID: 8538984] 

25. Claudepierre T, Manglapus MK, Marengi N, Radner S, Champliaud MF, Tasanen K, Bruckner-Tuderman L, 

Hunter DD, Brunken WJ. Collagen XVI I and BPAG I expression in the retina: evidence for an anchoring 

complex in the central nervous system. J Comp Neurol 2005; 487: 1 90-203. [PM ID: 1 5880472] 

26. Wright GC Jr, Wei XQ, McDevitt CA, Lane BP, Sokoloff L. Stimulation of matrix formation in rabbit 

chondrocyte cultures by ascorbate. I .  Effect of ascorbate analogs and betaaminopropionitrile. J Orthop Res 

1 988; 6:397-407. [PM ID: 3357088] 

27. Englard S, Seifter S. The biochemical functions of ascorbic acid. Annu Rev Nutr 1 986; 6:365-406. [PM I D: 

30 1 5 1 70] 

28. N ish izawa Y, Uematsu J, Owaribe K. HD4, a 1 80 kDa bullous pemphigoid antigen, is a major transmembrane 

glycoprotein of the hemidesmosome. J Biochem 1 993; 1 1 3:493 -50 I .  [PMID: 85 1 4739] 

29. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 

1 970; 227:680-5. [PM ID: 5432063] 

30. Pas HH ,  Kloosterhuis GJ, Heeres K, van der Meer JB, Jonkman M F. Bullous pemphigoid and l inear lgA 

dermatosis sera recognize a similar 1 20-kDa keratinocyte collagenous glycoprotein with antigenic cross

reactivity to BP l 80. J Invest Dermatol 1 997; 1 08:423-9. [PM ID: 9077469] 

99 



Chapter 5 

3 1 .  Geesin JC, Darr D, Kaufman R, Murad S, Pinnell SR. Ascorbic acid specifically increases type I and type 

Ill procollagen messenger RNA levels in human skin fibroblast. J Invest Dermatol 1 988; 90:420-4. [PM I D: 

335 1 329] 

32. Eyre DR, Paz MA, Gallop PM. Cross-linking in collagen and elastin. Annu Rev Biochem 1 984; 53:7 1 7-48. 

[PM ID: 6 1 48038] 

33. Balazs EA, Denlinger J. L. Aging Changes in the Vitreus. In: Sekuler R, Kline D, Dismukes K, editors. Aging 

and Human Visual Function.New York: Alan R. Liss, Inc.; 1 982. p. 45-58. 

34. Lewis GP, Matsumoto B, Fisher SK. Changes in the organization and expression of cytoskeletal proteins 

during retinal degeneration induced by retinal detachment. Invest Ophthalmol Vis Sci 1 995; 36:2404- 1 6. 

[PMI D: 759 1 630] 

35. Okada M, Matsumura M,  Ogino N, Honda Y. Muller cells in detached human retina express glial fibrillary 

acidic protein and vimentin. Graefes Arch Clin Exp Ophthalmol 1 990; 228:467-74. [PM I D: 2227494] 

36 .  Rentsch FJ. The ultrastructure of preretinal macular fibrosis. Albrecht Von Graefes Arch Klin Exp 

Ophthalmol 1977; 203:321-37. [PM I D: 303477] 

37. Smith GN, Linsenmayer TF, Newsome DA. Synthesis of type II collagen in vitro by embryonic chick neural 

retina tissue. Pree Natl Acad Sci USA 1 976; 73:4420-3. [PM ID: 1 069994] 

38.  Newsome DA, Linsenmayer TF, Trelstad RL. Vitreous body collagen. Evidence for a dual origin from the 

neural retina and hyalocytes. J Cell Biol 1 976; 7 1 :59-67. [PMI D: 977655] 

39. Savontaus M,  lhanamaki T, Perala M,  Metsaranta M,  Sandberg-Lall M,  Vuorio E. Expression of type II and IX 

collagen isoforms during normal and pathological cartilage and eye development. Histochem Cell Biol 1 998; 

1 1 0: 1 49-59. [PM I D: 9720987] 

40. Savontaus M, lhanamaki T, Metsaranta M, Vuorio E, Sandberg-Lall M. Localization of type II collagen mRNA 

isoforms in the developing eyes of normal and transgenic mice with a mutation in type I I collagen gene. 

Invest Ophthalmol Vis Sci 1 997; 38:930-42. [PMI D: 9 1 1 2989] 

4 1 .  Cheah KS, Lau ET, Au PK, Tam PP. Expression of the mouse alpha 1 ( 1 1) collagen gene is not restricted to 

cartilage during development. Development 1 99 1 ;  1 1 1 :945-53. [PM I D: 1 879363] 

42. Hogan MJ , Alvarado JA, Weddell J E. Vitreous. Histology of the human eye.Philadelphia: W.B. Saunders 

Company; 197 1 . p. 607-37. 

43. Sebag J. Embryology of the Vitreous. In: Arcata Graphics/ Halliday, editor. T he Vitreous.New York: 

Springer-Verlag; 1 989. p. 7- 1 6. 

44. Sebag J. Age-related changes in h uman vitreous structure. Graefes Arch Clin Exp Ophthalmol 1 987; 

225:89-93. [PM I D: 3583000] 

45. Bertazolli Fil ho R, Laicine EM,  Haddad A. Biochemical studies on the secretion of glycoproteins by isolated 

ciliary body of rabbits. Acta Ophthalmol Scand 1 996; 74:343-7. [PMI D: 8883547] 

100 



Collagen synthesis by human retinal Muller cells 

46. Haddad A, de Almeida JC, Laicine EM, Fife RS, Pelletier G. The origin of the intrinsic glycoproteins of the 

rabbit vitreous body: an immunohistochemical and autoradiographic study. Exp Eye Res 1990; 50:555-61 .  

[PM ID: 2197 10 1] 

47. Haddad A, Laicine EM, de Almeida JC, Costa MS.  Partial characterization, origin and turnover of 

glycoproteins of the rabbit vitreous body. Exp Eye Res 1990; 51 : 139-43. [PM ID: 2387333] 

48. Laurent UB, Fraser JR.  Turnover of hyaluronate in the aqueous humour and vitreous body of the rabbit. 

Exp Eye Res 1983; 36:493-503. [PMID: 6852130] 

49. Eisner G. Lichtkoagulation und Glaskorperbildung; Zur frage der Glaskorperentstehung. Albrecht Von 

Graefes Arch Klin Exp Ophthalmol 1978; 206:33-8. [PMID: 306207] 

50. Osterlin SE. The synthesis of hyaluronic acid in vitreous. 3. In vivo metabolism in the owl monkey. Exp Eye 

Res 1968; 7:524-33. [PM I D: 4975462] 

51. Rhodes RH, Mandelbaum SH, M inckler DS, Cleary PE. Tritiated fucose incorporation in the vitreous body, 

lens and zonules of the pigmented rabbit. Exp Eye Res 1 982; 34:921-31 .  [PMI D: 7084349] 

52. Rittig M ,  Flugel C, Prehm P, Lutjen-Drecoll E. Hyaluronan synthase immunoreactivity in the anterior 

segment of the primate eye. Graefes Arch Clin Exp Ophthalmol 1993; 231:313-7. [PM ID: 8339945] 

53. Bishop PN, Reardon AJ, McLeod D, Ayad S. Identification of alternatively spliced variants of type I I  

procollagen i n  vitreous. Biochem Biophys Res Commun 1994; 203:289-95. [PMI D: 8074668] 

54. Snowden JM ,  Eyre DR, Swann DA. Vitreous structure. VI .  Age-related changes in the thermal stability 

and crosslinks of vitreous, articular cartilage and tendon collagens. Biochim Biophys Acta 1982; 706: 153-7. 

[PMID: 7 126595] 

55. Hong BS, Davison PF. Identification of type II procollagen in rabbit vitreous. Ophthalmic Res 1985; 17 : 162-7. 

[PM I D: 40 1 1 129] 

56. Burke JM ,  Kower HS. Collagen synthesis by rabbit neural retina in vitro and in vivo. Exp Eye Res 1980; 

3 1:213-26. [PM ID: 7428844] 

57. Constable IJ, Horne R, Slatter DH,  Chester GH, Cooper RL. Regeneration of retinal limiting membranes 

after chorioretinal biopsy in dogs. Invest Ophthalmol Vis Sci 198 1; 20:246-51. [PM ID: 7461926] 

58. Kenyon KR, Michels RG. Ultrastructure of epiretinal membrane removed by pars plana vitreoretinal 

surgery. Am J Ophthalmol 1977; 83:8 15-23. [PMID: 868982] 

59. Van Horn DL, Aaberg TM, Machemer R, Fenzl R. Glial cell proliferation in human retinal detachment with 

massive periretinal proliferation. Am J Ophthalmol 1977; 84:383-93. [PMID: 409299] 

I O I  





The mature enzymatic col lagen cross- l inks 

hydroxylysylpyridinoline and lysylpyridinoline 

in the aging human vitreous 

T.L. Ponsioen, 1 M. van Deemter, 1 R.A. Bank,2•3 J.M. Snabel,2 G.S. Zijlstra,4 

R.J. van der Worp, 1 J.M.M. Hooymans, 1 LI. Los1 

1 University Medical Center Groningen and University of Groningen, Department of Ophthalmology, 

P.O. Box 30.00 I, 9700 RB Groningen, The Netherlands 
1 TNO Quality of Life, Division BioSciences, Zernikedreef 9, 2333 CK Leiden, The Netherlands 
3 Academic Center of Dentistry Amsterdam, Vrije Universiteit, Department of Oral Biology, Van der 

Boechorststraat 7, I 08 1 BT Amsterdam, The Netherlands 

� University of Groningen, Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan I ,  97 13 AV 

Groningen, The Netherlands 

Submitted 



Chapter 6 

Abstract 

Purpose 

The vitreous body of the human eye undergoes progressive morphological changes 

with aging. Since the enzymatic collagen cross-links hydroxylysylpyridinoline (HP) and 

lysylpyridinoline (LP) are known to be important for the integrity of the collagen matrix, 

we studied their presence in the vitreous upon aging. 

Methods 

Vitreous bodies ( VBs; n= l43) from 1 19 donors (age 4-80 years; mean 54.3 ± 17.0 years) 

were carefully dissected. After weighing and freeze-drying, all samples were analyzed by 

high performance liquid chromatography. Left and right eyes of 24 donors were compared 

and, for age-related phenomena, 1 19 single eyes were used. 

Results 

Within one donor, no significant differences are found between left and right eyes. Upon 

aging, VB wet weight (4.42 ± 0.84 g) raises until 35 years and decreases thereafter. Collagen 

content (0.30 ± 0.14 mg), HP per triple helix (TH; 0.55 ± 0.18), and (HP plus LP)/TH (0.61 

± 0. 19) increase until 50 years followed by a decrease, whereas LP/TH (0.057 ± 0.018) 

accumulates until 50 years and remains constant thereafter. The ratio between HP and LP 

(range 0.42 - 31.0, median I 0.0) is constant over time. 

Conclusions 

The accumulation of enzymatic collagen cross-links until 50 years is an indication of collagen 

maturation and possible collagen synthesis in the human vitreous body. The decline of 

collagen cross-links after 50 years can be caused by collagen breakdown. Furthermore, 

the decline itself can contribute to the instability of the collagen network resulting in the 

increase of morphological changes in the elder VB. 
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I ntroduction 

The vitreous body of the human eye is the transparent and highly hydrated (98-99% water) 

extracel lular matrix (ECM) located behind the lens and surrounded by and attached to the 

retina. Its structure is maintained by heterotypic col lagen fibrils, which contain col lagen 

types 11, V/XI ,  and IX, with type II predominating. 1 Types II, V, and XI collagen belong to 

the family of the fibril-forming col lagens that assemble into fibrils and can form stable 

cross-links; type IX col lagen belongs to the family of the fibril-associated col lagens that 

is covalently linked to the surface of col lagen fibrils.2 Col lagen fibrils in their turn can 

aggregate into col lagen fibers. Enzymatic col lagen cross-links are essential for the physical 

and mechanical properties of the col lagen fibers. 3 

The formation of enzymatic col lagen cross-links is preceded by col lagen 

synthesis (Fig. I) . 
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Figure I The synthesis of collagen. I. Collagen is synthesized as pre-pro-a-chains. Following translocation, 
the signal peptides are removed and the individual procollagen a-chains will associate through the C-peptides. 
2. Procollagens undergo multiple posttranslational modifications such as the hydroxylation of specific lysine 
(Lys) and praline (Pro) residues as well as the glycosylation of hydroxylysyl residues. 3. The procollagen is 
excreted and is converted extracellularly into collagen by cleaving the propeptides. 4. Subsequently, collagen 
molecules assembly into ordered fibrils. 5. These are finally stabilized by the formation of intra- and/or inter
molecular cross-links. (Reprinted with permission from A.J. van der Slot-Verhoeven4) 
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Synthesis of fibril-forming collagens (e.g. type II) starts with the transcription of the gene 

within the cell nucleus followed by its translation. After translation, procollagens are 

formed which undergo multiple posttranslational modifications (e.g. the hydroxylation 

of specific proline and lysine residues and the glycosylation of hydroxylysine residues) 

before their secretion into the ECM. The hydroxylation of lysine residues within the 

triple helix as well as the C- and N-telopeptides is catalyzed by lysyl hydroxylases.4 In 

the ECM, the C- and N-terminal propeptides are removed by proteinases, enabling the 

molecules to aggregate into fibrils.5·8 Subsequently, collagen fibrils are stabilized by the 

formation of enzymatic intermolecular and/or intramolecular cross-links. The formation 

of cross-links starts with the oxidative deamination of the E-amino group of specific 

lysine and hydroxylysine residues within the C- and N-terminal telopeptides leading to 

the formation of reactive aldehydes. The conversion of lysine and hydroxylysine into the 

respective aldehydes allysine and hydroxyallysine is catalyzed by the enzyme lysyl oxidase. 

The reactive aldehyde condensates either with hydroxylysine or lysine within an adjacent 

collagen molecule to form the stable intermolecular cross-links hydroxylysylpyridinoline 

(HP) and lysylpyridinoline (LP).4•7•9• 1 0  

With aging, the human vitreous undergoes a progressive increase in liquefied 

spaces (synchisis)11- 14 and an increase in optically dense structures (syneresis). 1 5•16 The first 

evidence of liquefaction is described at the age of 4 years. ' 3  Synchisis and syneresis progress 

slowly and these processes can be followed by a posterior vitreous detachment (PVD), 

which is a separation between the vitreous cortex and the retina. 11 • 1 2•14• 17 Post-mortem 

studies reported that 45% of persons aged 60-69 years had at least 50% liquefaction, 1 4 

that PVD is first seen in the sixth decade, and that 50-60% of persons aged 80-90 years 

had a PVD.17 Posterior vitreous detachment in itself is not a serious condition, although 

it may lead to local interference with the passage of light and cause symptoms referred 

to as 'mouches volantes' or floaters. However, it may induce more serious pathology, 

such as retinal tears, retinal detachment, intravitreal hemorrhage, and cystoid macular 

edema. 18  The (patho)physiological mechanisms underlying synchisis and syneresis have not 

yet been clarified. Currently, two possible mechanisms are discussed in the literature. 

Generally, synchisis is supposed to start with changes in the noncollagenous components 

of the matrix and to result in an aggregation of collagen fibrils. 1 • 1 6• 19-22 Following this theory, 

synchisis and syneresis are the structural manifestations of a destabilization of the vitreous 

matrix.13• 1 6•19 More recent studies find evidence of an alternative hypothesis, in which a 

breakdown of the vitreous matrix leading to synchisis23 would coincide with the synthesis 

of vitreous collagen24•29 leading to an increase in optically dense structures upon aging 
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(syneresis). In this theory, synchisis and syneresis can occur at different locations within 

the matrix and by different physiological and pathophysiological mechanisms. 

In this study, we measured the contents of both HP and LP cross-links in whole 

human vitreous with aging, since the role of enzymatic collagen cross-links has not 

specifically been studied in the aging process of the vitreous. We show the presence of 

HP and LP cross-links, which appear to reach their maximum before the general onset of 

liquefaction. 14 

Methods 

Vitreous preparation 

Human eyes (n= 143) from 119 donors (80 men and 39 women) with ages varying between 

4 and 80 years (mean 54.3 ± 17.0 years) and with no known ophthalmic disorders were 

obtained from the Cornea Bank (Amsterdam, The Netherlands). Twelve donors ( 18 eyes) 

had diabetes mellitus and only one donor (75 years) had a complete PVD, defined as 

complete posterior detachment of the vitreous cortex from the retina to the vitreous 

base. Vitreous bodies ( VBs) were prepared under a dissection microscope within 1-14 days 

post-mortem (mean 5.6 ± 2.6 days) according to a standard protocol previously described 

by Worst.30 In short, eyes were placed in an eye holder filled with sodium chloride 0.9% 

and remained below the surface. Sciera, choroid, lens and iris were removed. After blunt 

cleaving, almost all retina and ciliary body parts were dissected from the vitreous except 

for the strong interconnections around the pars plana, which were initially left in place 

in order to prevent damage to the vitreous cortex. Then, the lens capsule was carefully 

dissected with most fibers of the zonula from the vitreous base. The final step was the 

dissection of pars plana remnants (PPR) consisting largely of ciliary body fragments still 

adhering to the vitreous.3 1  Some vitreous base could have been removed during the latter 

procedure. All VBs and PPRs were weighed and stored at -20 °C before freeze-drying. In 

this study, VBs and PPRs were divided in 24 pairs of left en right eyes and 119 single eyes. 

Freeze-drying 

To reduce vitreous volume, VB and PPR samples were freeze-dried by a Christ Alpha 

1-4 freeze-dryer (Salm en Kipp, Breukelen, The Netherlands). Before the drying process, 

the samples were put in liquid nitrogen. The lyophilization was performed using a shelf 

temperature of -30 °C, a condenser temperature of -53 °C and a pressure of 0.220 mbar 
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for 1 8  hours. Then, the shelf temperature and pressure were gradually raised to 20 °C 

and 0.520 mbar, respectively, during 6 hours. Finally, the drying process was continued 

for another 20 hours under these conditions. In a separate pilot analysis, we confirmed 

by repetitive freeze-drying cycles that there was no loss of 'dry weight' sample (data not 

shown). 

HPLC analyses 

Analyses of HP, LP, and amino acid content were performed by high performance liquid 

chromatography (HPLC) as described previously.32•3 3  The HPLC system (Separations, 

Hendrik ldo Ambacht, The Netherlands) consisted of a Gynkotek Model 480 multisolvent 

delivery system, a Sparks Hol land Triathlon autosampler, a jasco Model 82 1 -FP fluorimeter, 

and a Lab-Quatec Model Gastorr Gt- I 03 degasser. Calibration of amino acids was 

performed with the amino acid standard for collagen hydrolysates (A-953 1 ;  Sigma, St. 

Louis, MO, USA). 

Amino acids (hydroxyproline and proline) and cross-links were determined after 

acid hydrolysis, as described previously. 33 All freeze-dried samples were hydrolyzed in 6 M 

HCI at 1 1 0
°
C for 20-24 hours. After drying (Speed Vac SC 1 1 0; Savant, Farmingdale, USA), 

the specimens were dissolved in 200 µI water containing 1 0  µM pyridoxine (Sigma; internal 

standard for cross-link analysis) and 2.4 mM homoarginine (Sigma; internal standard for 

amino acid analysis). 

For cross-link analysis, the samples were diluted in 0.5% (v/v) heptafluorobutyric 

acid (HFBA; Buchs, Switzerland) in I 0% (v/v) acetonitrile (Walkerburn, Scotland). Separation 

was performed on a 4.6 mm x 1 50 mm Micropak ODS-80TM (Varian, Sunnyvale, CA, 

USA). The column was equilibrated with 0. 1 5% (v/v) HFBA in 24% (v/v) methanol (solvent 

A). Elution of pyridinolines and the internal standard pyridoxine was achieved at ambient 

temperature at a flow-rate of 1 .0 ml/min in two isocratic steps: time 0- 1 7  min solvent A; 

time 1 7-30 min 0.05% (v/v) HFBA in 40% methanol (solvent B). The column was washed 

with 0. 1 %  (v/v) HFBA in 75% (v/v) acetonitrile (solvent C) for IO min and equilibrated for 

IO min with solvent A, resulting in a total analysis time of 50 min per sample. Fluorescence 

was monitored with a programmable fluorimeter: 0-22 min 295/400 nm (pyridoxine and 

pyridinolines). 

For amino acid analysis, aliquots of the hydrolyzed samples were diluted in 0. 1 M 

sodium borate buffer, pH 8.0, and derivatized at room temperature for 5 min with 6 mM 

9-fluorenylmethyl chloroformate in acetone. Termination of the reaction and removal of 

excess reagent and acetone was performed by extraction with 600 µI pentane. After two 
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additional extractions, 400 µI 25% acetonitrile in 0.1 M borate buffer, pH 8.0, was added. A 

50 µI aliquot of the diluted sample was injected into the HPLC system, after which separation 

was performed on the above-mentioned reversed-phase column. Chromatography was 

carried out at a column temperature of 40 °C; fluorescence was monitored at 254/630 nm. 

Solvent composition and the ternary gradient have been described in detail, previously. 32 

Collagen cross-links are expressed as mol per mol collagen, assuming 300 

hydroxyproline residues per triple helical collagen molecule (TH). 34 

Statistical analysis 

The HPLC results were analyzed by Student's t-tests for differences between two 

groups. Age-related phenomena were studied by linear regression analysis and by curve 

estamination, a form of non-linear regression using a quadratic model by which a reversal 

or top of the curve can be determined (an increase followed by a decrease for example). 

The age at the reversal point (top of the curve) was used as a cut off point in the subsequent 

non-linear regression analyses. Right and left eyes were compared by paired Student's 

t-tests. All analyses were performed with SPSS version 1 4.0 for Windows (SPSS, Chicago, 

IL, USA). When needed, the data were normalized using log transformation. P < 0.05 was 

considered to represent statistically significant differences. 

* 
" HP 22 132 

** 

Figure 2 This is an example of HPLC output. The first peak represents HP (*) and the second LP (**). 
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Results 

Right versus left eye 

The 24 right and left VBs (Table I )  showed no significant differences between right and left 

eyes in all test variables: (dry)weight, hydroxyproline per praline (Hyp/Pro), percentage of 

collagen, mg collagen in total VB, HP/TH, LP/TH, (log) HP/LP, and (HP plus LP)/TH. Thus, 

VBs of one donor showed a high correspondence between right and left eyes. Therefore, 

only one (randomly chosen) eye of each donor was used in further analyses. 

Table I Paired Student's t-test of right and left vitreous body (VB). Left and right eyes show no significant dif-
ferences. 

Right Left P-value 

Weight (g) 4.2 1 ± 0.68 4. 1 8  ± 0.59 0.600 (n=24) 

Dry weight (mg) 36.4 ± 7.0 37.2 ± 7.0 0.434 (n=24) 

Hyp/Pro ratio 0. 1 6  ± 0.06 0. 1 6  ± 0.06 0.924 (n=24) 

Collagen % (%) 0.76 ± 0.40 0.84 ± 0.46 0.384 (n=24) 

Collagen weight (mg) 0.27 ± 0. 1 4  0.30 ± 0. 1 6  0.2 1 5  (n=24) 

HP/TH (mol/mol) 0.5 1 ± 0. 1 4  0.5 1 ± 0. 1 4  0.880 (n=23) 

LP/TH (mol/mol) 0.046 ± 0.02 0.048 ± 0.02 0.6 1 2  (n=23) 

HP/LP 1 2.6 ± 5.7 1 1 .6 ± 4. 1 0.42 1 (n=23) 

(HP+LP)/TH (mol/mol) 0.56 ± 0. 1 5  0.56 ± 0. 1 6  0.937 (n=23) 

Hyp = hydroxyproline; Pro = praline; collagen % = collagen percentage; HP = hydroxylysylpyridinoline; LP = lysylpyridinoline; 
TH = triple helix; n = number. 

VB of single eyes 

In order to detect age-related phenomena, single eyes of 119 donors were analyzed with 

linear regression and curve estimation followed by non-linear regression (Figs. 3A-F). 

Macroscopically, elder VBs appeared much smaller. By curve estimation analysis, vitreous 

wet weight (mean 4.42 ± standard deviation 0.84 g; Fig. 3A) appeared to increase until 

35 years (P = 0.048) and to decrease thereafter (P < 0.00 I ), while dry weight (40. 1 ± 

9.8 mg) and VB collagen content (0.30 ± 0.14 mg) only declined significantly after 35 

years and 50 years, respectively (both P < 0.00 I; not shown). By linear regression analysis, 

the Hyp/Pro ratio (0. 17 ± 0.069; Fig. 3B), which is the ratio between collagenous and 

non-collage nous proteins, diminished markedly with aging (P < 0.00 I ), while the percentage 

of collagen (percentage of the dry weight; 0.75 ± 0.33 %; Fig. 3C) remained constant over 
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time (P = 0.111).The ratio between HP and LP (range 0.42-31.0, median 10.0) did not change 

significantly (log transformed data: P = 0.087). Curve estimation analysis showed reversal 

points for HP/TH (0.55 ± 0.18; Fig. 3D), LP/TH (0.057 ± 0.018; Fig. 3E) and (HP plus LP)/ 

TH (0.61 ± 0.19; Fig. 3F) around 50 years. Both HP/TH and (HP plus LP)/TH accumulated 

until 50 years (both P < 0.00 I) and decreased significantly thereafter (P = 0.020 and P = 

0.0 I 0, respectively). LP/TH increased until 50 years (P = 0.003), and remained constant 

thereafter (P = 0.355). In our dataset, a few outliers were found and we did not remove 

them, since they had no effect on our results (not shown). 
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Figure 3 The effect of age on the vitreous body (VB). A. Until 35 years, VB Weight increased (P = 0.048) and 
decreased thereafter (P < 0.00 1 ). B. On aging, the hydroxyproline/proline (Hyp/Pro) ratio declined (P < 0.00 1 ) .  

C.  The collagen percentage remained constant over t ime (P = 0. 1 1 1  ). D.  Until SO years, hydroxylysylpyridinoline 
(HP) per TH rose (P < 0.00 1 ) ,  while it decreased thereafter (P = 0.020). E. Lysylpyridinoline per TH (LP/TH) 
increased until SO years (P = 0.003) followed by a constant level (P = 0.355). F. Up to 50 years, (HP plus LP)/TH 
showed an increase (P < 0.00 I) and diminished thereafter (P = 0.0 I 0). 
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VBs showed no significant differences in the enzymatic collagen cross-links in our 

sub analysis of (i) diabetics (n= 12) versus non-diabetics (n= I 07), (ii) causes of death (chronic 

alcohol intoxication (n=5), vascular cause (n=73), pulmonary cause (n= 13), malignancy 

(n= 19), and trauma (n=9)), and (iii} time interval ( 1-12 days) between death and preparation 

(data not shown). Finally, possible differences between gender (80 men and 39 women) 

were studied, since female gender is a risk factor for the development of PVD, 1 2•35•3 6  but no 

clear differences were found between men and women (data not shown). 

PPR of single eyes 
Linear regression analysis of the 119 PPRs (48.5 ± 17.0 mg; prepared from the 1 19 VBs used 

in the analysis of single eyes) showed an increasing percentage of collagen ( 14.5 ± 4.5 %) on 

aging (P < 0.001). Curve estimation analyses showed an estimated reversal point around 

50 years for HP/TH (0.79 ± 0.30), LP/TH (0.074 ± 0.026) and (HP plus LP)/TH (range 

0. 12-2.09; median 0.84). An increase in enzymatic collagen cross-links was noticed until 

50 years (P < 0.00 I, P = 0.005 and P < 0.00 I, respectively), while the cross-links remained 

constant thereafter (data not shown). The ratio between HP and LP ( 11.5 ± 4.0) remained 

constant over time (P = 0.953; data not shown). 

Because VB and PPR are tightly interconnected,3 1  we evaluated whether "PPR" 

was in fact concentrated VB. This seemed unlikely because all parameters except the HP/ 

LP ratio proved to be significantly different (Table 2). 

Table 2 Paired Student's t-test of the vitreous body (VB) and its pars plana remnant (PPR). All parameters 
except H P/LP differ significantly. For abbreviations see Table I .  

VB PPR P-value 

Weight (mg) 4,420 ± 840 49 ± 1 7  < 0.00 1 (n= l 1 9) 

Dry weight (mg) 40. 1 ± 9.8 2.9 ± 0.9 < 0.00 1 (n= l 1 9) 

Hyp/Pro ratio 0. 1 7  ± 0.069 0.63 ± 0. 1 1 < 0.00 1 (n= l l 7) 

Collagen % (%) 0.75 ± 0.33 1 4.6 ± 4.4 < 0.00 1 (n= l 1 7) 

Collagen weight (mg) 0.30 ± 0. 1 4  0.42 ± 0. 1 6  < 0.00 1 (n= l 1 7) 

HP/TH (mol/mol) 0.56 ± 0. 1 8  0.8 1 ± 0.29 < 0.00 1 (n= I 1 3) 

LP/TH (mol/mol) 0.057 ± 0.0 1 8  0.D75 ± 0.025 < 0.00 1 (n= l 1 2) 

HP/LP 1 0.6 ± 4.47 I 1 .5 ± 4. 1 0.07 1 (n= l 1 0) 

(HP+LP)/TH (mol/mol) 0.6 1 ± 0. 1 9  0.90 ± 0.29 < 0.00 1 (n= l 1 0) 
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Discussion 

This study shows an increase in the mature enzymatic collagen cross-links, 

hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), in the human vitreous body from 

childhood until 50 years followed by a decline or stabilization thereafter, respectively. For 

the VB cross-link composition, the influence of LP appears to be limited, since HP is the 

most abundant collagen cross-link and the HP/LP ratio does not change significantly on 

aging. Overall, the enzymatic cross-links (HP plus LP) per TH increase until 50 years and 

decline thereafter. 

The pyridinoline cross-links form the last enzymatic step in collagen maturation. 

They provide physical and mechanical strength to the collagen network and thus contribute 

to its integrity. 3 The currently described collagen cross-links should not be confused with 

the aggregation or fusion of collagen fibrils and collagen fibers described upon aging of 

the VB. 1 5• 1 6·37•38 This latter form of "cross-linking" of collagens is, in fact, variably used 

to describe the age-related morphological changes and is thus easily interchanged with 

collagen cross-linking in the case of normal collagen maturation (formation of enzymatic 

connections between collagen molecules). The relationship between enzymatic cross-links 

and morphological changes with aging has not been studied in the VB. 

In the VB, we find an increase in the enzymatic cross-links per TH until 50 years. A 

possible explanation for the increase could be the formation of enzymatic cross-links from 

the processing of type 11 procollagen present in the VB. 28 These procollagens dilute the 

amount of collagen cross-links per TH since procollagens do not contribute to enzymatic 

collagen cross-links formation. As the procollagens develop into new collagen molecules, 

they become available to cross-link formation and thus the amount of collagen cross

links could rise. At this moment, it is not known whether the amount of procollagens in 

the vitreous changes with aging. Furthermore, the presence of procollagens may indicate 

that collagen synthesis and thus cross-link formation continuously take place upon aging. 

This latter hypothesis is supported by the finding of immature cross-links in adult bovine 

vitreous.26 In older cartilage and bone, immature cross-links decline in parallel with a raise 

in mature enzymatic cross-links.39•40 In this study, we were only able to measure the mature 

enzymatic cross-links. Therefore, a direct relationship between increasing mature and 

decreasing immature cross-links could not be demonstrated. In nonmineralized tissues 

(such as cartilage and vitreous) maturation of immature collagen cross-links is probably a 

quick process taking only one to four weeks. 39•4 1 -43 This is in contrast to mineralized EC Ms 

(e.g. bone and dentine) in which maturation of enzymatic cross-links is a slower process 
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because of the abundant presence of mineral.44 

Besides the increase in enzymatic cross-links per TH until 50 years, we found 

a decline thereafter. This decrease occurs at an age at which morphological changes in 

the VB become more prominent. 14• 1 7  A reasonable explanation could be a breakdown or 

loss of collagen cross-links, which is supported by the decrease in collagen content after 

50 years and the morphological presence of collagen fragments near liquefied spaces. 23 

By analogy, the increasing percentage of collagen and the increasing amount of collagen 

cross-links in the PPR is in agreement with the morphological finding that intraretinal 

collagen in the vitreous base expands posteriorly with aging.45 Another explanation 

might be that an older individual has less cross-linked collagens because of diminished 

cell-regulated activity of lysyl oxidase or lysyl hydroxylase-2 with age. Results found in 

the VB are globally in agreement with other human ECMs (bone, cartilage, meniscus, 

and intervertebral disc) in which the maximum amount of enzymatic cross-links is often 

reached in adolescence or midlife. 10.4°,46-49 

The presence of HP and LP is confined to tissues not exposed to ultraviolet 

radiation. It is absent from skin, cornea, and basal membranes and mainly present in 

cartilage and bone. 39·50 The lens of the human eye is largely responsible for the blockage 

of UV-light5 1  and, thus, it would be interesting to look at a possible shift in enzymatic 

collagen cross-links in aphakic eyes and longstanding pseudophakia to evaluate the possible 

relationship of these cross-links with the earlier appearance of liquefaction in these eyes. 

A significant presence of LP is largely confined to mineralized tissues (e.g. bone, dentin, and 

hypertrophic cartilage).39•52·53 The vitreous calcium level is equal to aqueous and plasma.54 

In humans, the HP/LP ratio in bone is around 3-4: 1 ,40•52·55 in dentin 4: I, 52 in tendon 15: I, 52 in 

nonarthritic meniscus 28: 1,48 in articular cartilage 30-50: I, 8• 55 and in synovium 25: I. 55 Our 

study found a mean HP/LP ratio in human VB of 11: 1  and in PPR of 12: 1, which remained 

constant upon aging. 

At this moment, the only study concerning HP and LP in the human VB and thus 

our only reference for mature enzymatic cross-links is based on vitrectomy samples.56 

However, this study failed to detect age-related changes in HP and LP cross-links. Possible 

explanations for this difference with our study include: (i) a limited age range (38-77 years 

versus 4-80 years), (ii) the use of vitrectomy samples (sampling error since the VB is not 

a homogenous structure 1 • 1 5• 1 7•57), and (iii) the expression of cross-links in ng per ml versus 

amounts per triple helix. 

In the present study, the apparent increase in VB weight and VB collagen weight 

until 35 and 50 years, respectively, and the significant decrease thereafter was partly in 
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agreement with a previous study which showed a maximum total VB weight around 40 

years and a constant VB collagen content from the third decade onwards preceded by a 

possible increase. 1 3  Because we found higher amounts of total vitreous collagen weight 

(mean 0.30 mg versus 0.22 mg by estimation1 3), it was not likely that we lost collagens 

during preparation. The increase followed by the decrease could be explained by a net 

collagen synthesis followed by a net collagen breakdown (and removal from the VB). In our 

opinion, it is impossible to explain this phenomenon by the assumption that collagen once 

formed never changes and only aggregates with aging. Our hypothesis can be supported by 

morphological studies, which showed an age-related loss of type IX collagen37 and found 

evidence of collagen fragmentation near liquefied spaces. 2 3  

The Hyp/Pro ratio showed a significant decrease with aging, implying a higher 

increase in the amount of non-collagenous proteins than in the amount of collagens. 

Non-collagenous proteins in the vitreous include glycoproteins (GPs such as opticin), 

proteoglycans (PGs e.g. chondroitin sulphate), and other structural proteins (e.g. fibrillin). 

Since GPs and PGs are the most abundant non-collagenous proteins of the VB, the change 

in Hyp/Pro ratio could reflect an increase in these proteins. Alternatively, an increase in 

total protein concentration with aging has been described and found to be related to a 

progressive leakage of serum proteins into the VB. 58 

Our results on enzymatic collagen cross-links can contribute to the insight in the 

age-related processes synchisis and syneresis in the concept of collagen turnover. The 

accumulation of collagen cross-links until 50 years is an indication of (ongoing) collagen 

maturation, which in its turn can be the result of collagen synthesis. At the age of 50 years 

when striking morphological changes in the VB are evident, 14• 17 the enzymatic collagen 

cross-links start to diminish. This decline can be caused by collagen breakdown, but more 

importantly the decline itself can contribute to the instability of the collagen network 

resulting in an increase in morphological changes in the elder VB. 
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Chapter 7 

Abstract 

The highly hydrated, almost acellular vitreous body of the human eye consists of only 0. 1 %  

macromolecules of which collagens are the most important for its matrix structure. With 

aging, the human vitreous undergoes a slowly progressive remodeling characterized by a 

gradual formation of collagenous condensations and liquefied spaces in the gel structure. 

The former can be the result of collagen synthesis, while the latter is an indication of 

collagen breakdown. This review describes the embryological and postnatal remodeling 

of the human vitreous matrix. Possible sites involved in the remodeling of vitreous 

extracellular matrix components, e.g. the ciliary body and the retina, are discussed. 
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I. I ntroduction 

The vitreous body (or vitreous) of the human eye is an almost acellular, highly hydrated 

(98-99% water) extracellular matrix located between the lens and the retina. It consists of 

just 0. 1% macromolecules. ' The most important macromolecules (see biochemistry) are 

the collagens2• 10 and the glycosaminoglycan, hyaluronan (HA}. 1• 1 1• 1 2  A collagen network of 

heterotypic fibrils (types II, V/XI, and IX) presumably maintains the gel structure and HA fills 

the spaces between these collagen fibrils and stabilizes the gel. 2• 1 3• 1 4  Other non collagenous 

macromolecules can also be involved in spacing, binding and linking of extracellular matrix 

(ECM) components. 1 3• 1 5  Since collagens are held responsible for the preservation of the gel 

structure, 1 3 these macromolecules are of primary interest. 

With aging, two morphological changes in the vitreous have been described: a 

progressive increase in fluid-filled areas (synchisis) 16• 18 and an increase in optically dense 

structures (syneresis). 1 9•24 As these morphological alterations progress, they may locally 

interfere with the passage of light and cause symptoms referred to as 'mouches volantes' 

or floaters. Finally, these processes may be followed by a posterior vitreous detachment 

(PVD), a separation between the vitreous cortex and the retina. In most eyes, PVD is 

not a serious condition, but it may induce real pathology, such as retinal tears, retinal 

detachment, intravitreal hemorrhage, and cystoid macular edema.25•27 Liquefaction 

is characterized by the replacement of vitreous gel by liquefied vitreous and generally 

starts in the central vitreous.22 The liquefied part is typically free of collagen fibrils28 and 

surrounded by optically dense structures or condensations.22 The (patho)physiological 

mechanisms underlying the morphological changes have not yet been clarified. In general, 

liquefaction is supposed to start with changes in the noncollagenous components of the 

matrix and to result in an aggregation of collagens. 1 3 • 1 4•22•28•30 In one theory, synchisis and 

syneresis are interpreted as expressions of matrix destabilization. 14 • 1 6•22 Based on more 

recent studies, an alternative hypothesis is postulated, in which breakdown of vitreous 

matrix (synchisis}3 1 would coincide with synthesis of vitreous collagen32•37 leading to the 

formation of dense structures (syneresis). This hypothesis is also in line with adult ECMs 

other than the vitreous (e.g. cartilage}, in which collagens are synthesized and broken 

down during matrix remodeling. 38•4 1  

This review will discuss the morphological changes of the vitreous and vitreoretinal 

interface of the human eye from a dynamic point of view. We will start with the embryologic 

development of the vitreous (2). Subsequently, observations on the postnatal vitreous 

(3) will be discussed. Finally, we discuss regions, cells, and processes possibly involved in 

lifelong vitreous remodeling (4,5). 
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2. T he embryonic vitreous 

In the earliest stages of the human embryo {4-5 mm stage or third to fourth week), 

evidence for vitreous formation is found when the neural ectoderm separates from the 

surface ectoderm in the optic vesicle. Fibrils or proteoplasmic protrusions, fill the narrow 

space between the lens vesicle and the inner retinal layer: the primordial vitreous.42 

In the lentiretinal space of the optic cup, the primary vitreous develops along 

with the hyaloid vasculature in the I 0- 13 mm stage {fifth week). It consists of ectodermal 

components, which are the fibrils produced by the inner layer of the future sensory retina 

and the posterior side of the lens vesicle. At this stage, it is a matter of debate whether the 

primary vitreous also consists of mesenchymal components, which enter posteriorly with 

the hyaloid vessels and anteriorly through the space between the anterior rim of the optic 

cup and the lens vesicle.1 • 1 1•42-45 The cells of the inner layer of the cup differentiate into an 

inner and outer neuroblastic layer, which both will develop into retinal neurons and glia 

whereas the outer layer will also form rods and cones.46-48 

Together with the closure of the optic fissure around the 14 mm stage {end of the 

sixth week), the development of the secondary vitreous {avascular vitreous) begins. 1 • 1 1 ·42•44 

In one theory, the secondary vitreous appears on the inside of the sensory retina pushing 

the primary vitreous and the hyaloid system forward and inward, except at the periphery 

and optic disc. 1• 1 1•42 ·44 In contrast to this theory of strict spatial separation, morphological 

evidence has been found that retracting hyaloid vessels may act as a scaffold along which 

fibers of the definite vitreous organize themselves. 24.49-53 Both in human and rabbit vitreous, 

the course of vitreous fibrils and lamellae can be retranslated into the course of the hyaloid 

blood vessels of the primary vitreous.49-52 This latter theory implies a gradual remodeling 

of the primary into the secondary vitreous. 

The secondary vitreous consists primarily of type II collagen and HA. 1 1 •44·54• 55 At 

the retina, processes of Muller cells start to unite and form the internal limiting membrane 

{ILM), which begins in the posterior pole. The ILM is not a surface of separation yet and 

Muller cells seem continuous with the vitreous fibrils. 1• 1 1 •42 The foot-plates of the Muller 

cells are supposed to be concerned in the synthesis of vitreous fibrils during the growth of 

the eye.42 Mesenchymal cells accompanying the hyaloid vessel, which grows in the vitreous 

as an arteriole giving off a complicated system of branches {vasa hyaloidea propria and 

tunica vasculosa lentis), may also contribute to the formation of vitreous.42 Around 40-

48 mm {ninth week) the maximum size of the hyaloid system is reached, the atrophy of 

the posterior vasa hyaloidea propria has begun and the primary vitreous has ceased to 
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grow. This is followed by degeneration of the tunica vasculosa lentis. 1 • 1 1 •42 The hyaloid 

artery persists much longer and elongates with the growth of the whole eye, because it 

is attached to the lens and to the center of the optic disc. At the place where primary 

vitreous meets with the secondary vitreous, possible transformations can be seen: the 

supposed canal of Cloquet or other central canals.42•44•56-58 Between 70-100 mm (fourth 

month), the tertiary vitreous or zonular system is produced at the level of the developing 

ciliary body by surface ectoderm and fibroblasts. 1 1•42 Around 240 mm (seventh month) the 

blood flow in the hyaloid artery ceases, followed by glycogen and lipid deposition in the 

endothelial cells, and, finally, cel ls in the vessel wal l  become atrophic and are phagocytozed 

by mononuclear phagocytes.1 • 1 1 •44•59 In general, at birth, all blood vessels have disappeared 

from the vitreous. The eye itself is then almost completely developed except for the 

macula, which reaches its adult configuration at 45 months.44•60-63 

During the embryological period, the human vitreous body is an active ECM that 

undergoes matrix remodeling - breakdown and synthesis of vitreous components - which 

results in the avascular and transparent vitreous at birth. 

3. T he postnatal vitreous 

A. Aging of the human vitreous 

At birth, the human vitreous has an ultrasonic length of I 0.48 mm and I 0.22 mm for males 

and females, respectively. Through the years, this difference is preserved. After fast growth 

in the first three postnatal years (around 3.5 mm), growth slows down and the vitreous 

is almost ful l-grown at the age of 13 years with measurements of 16.09 mm for males and 

15.59 mm for females.64•65 Within the vitreous body, (i) the basal vitreous, (ii) the vitreous 

cortex, (iii) the intermediate vitreous, and (iv) the central vitreous are recognized. The 

vitreous base is a three dimensional annular zone composed of dense bundles of col lagen 

fibrils, which firmly adhere to the retina and to the non-pigmented ciliary epithelium. 

The cortex surrounds the central matrix and adjoins the retina. From the cortex to the 

central vitreous, the concentration of col lagen fibrils decreases: from a high density in the 

cortex via an area with intermediate density to a loose-meshed network in the center. 1 9•2 3  

The central vitreous is the largest part and could still contain the canal of Cloquet, which 

represents the remnant of the embryonic hyaloid vasculature. 1 • 1 3  However, the existence 

of the canal of Cloquet as described above is doubtful. Several ink injection studies show a 

distinct morphology of transvitreal channels in the adult eye, i.e. central canal(s) which end 
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behind the ciliary body. 56-58 Furthermore, evidence is found that the embryonic and early 

postnatal Cloquet's canal disappears around the third postnatal month.23 

During postnatal development, vitreous remodeling continues. This affects overall 

matrix structure and also vitreoretinal attachments at the vitreous base area. From the 

age of four onwards, the first evidence for synchisis is described1 6  and simultaneously, 

syneresis occurs. 1 9-23 Both processes progress slowly with aging and it was reported 

in a post-mortem study that 45% of the persons between 60-69 years old had at least 

50% liquefaction. 1 8 As a consequence, spaces and condensations have been found. Most 

tissue condensations found in the vitreous cortex follow a course parallel to the retina, 

while some follow a course perpendicular to the retina.23•66 In the intermediate vitreous, 

condensations come from the vitreous base. They are changeably described as tracts, 1 9•67 

septa, 56•68 lamellae, 23•69•70 membranes, 1 9•23 •7 1  and fiber bundles.72•73 These condensations 

appear to be collagenous in origin.58•73 With aging, they become more noteworthy and 

increasingly irregular.22•67 Furthermore, in the anterior vitreoretinal interface, increasing 

intraretinal collagen connected to the vitreous collagen and widening of the vitreous base 

are described.66•74•75 At the same moment, posterior vitreoretinal attachments weaken.76 

Finally, all these processes may be followed by a PVD, which is particularly associated 

with senescence and the amount of liquefied spaces, 17•20 and less with myopia, which 

mainly causes an earlier onset,25 ·77.78 female gender, 17 ischemia of Muller cells,79 and several 

metabolic disturbances, e.g. diabetes mellitus.79-8 1 

B. Biochemistry of the vitreous 

The vitreous has a low percentage of macromolecules (0. 1 %) which consist of collagens, 2- 1 0 

glycosaminoglycans (GAGs: such as HA), 12 proteoglycans (PGs: such as versican), 30•82•83 

glycoproteins (GPs: such as opticin), 1 3•84•85 and other noncollagenous structural proteins 

(e.g. fibrillin).1 3 •84•86 •87 Collagens form a network of heterotypic fibrils (types II, V/XI, and IX) 

which presumably maintain the gel structure.2• 1 3• 1 4  Collagen types present in the vitreous 

are types 1 1 ,2•3 V/Xl,4-6 Vl,6•88 and IX.3·5- 10 The general functions of GAGs, PGs, GPs, and 

noncollagenous structural proteins are spacing, binding, and linking of ECM components.1 3• 1 5  

All GAGs, except HA, are synthesized attached to a protein core and this results in a 

PG. The most important GAG in the human vitreous is HA, while chondroitin sulphate 

proteoglycans (such as versican and type IX collagen) and heparan sulphate proteoglycans 

represent minor components (agrin). 1 3 •83 Opticin an ECM glycoprotein and member of 

the family of the ECM small leucine-rich repeat protein/PGs is able to bind GAGs and 

collagens, which suggest a role in stabilizing vitreous gel structure and in maintaining 
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vitreoretinal adhesion. 13 •89 Another GP is link protein that stabilizes the binding of versican 

to HA.83 Important non-collagenous macromolecules are: (i) fibrillin- 1 ,  which is de major 

component of fibrillin-containing microfibrils present as a third type of fibrillar structure 

{together with heterotypic and type VI collagen fibrils), 1 3• 1 5  (ii} V IT I, which is a collagen 

binding macromolecule and is an important structural molecule in the vitreous, and (iii} 

cartilage oligomeric matrix protein.13 

C. Cells in the vitreous and vitreoretina/ interface 

The adult vitreous body contains only a small number of cells predominantly located in 

the vitreous cortex. Hyalocytes represent approximately 90% of the cells and fibroblasts 

the other I 0%. In the vitreous base, hyalocytes have the highest cell density, followed by 

the posterior pole and the lowest density at the equator.90•9 1  There is also a preferential 

location of cells along retinal blood vessels.90 Hyalocytes are 1 0- 1 5  µm in diameter with a 

lobulated nucleus and depending on their activity and location, these cells can be round, 

oval, spindle-shaped, or flattened.92 •93 These cells contain a well-developed Golgi complex, 

a moderate amount of mitochondria, basophilic Periodic Acid Schiff (PAS)-positive granules 

(0.2-2.0 µm), Iysosomes, and smooth and rough endoplasmatic reticulum phagosomes. 1•92 In 

hyalocyte granules, several substances are found: GAG, GP, nucleic acid, acid phosphatase, 

beta-glucuronidase, and alkaline phosphatase.94•95 

In the posterior vitreous cortex, laminocytes are found.96 These cells are 

predominantly present at the ILM and absent from the rest of the vitreous. They could be 

involved in maintaining the adhesion between the posterior vitreous cortex and the ILM. 

Fibroblasts are localized in the cortex at the ciliary processes, vitreous base 

and adjacent to the optic disc.97•98 They differ form hyalocytes by the presence of 

longer extensions (with a maximum length of 260 µm) and the absence of PAS-positive 

granules. 90,99, i oo 

Muller cells are radially oriented macroglia that traverse the retina from the 

outer limiting membrane to the vitreal border, the ILM, where they adhere with their 

endfeet. They have many local functions: they stabilize the retinal architecture, provide an 

orientation scaffold, give structural and metabolic support to retinal neurons and blood 

vessels, and prevent aberrant photoreceptor migration into the subretinal space.1 0 1 • 1 02 In 

vivo and in vitro, Muller cells can produce and express several cytokines, growth factors 

and receptors. 1 02- 1 04 It has been suggested that they are responsible for the production 

of vitreous and ILM collagens during growth, in adulthood and in culture.2•42•47• 1 05- 1 1 0 

Furthermore, Muller cells are also able to phagocytoze several substances such as pigment 

and melanin granules, erythrocytes, foreign particles and type II collagen. 1 1 1 - 1 1 5 
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D. The vitreoretinal interface 

The vitreoretinal interface is the area of contact between the vitreous body and the retina. 

Centrifugally, the interface consists of vitreous cortex, retinal ILM, and Muller cell endfeet. 

The posterior vitreous cortex is thinned over the optic disc and over the macula. 1 3•24•99 

A prepapillary hole can sometimes be visualized clinically when the posterior vitreous is 

detached from the retina (Weiss' ring). Strong vitreoretinal adhesions have been described 

at the equator,68 at the macula, 1 1 6 at the optic disc, 1 1 6• 1 1 7 and over retinal blood vessels. 1 18 In 

the anterior vitreoretinal interface, the strong vitreoretinal adhesions extend themselves 

posteriorly with aging. Newly formed sublaminar collagen packages are responsible for 

this.66.74•75 Muller cells could play a role in their formation. 1 1 0 

4. Rem odeling of the vitreous m atrix 

In the case of collagen remodeling in other ECMs than the vitreous (e.g. gingiva and 

cartilage) collagens undergo turnover (synthesis and breakdown).38-4 1 Synthesis of fibril

forming collagens (e.g. type 1 1 )  occurs intracellularly and in general procollagen molecules 

are secreted into the ECM, where the C- and N-terminal propeptides are removed, 

collagen fibrils assemble and collagen cross-link formation occurs.40• 1 1 9• 1 2° Conversely, 

collagen breakdown under physiological conditions follows mainly an intracellular route.40 

Under pathological conditions, when large amounts of collagen have to be broken down in 

a relatively short interval (i.e. inflammation), extracellular breakdown is more important 

with a main role for matrix metalloproteinases (MMPs). 12 1 • 122 

In adult human and mammalian vitreous, the finding of procollagens, immature 

collagen cross-links, and a late maximum of mature enzymatic collagen cross-links indicate 

an ongoing collagen synthesis with aging.32-36• 1 23 In addition, two recent morphological 

TEM-studies speculate about the involvement of extracellular enzymes in breakdown of 

vitreous matrix.3 1 • 1 24 The first describes collagen fragments near liquefied spaces in the 

absence of cells. 3 1 The other hypothesizes that the age-related loss of type IX collagen 

from the surface of vitreous fibrils is caused by MMP-2. 124 

Extracellular enzymes, such as MMPs, are able to degrade collagens, although their 

role in physiological steady state conditions remains unclear.40 In human nonpathologic 

vitreous, several MMPs have been demonstrated: MMP- 1 (collagenase I), (pro-) MMP-2 

(gelatinase A), MMP-3 (stromelysin-1 ), MMP-8 (collagenase 2) and MMP-9 (gelatinase B). 12 5 - 1 28 

MMP- 1 and MMP-8 are able to cleave type II collagen and MMP-2 can cleave types V and 
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XI collagen and type IX collagen fragments.129 Another extracellular enzyme plasmin(ogen) 

which has also a potential proteolytic activity in human vitreous increases significantly with 

aging.130 

Besides extracellular enzymes, reducing sugars, oxoaldehydes, oxidized lipids 

and reactive carboniles can react with long-lived vitreous proteins and form advanced 

glycation end products (AGEs).13 1 AGEs in the presence of iron are able to degrade HA 

by free radical formation and thus contribute to the degradation of vitreous matrix.81 

These AGEs may thus be important with aging and even more so in patients with diabetes 

mellitus. 

Both collagen breakdown and synthesis may be in equilibrium since the total 

amount and percentage of collagen in the human vitreous remain stable during life.16· 1 23 Since 

the accumulation of pentosidine in time can be used to estimate a collagen turnover rate, 

with a higher pentosidine accumulation indicating a lower turnover rate, we hypothesize 

that the aging human vitreous has a higher collagen turnover than articular cartilage. 1 32.m 

Over a time period of 50 years, the estimated increase of pentosidine in cartilage is  about 

six times, while vitreous pentosidine increases approximately two times. 1 32•133 Collagen 

turnover in cartilage is an established fact with an estimated half-life of cartilage collagen of 

117 years.'32 In the case of a much lower half-life of vitreous collagen, this is a very strong 

indication of collagen turnover in the vitreous. 

Besides collagens, the amount of non-collagenous proteins (e.g. GPs and PGs) 

increase at higher rate than the amount of collagens. 1 23 An increase in total protein 

concentration with aging can be related to a progressive leakage of serum proteins into 

the VB.2 The concentration of HA increases during growth till 20 years, remains fairly 

constant till 70 years, when the concentration again rises.16 

To recover sites involved in collagenous matrix remodeling in the vitreous, 

we extracted possible sources of synthesis and breakdown of collagens and other 

macromolecular components from literature: ( I) lens,37·134-137 ( 1 1 )  optic disc, 136·137 (I l l) 

ciliary body,?1 .a4,a6 ,134,136- l43 ( IV) retina,42,66,?s.as. 10a.1 10.11s.134,136,1J?, 1 J9,142,144_1s3 ( V )  cells in the 

vitreous,29·93·95·97·144·154-157 ( V I) stem cells or progenitor cells,158- 176 and ( VI I) extraocular 

factors.130.133, 177- 179 
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5 .  Possible sites involved in collagenous matrix remodeling 

I .  Lens 

In the mouse lens, type II collagen mRNA is expressed in the embryonic and adult period. 1 34 

In the same animal, high mRNA levels of type IV collagen were found in the embryonic 

lens. ' 35 In the fetal lens of the chick, mRNA of several basal membrane proteins (nidogen, 

perlecan, and type IV collagen) was detected.37• 1 36• 137 

II. Optic Disc 
During chick embryogenesis, types IV and XVI I I  collagen, agrin, and laminin yl originate 

form cells of the optic disc and optic nerve. 1 36• 1 37 

Ill. Ci/iary Body 

Smith7 1  was probably the first to describe that the fluid of the vitreous humor was mainly 

secreted by the ciliary body. Since then, this region is often discussed as a producer of 

vitreous macromolecular components in the embryonic and postnatal period.'38 In the 

embryonic chick, mRNA for type II collagen is initially present in the presumptive retina 

as seen with in situ hybridization. By day 7 it becomes also localized in the presumptive 

ciliary body, but as soon as the ciliary body has formed it is only limited to that area. 142 Type 

IX collagen mRNA is predominantly found in the tissue that forms the ciliary epithelium 

and in the ciliary body. 1 42• 1 43 Other macromolecules of which mRNA is expressed in that 

area during chick embryogenesis are type XVIII collagen, nidogen, agrin, and laminin f31 

and yl . 1 36• 1 37 In both the embryonic and adult mouse eye, type IX collagen mRNA is mainly 

found in the ciliary body region. 1 34 Type II collagen mRNA is also localized at that place 

in the developing and young mice, but type IV collagen mRNA only in the embryonic 

period. 1 35. 139 Several studies demonstrated synthesis of GPs in the ciliary body region of 

adult rabbit eyes.84•86• 140• 1 4 1 Via in situ hybridization in the adult mouse, expression of opticin 

is specifically localized in the nonpigmented ciliary epithelium.'34 

Production of macromolecular components of the I LM (such as type XVIII collagen, 

nidogen, and laminin) by the ciliary body implies that ILM components traverse the vitreous 

cavity to assemble on the foot-plates of the Muller cells. At the time when the chick retina 

has its highest growth rate, mRNA of these matrix proteins is expressed in the ciliary body 

region and, at the same time, these matrix proteins have their highest concentration in the 

vitreous. 37 Shortly after reaching peak concentrations, the concentrations drop markedly 

and the lowest levels are seen in the adult vitreous body. 37 
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IV. Retina 

In the human embryo, Mul ler cel ls aresupposedto be concerned with the synthesis of vitreous 

fibrils during growth of the human eye, although mesenchymal cel ls can also contribute to 

the formation of vitreous.42 In the early embryonic stages, chick retina synthesizes large 

quantities of vitreous col lagen, which is diminished in later development.142•144 Synthesis of 

type II col lagen by developing chick retina is also confirmed in vitro.14s In the same animal, 

short, transient mRNA expression of type IV col lagen and laminin yl and a continuous 

expression of agrin was found.136 In the neural retina of mouse embryos and neonatal and 

adult canine retina, expression of type II collagen mRNA is observed.146•147 In the mouse, 

type II col lagen mRNA is found in the ganglion cel l  layer of the embryonic retina as wel l 

as the young retina. 1 39 COL9AI expression is seen in both the embryonic and adult mouse 

retina.134•1s2 MRNA of type IV col lagen is only weakly detected in embryonic mice.13s Apart 

from collagens, agrin mRNA is continuously present in ganglion cel ls of the embryonic 

chick retina. 1 37 The human embryonic retina, probably its Mul ler cel ls, produces HA from 

1 2  week's gestation onwards.148 In adult eyes, opticin may also be produced by the human 

retina, because it expresses opticin mRNA.8s 

Furthermore, there are strong indications that the retina synthesizes (postnatal) 

collagens by: (i) the repair and production of the ILM, (ii) a disturbed growth of the 

vitreous after retinal damage, (iii} the presence of col lagen mRNA, and (iv} the presence 

of intraretinal type II col lagen. Firstly, retinal Muller cel ls might be able to synthesize type 

IV collagen (an important component of the ILM).' °8• 149 Secondly, the synthesis of vitreous 

matrix by retinal cel ls is disturbed in sheep after photocoagulation of the retina, which 

is characterized by the absence of vitreous growth over the damaged retinal areas.1so In 

rabbits with retinal ablation, destruction of vitreous producing cel ls in the retina could also 

be the cause of a diminished eye growth.1 s 1 In addition, freshly isolated human retinectomy 

samples from the equatorial area contain mRNA of types I-VI I, IX, XI ,  and XVI I I  col lagen. 1 s3 

Finally, in the peripheral retina, a net synthesis of vitreous col lagen has been described 

with a possible role for Muller cel ls.66•7s 

The role of the retinal Muller cel l  can be twofold in the interactive process of 

a net accumulation of intraretinal col lagen. On the one hand, these cel ls can be involved 

in the production of type II col lagen.1 1 0 On the other hand, Mul ler cel ls can be capable of 

specific phagocytosis and thus breakdown of type II collagen. 1 1s 

V. Cells in the vitreous 

Hyalocytes may be involved in turnover of vitreous components. On the one hand, these 
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cells synthesize embryonic chick vitreous collagen in the late stages of development. I 44 

In addition, hyalocytes are indicated as postnatal producers of HA.29• I56 Cultured pig 

hyalocyte-resembling cells synthesize HA and express type II collagen. I 57 On the other 

hand, these cells are also held responsible for the degradation of GAGs, GPs and nucleic 

acids.95• I54 Hyalocytes of guinea pigs could have phagocytic and synthetic functions of 

several substances.93 

In general, fibroblasts are important in synthesis and degradation of collagenous 

proteins in soft connective tissues.I 80 In the vitreous, fibroblasts -only I 0% of the vitreous 

cells- could be the synthesizing cells of early postnatal collagen. I 55 In young and adult eyes, 

collagens were found at the membrane and in the cytoplasm of vitreous fibrocytes.97 The 

presence of collagens was attributed to both catabolic and synthetic mechanisms. 

VI. Stem cells or progenitor cells 

The presence of stem cells in or near the vitreous is interesting because of the phenotypic 

plasticity of these cells, which means that these cells have the potential to differentiate 

upon the right stimulus into cells with more specialized functions. In potency, these cells 

can become matrix-synthesizing cells. 

In the last decades, the interest in retinal stem cells and progenitor cells has 

grown to increase knowledge about development, regeneration and potential therapies. 

In general, stem cells are pluripotent and capable of self-renewal, which means that 

these cells have phenotypic plasticity before and after cell division and that daughter 

cells must eventually differentiate, losing their identity as stem cells. I 73 From this point 

of view, the finding of stem cells and progenitor cells in organ tissues may indicate a site 

for local postnatal regeneration (repair and remodeling) and for therapeutic intervention 

(transplantation). 

In fish and amphibians, the retina continues to grow along with the eye throughout 

life by adding new cells of all types from the ciliary marginal zone (CMZ), a region at 

the peripheral edge of the retina. The retinal margin contains a gradient with the most 

primordial cells residing in more anterior regions compared with more mature cells that 

reside more posteriorly, adjacent to the retina. I69 Other possible retinal stem cells in 

fish and amphibians are the retinal pigment epithelial cells, the rod progenitors and the 

Muller cells. I 67 In chickens, non-pigmented cells in the ciliary body are capable of producing 

neurons in vivo in response to intraocular growth factors. 170•172 In addition, chick Muller 

cells can also transdifferentiate into retinal progenitor cells under certain conditions and 

become a source of neural regeneration. 1 64• I 66 
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In mammals, the retina is almost completely formed at birth in contrast to fish 

and amphibians.160 In the adult rat161 •175 and mouse eye, 159 the capacity of (pigmented) cells 

from the ciliary body to generate new neurons in vitro was described in response to 

fibroblast growth factor-2 (FGF2) and other growth factors. In the postnatal rat retina, 

similar mitotically quiescent cells respond proliferatively to growth factors and these cells 

are capable of differentiation along neuronal and glial lineages.158 However, after a longer 

postnatal time these cells undergo a progressive decrease in number and proliferative 

potential probably due to a temporal decline of proliferative signaling (e.g. FGF2). The 

ciliary epithelium of adult rabbits contains also retinal progenitor (stem) cells and fate

restricted progenitor cells (glial progenitor).163 After optic nerve transection, progenitor

like cells of the ciliary body respond in the mouse, 1 68 while Muller cells express nestin, an 

intermediate filament marker for neural progenitor cells, in the rat. 17 1 Rat Muller cells can 

regenerate retinal tissue under neurotoxic conditions.176 In the adult human retina and 

in epiretinal membranes, some neurons and glia cells stain positively for nestin. Nestin 

positive cells are found in the anterior retina at the ora serrata and, in large numbers, in 

epiretinal membranes. The clear presence of nestin positive cells suggests that a population 

of progenitor cells from normal adult human retina may differentiate to form retinal scar 

tissue.162 In culture, human Muller cell lines exhibit neural stem cell characteristics.174 

VII. Extraocu/ar factors 

Extraocular factors may be involved in the process of vitreous liquefaction, such as: (i) 

high molecular weight fraction of serum, (ii) light, and (iii) female gender. Firstly, the high 

molecular weight fraction of serum can induce gel contraction as seen in PVD under 

pathological circumstances (e.g. proliferative diabetic retinopathy) possibly caused by 

altered collagen-collagen interactions. 177 In addition, vitreous liquefaction could be induced 

by light as a result of active oxygen species, which likely affect HA.179 Exposure to light in 

combination with AGEs can also decrease the molecular weight of HA.178 Finally, female 

gender is a risk factor for the development of PVD. 1 7  Whether the higher increase in 

pentosidine (an AGE) in female compared to male vitreous is involved, needs further 

evaluation. 1 33  
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6. Overal l  conclusion 

The highly hydrated, almost acellular vitreous consists of only 0. 1 %  macromolecules of 

which collagens are the most important building blocks. Remodeling of the human vitreous 

is a slowly progressive process characterized by a gradual formation of collagenous 

condensations and liquefied spaces in the gel structure. Together with the strong 

vitreoretinal attachments in the anterior vitreoretinal interface and the weakening of the 

posterior vitreoretinal attachments, these processes could eventually lead to PVD. In this 

review, we provide evidence for the dynamic process of vitreous matrix remodeling, in 

which collagen production leads to the formation of collagen condensations, 32-36  while 

at the same moment matrix degeneration causes the formation of liquefied spaces. 31 The 

results on enzymatic collagen cross-links with aging confirm the dynamic latter theory. 1 23 

For postnatal collagen synthesis, the retina and the ciliary body are the most likely 

candidate sources of human vitreous collagen. Both regions display potential to synthesize 

macromolecules at different time points in different animals. The peripheral human retinal 

cells, probably Muller cells, are able to produce vitreous collagen.66•75• 1 1 0 However, the 

exact location still needs to be determined. 

For postnatal vitreous collagen breakdown, extracellular enzymes (e.g. MMPs 

and plasmin) are likely candidates, since cells are virtually absent from the vitreous and 

not found at all near liquefied spaces. Extracellular enzymes can be synthesized locally. 

Extracellular enzymes (e.g. MMPs) can be present in an inactive form (e.g. pro-MMPs), 

which needs stimulation for activation. In addition, proteolytic enzymes can be balanced 

by neutralizing substances (such as tissue inhibitors of metalloproteinases). A shift or 

misbalance in the level of inactive versus active extracellular enzymes can result in a net 

breakdown of matrix. The influence of extraocular factors and the effect of AGEs on 

collagen breakdown still need to be determined. 

Knowledge about structures, cells and enzymes involved in the remodeling process 

of the human vitreous and vitreoretinal interface could lead to possible interventions in 

this process in the future. In a high risk population for PVD and retinal breaks (such as 

people with high myopia}, selective inhibition of collagen producing (Muller) cells could 

diminish the amount of or weaken peripheral vitreoretinal attachments. In addition, by 

stimulation of extracellular enzymes involved in breakdown of vitreous collagen, collagen 

breakdown could be enhanced and thus liquefaction induced. The latter could result in an 

earlier PVD and thus ease a possible vitrectomy in young people. 
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Chapter 8 

Chapter I is the introduction of this thesis. 

The vitreous body (or vitreous) of the human eye is an almost acellular, transparent loose

meshed connective tissue consisting mainly of water (99%) and of just 0.1 % macromolecules, 

such as glycosaminoglycans (e.g. hyaluronan), proteoglycans, glycoproteins (such as opticin), 

collagens, and noncollagenous structural proteins (e.g. fibrillin). The most important 

macromolecules are the collagens, which form a network of heterotypic fibrils (types II, 

V, IX, and XI) and presumably maintain the gel structure. Collagen types present in the 

vitreous are types II, V, V I, IX, and XI. Vitreous structure has been studied in some detail, 

but there is no absolute distinctness in anatomy in the literature, which might be explained 

by (i) the high water content, (ii) the use of different preservation methods, and (iii) the 

variable visualization techniques. The presence and course of intravitreal structures (e.g. 

lamellae, channels, and cisterns) are still discussed. 

During embryonic development, the vitreous matrix is continuously processed. 

Postnatally, the vitreous is subjected to progressive morphological changes: a progressive 

change in the volume of liquefied spaces (synchisis) and an increase in optically dense 

structures (syneresis). The precise mechanisms underlying the age-related changes 

and posterior vitreous detachment (PVD) have still to be elucidated. Currently, two 

(patho)physiological mechanisms are described. In the first theory, synchisis and syneresis 

are the structural manifestations of a destabilization of the vitreous matrix, while, in the 

other theory, a continuous remodeling is taking place consisting of breakdown of vitreous 

matrix (synchisis) coinciding with synthesis of vitreous matrix components (syneresis). 

This thesis tries to find and add evidence to the dynamic view of collagen 

turnover (synthesis and breakdown) in the adult and aging human vitreous by studying 

the vitreoretinal interface and the vitreous. We study (i) the vitreous and its collagenous 

interaction with the vitreoretinal interface (Ch. 2, 3), (ii) retinal Muller cells to determine 

their possible role in collagen synthesis and breakdown (Ch. 4, 5), and (iii) enzymatic 

collagen cross-links with aging (Ch. 6). 

In chapter 2, the vitreoretinal interface, which is the area of contact between the 

vitreous body and the retina, was evaluated in the pre-equatorial and equatorial area. 

This region is clinically important, because the majority of retinal defects induced by PVD 

are located there. Whether a PVD will induce interface pathology depends on the nature 

of vitreoretinal adhesions and the thickness of the ILL (internal limiting lamina). In the 

vitreous base area, which is known for its extremely strong attachments, several variations 

in the vitreoretinal interface have been described. These consist of (i) direct insertions 
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of vitreous fibrils into and between adjacent Muller cells and (ii) sublaminar collagenous 

fibers expanding into collagen networks upon aging. 

By immuno-transmission electron microscopy (immuno-TEM), we found 

intraretinal collagen packages positive for type II collagen. The distance of these packages 

to the ILL ranged from O to 44 µm. In most donor eyes, we found retinal Muller cells in close 

vicinity of the type II collagen packages. Furthermore, macrophages were present in the 

vitreous cortex and retina adjacent to these packages. We also observed a large variability 

in the structure of the vitreoretinal interface. We found vitreous lamellae perpendicular 

and parallel to the ILL, vitreous lamellae fusing with the ILL, direct vitreoretinal adhesions 

without ILL interpositioning, and focal interruptions in the ILL. Our findings expanded on 

previous scanning electron microscopy and TEM studies on the vitreous. lmmuno-TEM 

revealed the nature of intraretinal collagen (type I I) and of cells (macrophages) located 

near cell debris and demonstrated interruptions in the ILL (type IV collagen) and the 

location of retinal Muller cell processes. 

The occurrence of collagen turnover in this area of the vitreoretinal interface 

resulting in a net synthesis of sublaminar collagen networks has been made plausible by 

others. Our data are in support of this theory, even though we are not able to show 

age-related phenomena due to our limited sample size. It is unclear what causes this 

remodeling at the vitreous base and equator. The net result of intraretinal collagen 

synthesis could occur in response to forces exerted upon this area, i.e. most likely vitreous 

movements and vitreoretinal tractional forces induced by eye movements, in order to 

strengthen this area. 

We hypothesize that this remodeling gradually results in the formation of tighter 

vitreoretinal adhesions over time. Paradoxally, the anterior vitreoretinal interface will thus 

become more vulnerable for retinal tearing and detachment in the case of a PVD. The 

possible role of Muller cells in the synthesis and/or breakdown of intraretinal collagens will 

be discussed in chapters 4 and 5. 

Chapter 3 is an immunohistochemical light microscopy (LM) study on the presence 

and distribution patterns of various collagens in the human retina at the posterior pole, 

the equator and the pre-equatorial area, since collagens are important macromolecules 

contributing to vitreoretinal adhesion and the vitreoretinal interface. Furthermore, the 

information about the distribution of collagens can contribute to our understanding of 

the (patho)physiology of a spontaneous, mechanical, or enzymatically induced PVD. We 

used four fresh equatorial retinectomy samples to detect mRNA of types I-VI I, IX, and XI 
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collagen, which appeared to be present in all retinectomy samples. 

By immunohistochemistry, the vitreous cortex was clearly positive for type II 

collagen and variably for types V, IX, and XI collagen. The ILM (internal limiting membrane) 

was clearly positive for types IV, V I, and XVII I  collagen. Retinal blood vessels contained 

types I-VI and XVI I I  collagen, whereas types V and IX collagen were variably present. We 

found multiple circular and dotted spots positive for type V II collagen in several retinal 

layers. Type V II collagen positive spots were seen to increase in number and distribution 

area towards the posterior pole. 

New findings were the presence of type II collagen in human retinal vasculature, 

the presence of type VI collagen in the ILM, and the presence of type V II collagen in 

several retina layers. The presence of type II collagen is interesting in the light of (i) strong 

interconnections between vitreous and retinal vasculature and (ii) the possible source of 

the type II collagen. The presence of mRNA COL2A I in the human retina could indicate 

the retina as a possible production place of type II collagen. The producing cell of type 

II collagen has still to be established, but Muller cells are good candidates, since they 

are attached to the retinal vasculature and ILM and their endfeet are closely related 

to sublaminar intraretinal type II collagen (Ch. 2). Furthermore, these cells are able to 

produce type II collagen in vitro (Ch. 5). 

Type VI collagen has a predominant role in linking cells and matrix macromolecules. 

Based on the ubiquitous presence of type VI collagen at the ILM, we conclude that the 

entire vitreous is likely surrounded by this type of collagen, which thus could mediate an 

overall anchoring between the ILM and vitreous cortex. Type XVI I I  collagen can also act 

as part of an anchoring complex between the vitreous fibrillar collagens and the ILM. In 

addition, we found a condensed appearance of type V II collagen, an anchoring fibril, in 

the retina. This is a completely new finding and its intraretinal location and distribution 

pattern are surprising. Its function at this site has yet to be established. 

In conclusion, the currently described distribution patterns of different collagen 

types in the human vitreoretinal interface emphasize the possible role of collagens in 

connecting the vitreous cortex to the retina. 

Chapters 4 and S discuss the role of human retinal Muller cells in breakdown (phagocytosis) 

and synthesis of collagens in vitro, respectively. Muller cells are radially oriented macroglia 

that traverse the retina from its inner (vitreal) border to the outer limiting membrane. In 

addition, these cells are the principal glial cells in the retina and have many local functions 

such as stabilization of the retinal architecture, metabolic support to surrounding cells, 
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prevention of photoreceptor migration, phagocytosis of several substances, and production 

of cytokines, growth factors and receptors. Based on our previous immuno-TEM findings 

(Ch. 2), Muller cells could be involved in collagen synthesis and/or breakdown. A possible 

role in the production of vitreous macromolecules was suggested during growth and in 

adulthood based on morphological studies, while it was unknown whether these cells had 

a role in phagocytosis of collagens. To study their possible role in collagen turnover, we 

used a cell culture model. 

In chapter 4, spontaneously immortalized human retinal Muller cells (MIO-MI)  

were exposed to collagen-coated fluorescent latex beads to study their role in phagocytosis 

of collagens. The focus was on collagen types of the vitreous and the ILL, types II and IV, 

respectively. Latex beads were coated with types I, II, and IV collagen and bovine serum 

albumin. Human fibroblasts served as control cells. All cells were exposed to coated latex 

beads for 2, 12, 24, and 48 hours. In order to influence the process of phagocytosis, we 

added cytochalasin B and anti-integrin subunits al, a2, and Bl to Muller cells. Phagocytosis 

was evaluated by flow cytometry, TEM, and confocal microscopy. We found that Muller 

cells kept their main characteristics in vitro. Comparing all experiments, cultured Muller 

cells phagocytozed beads coated with type II collagen better than beads with another 

coating. TEM and confocal microscopy showed internalized beads. The phagocytosis of 

all types of beads by Muller cells is about 10 times lower compared with fibroblasts. In 

our model, we could not influence phagocytosis of type II collagen-coated beads by the 

addition of cytochalasin B and anti-integrin subunits. Based on the low phagocytic capacity 

of this Muller cell line, we speculate that Muller cells are possibly involved in the slow 

process of vitreoretinal remodeling in adult human eyes. 

Chapter 5 evaluates the in vitro capacity of the human Muller cell line (MIO-MI) 

to synthesize types I-VII, IX, XI, and XVII collagen. Type XVII collagen is not related to the 

vitreoretinal interface and was used as a negative control. In this study, we demonstrated 

the capacity of Muller cells for collagen production by RT-PCR, their cytoplasmic expression 

of collagens by immunocytochemistry and their capacity to secrete collagens into the cell 

medium by Western Blotting. 

Cells were cultured to confluence and fixed on the culture plate or harvested and 

analyzed. Cultured Muller cells kept their main characteristics and were capable of collagen 

synthesis, except for type XVII collagen. Muller cells expressed mRNAs coding for types 

I-VII, IX, and XI collagen. At the protein level, these collagens were present in the cytoplasm 

as detected by immunocytochemistry with LM. WB analysis of the cell extracts and of the 

medium in which the cells had been cultured confirmed the intracellular production and 
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demonstrated that types I-VII, IX, and XI collagen were also secreted into the medium. 

Thus, Muller cells could synthesize those collagens that are found in their natural 

vicinity (vitreous, ILL, and retina). In theory, the in vitro capability of Muller cells to 

produce the above-mentioned collagens might adduce support to previously described 

morphological findings in the embryonic period consisting of Muller cells' capacity to form 

collagens of the vitreous and ILL. Furthermore, the collagen production by these cells 

could fit the theory of turnover of postnatal vitreous collagen. Finally, Muller cells can 

contribute to the formation of epiretinal membranes, since they represent one of the cell 

types observed in these membranes and collagens identified therein are consistent with 

those found in our study. 

Chapter 6 is concerned with the role of the mature enzymatic collagen cross-links, 

hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), in the adult and aging human 

vitreous body ( VB). The pyridinoline cross-links form the last enzymatic step in collagen 

maturation. Briefly, collagen is synthesized intracellularly and secreted into the ECM as 

procollagen. After removal of the C- and N-propeptides, the molecules can aggregate 

into fibrils, which are stabilized by the formation of enzymatic intermolecular and/or 

intramolecular cross-links. They provide physical and mechanical strength to the collagen 

network and thus contribute to its integrity. 

In this study, we used human eyes (n= l43) from 119 donors with no known 

ophthalmic disorders. All VBs were freeze-dried before high performance liquid 

chromatography analysis. In the analysis of paired eyes (n=24), right and left eyes showed 

a high correspondence in all tested variables. 

Age-related phenomena were analyzed in single eyes (n= 119). Vitreous wet 

weight appeared to increase until 35 years and to decrease significantly thereafter, while 

VB collagen content only declined significantly after 50 years. The Hyp/Pro ratio showed 

a significant decrease with aging, implying a relatively higher increase in the amount of 

non-collagenous proteins compared to collagens. The percentage of collagen remained 

constant over time. Mature enzymatic collagen cross-links showed an increase until 50 

years and a decline thereafter. This increase should be attributed primarily to HP, since this 

is the most abundant collagen cross-link and the HP/LP ratio does not change significantly 

with aging. 

The increase in the enzymatic cross-links per TH could be explained by the 

formation of enzymatic cross-links from the processing of type II procollagen present in 

the VB. The decline after 50 years occurs at an age at which morphological changes in 
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the VB become more prominent. This could be clarified by breakdown or loss of col lagen 

cross-links, which is supported, in this study, by the decrease in collagen content after 50 

years. 

In conclusion, our results on enzymatic col lagen cross-links can contribute to 

the insight in the age-related processes synchisis and syneresis in the concept of collagen 

turnover. The accumulation of col lagen cross-links until 50 years is an indication of (ongoing) 

col lagen maturation, which in its turn can indicate an ongoing col lagen synthesis. At the 

age of 50 years when striking morphological changes in the VB are evident, the enzymatic 

col lagen cross-links start to diminish. This decline can be caused by col lagen breakdown, 

but more importantly the decline itself can contribute to the instability of the collagen 

network resulting in an increase in morphological changes in the elder VB. 

In Chapter 7 we discuss the relevance of our results in a review on remodeling of the 

human adult vitreous and vitreoretinal interface as a dynamic process. 

Our results support the concept of col lagen synthesis and breakdown in the aging 

vitreous and vitreoretinal interface. Furthermore, we describe the presence and location 

of several different col lagen types in the human retina. Some of these col lagens (such as 

type V I, V II, and XVI I I )  are possibly involved in the vitreoretinal attachment. 

With aging, the anterior vitreoretinal interface is remodeled by an increase in 

sublaminar type II col lagen deposition and an increase in vitreoretinal adhesions. Retinal 

cel ls, presumably Muller cel ls, are likely involved in this process. In the mean time, the 

vitreous matrix differentiates with the formation of dense col lagen structures, while a 

process of matrix degeneration results in liquefied spaces. Our results on mature enzymatic 

col lagen cross-links support this theory by the finding of col lagen maturation til l  50 years 

and col lagen breakdown thereafter. 
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Chapter 9 

Hoofdstuk I vormt de introductie van het proefschrift. 

Het glasachtig lichaam (glasvocht) van het menselijk cog is een heldere gel, die de ruimte 

tussen de lens en het netvlies (retina) vult (zie "vb" in figuur I uit hoofdstuk / ). Het glasvocht 

is een transparant losmazig bindweefsel, dat voornamelijk bestaat uit water (98-99%), 

zouten en kleine moleculen ( 1%) en slechts 0.1% bouwstenen in de vorm van grote 

moleculen. Voorbeelden van deze grote moleculen zijn proteoglycanen (bijv. hyaluronan; 

HA}, glycoprote'inen (bijv. opticine), collagenen en overige niet-collagene structurele 

eiwitten (bijv. fibrilline). De collagenen, lijmvormende eiwitten die een zeer belangrijk 

bestandsdeel zijn in humane bindweefsels, zijn waarschijnlijk verantwoordelijk voor de 

structuur van de glasvochtgel. Collageen type II is het meest voorkomende type gevolgd 

door type IX, V, XI en VI. 

Over de exacte structuur van het glasvocht is nog geen eenduidigheid in de 

literatuur. Dat kan verklaard worden door (i) het hoge watergehalte, (ii) de verschillende 

technieken om het glasvocht te bewaren en (iii) de verschillende technieken om het 

glasvocht af te beelden. De aanwezigheid en het verloop van glasvochtstructuren, zeals 

lamellen, kanalen en cisternen, worden nog steeds bediscussieerd. 

Tijdens de embryonale ontwikkeling is het glasvochtweefsel constant aan 

verandering onderhevig. Van collageenvezels tussen de embryonale lens en de retina gaat 

het over in een gel met bloedvaten, die vervolgens bij de geboorte weer zijn verdwenen. 

Na de geboorte ondergaat het glasvocht progressieve structurele veranderingen die al 

vanaf het vierde jaar waarneembaar zijn. Er is een progressieve toename van vervloeide 

holten (synchisis) en een toename van optische verdichtingen (syneresis}. De onderliggende 

mechanismen die leiden tot deze leeftijdsgerelateerde veranderingen en een achterste 

glasvochtmembraanloslating (posterior vitreous detachment; PVD) zijn tot op heden niet 

bekend. Er zijn twee theorieen, waarbij de eerste theorie synchisis en syneresis benadert 

als een structurele uiting van de destabilisatie van de glasvochtstructuur. De andere theorie 

gaat uit van een constante afbraak (synchisis), die gepaard gaat met aanmaak van glasvocht 

onderdelen (syneresis). 

Het huidige proefschrift ondersteunt de tweede theorie op het gebied van 

collageenturnover (aanmaak en afbraak) in het volwassen en verouderende humane 

glasvocht. Ditzal blijken uit onze onderzoeksresultaten van het glasvocht zelf en de overgang 

van het glasvocht en de retina (vitreoretinale grenslaag). Hoofdstuk 2 en 3 beschrijven de 

collageeninteractie van het glasvocht en de vitreoretinale overgang. Yervolgens wordt de rol 

van de retinale Muller eel in collageenafbraak en collageenproductie besproken (hoofdstuk 

4 en 5). Hoofdstuk 6 beschrijft wat er gebeurt met de enzymatische collageenverbindingen 
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tijdens veroudering. Enzymatische col lageenverbindingen ontstaan als laatste in de 

ontwikkelingsfase van het col lageen molecuul, zijn zeer stevig en dragen bij aan de structuur 

van een bindweefsel. Tot slot worden onze bevindingen geplaatst in een review over het 

verouderende humane glasvocht (hoofdstuk 7). 

In hoofdstuk 2 beschrijven wij het onderzoek van de vitreoretinale grenslaag, het 

contactgebied van het glasvocht en de retina, aan de voorzijde van het humane 

oog (donorogen). Dit gebied is klinisch van belang omdat de meerderheid van de 

netvliesbeschadigingen als gevolg van een PYD daar ontstaat. Of een PVD leidt tot een 

netvliesbeschadiging hangt af van de glasvocht-retina aanhechtingen in de grenslaag en 

de dikte van de ILM (internal limiting membrane of membrana limitans interna, de laag 

tussen glasvocht en retinacellen). Voorin het oog vlak achter de lens bevindt zich de 

glasvochtbasis, waar extreem sterke aanhechtingen in de grenslaag gevonden worden. 

In dat gebied worden verschillende variaties beschreven in de grenslaag. Voorbeelden 

hiervan zijn (i) directe verbindingen tussen glasvochtstrengen en retinale Muller cel len en 

(ii) glasvochtachtige col lageenvezels in de retina die uitbreiden in collageen netwerken met 

het toenemen van de leeftijd. 

Met behulp van immunohistochemische kleuringen hebben we door middel van 

transmissie elektronenmicroscopie (TEM) aangetoond dat het collageen in de retina type 

II betreft. Pakketjes col lageen reiken van O - 44 micrometer diep in de retina. In de meeste 

donorogen worden retinale Muller cel len dicht in de buurt van de col lageenpakketten 

gezien. Daarnaast hebben we veel variatie in het verloop van de grenslaag gevonden, zoals 

(i) glasvochtstrengen loodrecht en paral lel aan de ILM, (ii) glasvochtstrengen die fuseerden 

met de ILM, (iii) directe aanhechtingen van glasvocht aan de retina zonder aanwezigheid 

van de traditioneel aanwezige ILM en (iv) lokale onderbrekingen in de ILM. Bovendien 

hebben onze resultaten eerdere EM- bevindingen versterkt. Wij hebben het - tot dan toe 

onbekende - type col lageen in de retina (type II) en de positie van retinale Muller cel len 

bepaald. We hebben cel len (macrofagen) naast celrestanten gevonden en discontinu'i'teit 

van col lageen type IV in de I LM aangetoond. 

Uit een andere studie naar de grenslaag kwam naar voren dat bij veroudering 

de col lageenpakketten in de retina toenamen in grootte en zich verspreidden richting 

de achterkant van het oog. Dit is een direct bewijs van col lageenturnover met een netto 

collageenproductie. Onze studie ondersteunt deze theorie. Op dit moment is het echter 

niet duidelijk wat deze verandering in de grenslaag in gang zet. De netto productie van 

col lageen in de retina kan een reactie zijn op krachten die in deze regio aanwezig zijn om 
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dit gebied te verstevigen; het meest voor de hand liggend zijn glasvochtbewegingen en 

vitreoretinale trekkrachten als gevolg van oogbewegingen. 

We speculeren dat deze geleidelijke veranderingen in de grenslaag met het stijgen 

van de leeftijd leiden tot de vorming van stevige vitreoretinale aanhechtingen. In het 

geval van een PVD zal de vitreoretinale grenslaag in de glasvochtbasis paradoxaal genoeg 

kwetsbaarder zijn voor netvliesbeschadigingen. De mogelijke rol van retinale Muller cellen 

in aanmaak en afbraak van collagenen zal verder besproken warden in hoofdstuk 4 en 5. 

Hoofdstuk 3 bevat een immunohistochemische, lichtmicroscopische (LM) studie naar de 

aanwezigheid en het verdelingspatroon van verschillende collagenen in de humane retina 

aan de achterkant (achterpool), het middengedeelte (equator) en de voorzijde van het oog 

(glasvochtbasis). 

We hebben specifiek naar collagenen gekeken vanwege hun rol in de vitreoretinale 

adhesie en vitreoretinale grenslaag. Het verdelingspatroon van collagenen kan bijdragen 

aan de ontrafeling van het mechanisme van een spontane, mechanische, of enzymatische 

PVD. 

Voor dit onderzoek hebben we zowel donorogen als verse stukjes retina uit het 

equator gebied gebruikt. In de laatste hebben we aanwijzingen, d.w.z. mRNA van collageen 

typen I-V II, IX en XI, gevonden die wijzen op collageenaanmaak. Door analyse met 

specifieke antilichamen bleek het glasvocht positief voor collageen type II en in wisselende 

mate voor collageen typen V, IX en XI. De I LM was positief voor collageen typen IV, V I  en 

X VII I. De retinale bloedvaten bevatten collageen typen I-VI en XVIII, maar ook wisselend 

typen V en IX. Bovendien vonden we meerdere ronde en gespikkelde structuren positief 

voor collageen type V II in verscheidene lagen van de retina. Het aantal structuren dat 

positief was voor collageen type V I I  nam toe in aantal en verdeling over de retinale lagen 

richting de achterkant van het oog. 

Deze studie geeft duidelijk inzicht in de verdelingspatronen van de verschillende 

typen collageen in de vitreoretinale grenslaag. De nieuwe bevindingen in deze studie 

waren de aanwezigheid van (i) collageen type II in de humane retinale bloedvaten, (i i) 

collageen type VI in de ILM en (i i i) collageen type V II in verscheidene lagen van de retina. 

De aanwezigheid van collageen type II in de retina is interessant vanwege de sterke 

aanhechtingen tussen glasvocht en retinale bloedvaten en vanwege de mogelijke oorsprong 

van het collageen type II. Op basis van het voorkomen van collageen type II mRNA in de 

retina zouden retinacellen een mogelijke bran van synthese kunnen zijn. Dit zouden de 

retinale Muller cellen kunnen zijn, omdat zij met de bloedvaten en ILM in contact staan 
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en hun celuitlopers zich dicht in de buurt bevinden van de genoemde collageenpakketten 

in de retina (Hoofdstuk 2). Bovendien hebben we laten zien dat Muller cellen in kweek 

collageen type I I  produceren (Hoofdstuk 5). 

Verder speelt collageen type V I  een belangrijke rot in het verbinden en koppelen 

van cellen en grote matrix moleculen. Gezien de prominente aanwezigheid van collageen 

type V I  in de ILM zou dit molecuul kunnen bijdragen aan de hechting van glasvochtvezels 

aan de retina, maar collageen type XV I I I  zou ook betrokken kunnen zijn. Een geheel 

nieuwe bevinding tot slot is, dat collageen type V I I  (een bekende hechtingsvezel) met een 

bijzonder spreidingspatroon in de retina aanwezig is. De functie hiervan is echter nog niet 

vastgesteld. 

Wij kunnen concluderen dat er verschillende typen collageen in de humane 

grenslaag aanwezig zijn en dat deze een mogelijke rot hebben bij de verbinding van het 

glasvocht met de retina. 

In de hoofdstukken 4 en 5 beschrijven wij de rol van humane retinale cellen in afbraak 

(fagocytose) en aanmaak van verschillende collagenen in kweek. Muller cellen zijn cellen 

die de gehele breedte van de retina overbruggen van de ILM tot aan de fotoreceptoren. 

Deze cellen zijn de belangrijkste glia cellen in de retina en hebben vele lokale functies 

zoals: stabilisatie van de retinale architectuur, metabole ondersteuning van omringende 

cellen, voorkomen van verplaatsing van fotoreceptoren, opruimen van (afval-)stoffen 

en productie van celregulerende stoffen (bijv. groeifactoren). Op basis van onze eigen 

TEM bevindingen (Hoofdstuk 2) kunnen Muller cellen betrokken zijn bij afbraak en/of 

productie van collageen. In eerdere studies is meerdere malen gesuggereerd dat Muller 

cellen betrokken kunnen zijn bij de productie van glasvocht- en ILM-collageen. Hun rol bij 

de afbraak van collagenen is onbekend. Voor onderzoek naar de rot van Muller cellen bij 

collageenturnover hebben we een kweekmodel gebruikt. 

Hoofdstuk 4 laat zien dat we humane retinale Muller cellen (MIO-Ml; spontaan 

ge·immortaliseerde Muller cellen) hebben blootgesteld aan fluorescerende latex bolletjes 

gecoat met collageen om hun rot in fagocytose van collagenen vast te stellen. De focus 

lag op de belangrijkste typen collageen van het glasvocht (type I I )  en de ILM (type I V ). 

De fluorescerende latex bolletjes werden gecoat met collageen type I, I I  en I V  en een 

controle eiwit (BSA). We gebruikten humane fibroblasten (cellen die bekend staan om 

hun fagocytosecapaciteit) als controle. Alie cellen werden gedurende 2, 12, 24 en 48 

uur blootgesteld aan gecoate latex bolletjes. Het fagocytose-proces probeerden we te 

be"invloeden door remmende stoffen aan de Muller cellen toe te dienen (cytochalasine B 
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en anti-integrines). We evalueerden fagocytose met flow-cytometrie, TEM en confocale 

microscopie. 

In kweek behielden de Muller cellen hun belangrijkste celeigenschappen, die 

we met specifieke antilichamen controleerden middels LM. Hieruit bleek dat gekweekte 

Muller cellen latex bolletjes gecoat met collageen type II het best fagocyteerden. In 

vergelijking met fibroblasten fagocyteerden Muller cellen 10 keer zo weinig (niet-)gecoate 

latex bolletjes. In dit model waren we echter niet in staat om fagocytose van collageen 

type II door de bovengenoemde remmende stoffen te be'invloeden. De lage fagocytose 

capaciteit van gekweekte Muller cellen suggereert een mogelijke rol van deze retinale 

cellen bij de geleidelijke collageenverandering in de humane grenslaag. 

In hoofdstuk 5 onderzoeken we de capaciteit van de gekweekte humane retinale Muller 

cellijn (MIO-MI) om collageen typen I-V II, IX, XI en XVI I  te produceren. Collageen type 

XVII is een collageen type dat niet gerelateerd is aan de vitreoretinale grenslaag en is 

gebruikt als een negatieve controle. In deze studie tonen we aan (i) met behulp van RT-PCR 

(reverse transcriptase-polymerase chain reaction) dat Muller cellen mRNA van collageen 

bevatten, (ii) met behulp van immunohistochemie met specifieke antilichamen (LM) dat 

collageen in hun cellichamen aanwezig is en (iii) met behulp van Western Blot dat deze 

cellen collageen kunnen uitscheiden in het celmedium. 

Muller cellen bleken alle bovengenoemde typen collageen te kunnen synthetiseren 

met uitzondering van collageen type XV II. Muller cellen brachten mRNA voor collageen 

typen I-V II, IX en XI tot expressie. Bovendien waren deze collagenen, die met specifieke 

antilichamen werden aangekleurd, aanwezig in de cellichamen. De Western Blot analyse 

op het celmedium, waarin de cellen gekweekt werden, bevestigde andermaal dat Muller 

cellen collageen produceerden en dat collageen typen I-V II, IX en XI werden uitgescheiden 

in het celmedium. 

We kunnen concluderen dat Muller cellen collagenen kunnen produceren die 

gevonden worden in hun natuurlijke omgeving (glasvocht, ILM en retina). In theorie kan 

de productiecapaciteit van bovengenoemde collagenen door de Muller cellen in kweek 

bijdragen aan eerder beschreven morfologische bevindingen in de embryonale periode, 

waarin Muller cellen aangewezen werden als mogelijke bran van glasvocht- en ILM-collageen. 

Daarnaast past de collageenproductie door deze cellen in de theorie van collageenturnover 

van volwassen glasvochtcollageen. Tot slot zouden Muller cellen kunnen bijdragen aan de 

vorming van (pathologische) collageenachtige laagjes (van genoemde collageen typen) op 

de retina (epiretinale membranen), omdat deze cellen hierin warden gevonden. 
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Hoofdstuk 6 beschrijft de rol van volgroeide enzymatische collageenverbindingen 

(cross-links), hydroxylysylpyridinoline (HP) en lysylpyridinoline (LP), in het volwassen 

en verouderende humane glasvocht. De pyridinoline cross-links vormen de laatste 

enzymatische stap in de collageenontwikkeling. Collageen wordt intracellulair geproduceerd 

en uitgescheiden in de extracellulaire matrix als collageen voorloper (procollageen). Na 

het verwijderen van de pro-groepen kunnen de moleculen samengaan en dunne vezels 

(fibrillen) vormen. Deze fibrillen worden gestabiliseerd door cross-links tussen de 

collageenmoleculen gevormd door een enzymatische reactie. Deze collageen-cross-links 

zorgen voor fysische en mechanische kracht van het collageennetwerk en zo dragen ze bij 

aan de netwerkintegriteit. 

Voor deze studie hebben we 143 humane donorogen zonder bekende 

oogheelkundige pathologie geanalyseerd van 119 donoren. Alie glasvochten zijn 

gevriesdroogd voor de analyse middels high performance liquid chromatograpy (HPLC) 

om het volume te verkleinen. 

De analyse van 24 gepaarde ogen toonde een grote overeenkomst tussen rechter

en linkerogen in alle geteste variabelen. We gebruikten daarom een willekeurig oog van 

een donor (n= 119) in de verdere analyses naar leeftijdsgerelateerde veranderingen. 

Het glasvocht bleek in gewicht toe te nemen tot de leeftijd van vijfendertig jaar 

en daarna daalde het significant, terwijl het gewicht van glasvochtcollageen significant 

daalde na het vijftigste levensjaar. De verhouding tussen glasvochtcollageen en niet

collagene eiwitten in het glasvocht ging omlaag met het toenemen van de leeftijd. Dit 

zou veroorzaakt kunnen worden door een relatief hogere stijging van de niet-collagene 

eiwitten in vergelijking met collagenen. Het collageenpercentage bleef constant tijdens 

veroudering. De enzymatische collageen-cross-links stegen tot het vijftigste levensjaar en 

daalden daarna. Deze stijging kon voornamelijk toegeschreven worden aan de stijging van 

HP, omdat dit de meest aanwezige collageen-cross-link was en de verhouding tussen HP 

en LP niet veranderde met het stijgen van de leeftijd. 

De stijging van deze collageen-cross-links per collageen molecuul zou verklaard 

kunnen worden door de nieuwe vorming van enzymatische cross-links uit procollageen 

type I I, dat in het humane glasvocht is gevonden. De daling na het vijftigste levensjaar valt 

samen met de leeftijd waarop de structurele veranderingen in het glasvocht meer op de 

voorgrond komen. Dit zou verklaard kunnen word en door afbraak of verlies van collageen

cross-links, wat ondersteund wordt door de afname van de hoeveelheid collageen na het 

vijftigste levensjaar. 

De onderzoeksresultaten van de enzymatische collageen-cross-links kunnen 
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dus inzicht geven in de leeftijdsgerelateerde processen synchisis en syneresis binnen het 

concept van collageenturnover. De stijging van collageen-cross-links tot het vijftigste 

levensjaar is een indicatie van (continue) collageenuitrijping, dat kan wijzen op een continue 

collageenaanmaak. Als er in het glasvocht grate structurele veranderingen plaatsvinden na 

het vijftigste levensjaar, beginnen de enzymatische collageen-cross-links te dalen. Deze 

afname kan het gevolg zijn van collageenafbraak, maar - belangrijker nag - de afname zelf 

kan oak bijdragen aan de instabiliteit van het collageennetwerk leidend tot een toename 

van structurele veranderingen van het oudere glasvocht. 

In het laatste hoofdstuk 7 presenteren wij alle nu bekende resultaten in een overzicht 

over de collageenveranderingen van het humane volwassen glasvocht en de vitreoretinale 

grenslaag als een dynamisch proces. 

Onze resultaten ondersteunen het concept van collageenaanmaak en -afbraak 

in het glasvocht en de vitreoretinale grenslaag tijdens het toenemen van de leeftijd. We 

leveren nieuw bewijs voor collageenturnover. Bovendien beschrijven wij de aanwezigheid 

en de locatie van verschillende typen collageen in de humane retina. Deze verschillende 

typen collageen hebben een mogelijke rol bij de verbinding van het glasvocht met de 

retina. 

Met het stijgen van de leeftijd is de vitreoretinale grenslaag in het gebied van de 

glasvochtbasis onderhevig aan verandering door toename van collageen type II in de retina 

en door toename van het aantal collagene vitreoretinale adhesies. Retinacellen, in het 

bijzonder Muller cellen, zijn waarschijnlijk betrokken bij dit proces. Gelijktijdig ontwikkelen 

zich in het glasvocht dichte collagene glasvochtstructuren, terwijl een afbraakproces 

van glasvochtstructuren leidt tot vervloeide holtes. Onze onderzoeksresultaten van de 

volwassen enzymatische collageen-cross-links in het glasvocht ondersteunen deze theorie 

door de bevinding van collageenuitrijping tot het vijftigste levensjaar en collageenafbraak 

daarna. 

1 60 



List of abbreviations 

Dankwoord 

Curriculum Vitae 



List of abbreviations 

List of abbreviations 

AEC 

AGE 

ANOVA 

�-APN 

BPS 

BSA 

CB 

Col l 

CRALBP 

cDNA 

DAPI 

DMEM 

DNA 

ECM 

EDTA 

FBS 

FLF-92 

GA 

GAG 

GAMbio 

GARPO 

GCL 

GFAP 

GP 

HA 

HFBA 

HBL-100 

HP 

HPLC 

Hyp 

ILL 

ILM 

INL 
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3-Amino-9-Ethylcarbazole 

Advanced Glycation End product 

Analysis Of Variance 

�-Aminopropionitrile fumurate salt 

Base Pairs 

Bovine Serum Albumin 

Ciliary Body 

Type I Collagen 

Cellular Retinaldehyde Binding Protein 

Complement DNA 

4',6-Diamidino-2-phenylindole dihydrochloride 

Dulbecco's Modification of Eagle's Medium 

Deoxyribonucleic Acid 

Extracellular Matrix 

Ethylenediaminetetraacetic Acid 

Fetal Bovine Serum 

Foetal Lung Fibroblast-92 

Glutaraldehyde 

Glycosaminoglycan 

Goat-anti-mouse-biotin 

Goat-anti-rabbit Peroxidase 

Ganglion Cell Layer 

Glial Fibrillary Acidic Protein 

Glycoprotein 

Hyaluronan 

Heptafluorobutyric Acid 

Human Caucasian Breast Cancer Cell Line (epithelial like) 

Hydroxylysylpyridinoline 

High Performance Liquid Chromatography 

Hydroxyproline 

Internal Limiting Lamina (TEM description) 

Internal Limiting Membrane (LM description) 

Inner Nuclear Layer 



IPL 

LM 

KDa 

LP 

MIO-Ml 

MMP 

mRNA 

NFL 

ONL 

OPL 

PAS 

PBS 

PF 

PG 

PPR 

Pro 

PVD 

RAGPO 

RAMPO 

RT 

RT-PCR 

SAPO 

SARPO 

SOS-PAGE 

TS IOO 

TEM 

(T)TBS 

TH 

UV 
VB 

WB 

Ust of abbreviations 

Inner Plexiform Layer 

Light Microscopy 

Kilodalton 

Lysylpyridinoline 

Moorfields Institute of Ophthalmology-Muller I 

(Muller cell line) 

Matrix Metalloproteinase 

messenger-Ribonucleic Acid 

Nerve Fiber Layer 

Outer Nuclear Layer 

Outer Plexiform Layer 

Periodic Acid Schiff 

Phosphate Buffered Saline 

Paraformaldehyde 

Proteoglycan 

Pars Plana Remnants (predominantly of the ciliary body) 

Proline 

Posterior Vitreous Detachment 

Rabbit-anti-goat Peroxidase 

Rabbit-anti-mouse Peroxidase 

Room Temperature 

Reverse Transcriptase-Polymerase Chain Reaction 

Streptavidin Peroxidase 

Swine-anti-rabbit peroxidase 

Sodium Dodecyl Sulfate-PolyacrylAmide Gel Electrophoresis 

Technovit 8100 

Transmission Electron Microscopy 

Tris Buffered Saline (containing 0.05% Tween-20) 

Triple Helix 

Ultraviolet 

Vitreous Body 

Western Blot 
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Tijdens mijn onderzoek heb ik met ontzettend veel plezier samengewerkt met veel mensen 

van verschillende afdelingen binnen het UMCG maar ook van daarbuiten (tot en met Tokio). 

Het enthousiasme en de belangstelling van directe collega's en andere onderzoekers zijn 

een enorme stimulans geweest. De gezelligheid van de laboratoriumwerkvloer zal mij nog 

lang heugen. 

lk wil graag een aantal personen bij naam bedanken. 

In de eerste plaats gaat heel veel dank uit naar mijn labmaatje en paranimf Corien van 

der Worp (tegenwoordig Roelofje Jacoba Flebbe) die een zeer belangrijke rol heeft 

vervuld bij het verwerken en opwerken van oogheelkundige preparaten. Als analiste 

heeft zij gefungeerd als mijn rechterhand om mij wegwijs te maken op het lab en om vele 

experimenten op te zetten en uit te voeren . Dankzij haar ervaring en gedrevenheid zijn 

vele experimenten tot een goed einde gebracht. Op de werkvloer stonden we bekend als 

"het geoliede duo" en dat kan ik alleen maar onderstrepen. Ook tijdens haar vakanties 

en vrije dagen kon ik bij Corien terecht als proeven niet zo liepen zoals het labjournaal 

voorschreef. 

Als directe begeleider heeft Leonie Los mij de belangstelling voor en het 

onderzoek naar het glasvocht bijgebracht en samen hebben we "haar kindje" verder 

grootgebracht. Met haar kritische opmerkingen, haar perfectionisme en gedrevenheid 

wist zij mij telkens te stimuleren om op zoek te gaan naar scherpere formuleringen en 

diepere betekenissen. Zij heeft veel tijd gestoken in de begeleiding en zij is voor mij altijd 

op een prettige, persoonlijke en laagdrempelige manier bereikbaar geweest. 

Als medebegeleider weet Marja van Luyn als geen ander een onderzoeker te 

motiveren na een mislukt experiment. Haar jarenlange ervaring met TEM kwam goed van 

pas bij onze uitgebreide labellingen. Daarnaast heeft zij veel bijgedragen aan het inzichtelijk 

maken en structureren van discussiepunten. 

Al voordat ik van professor Hooymans mijn artsenbul uitgereikt zou krijgen in 

2002, was ik begonnen met het glasvocht onderzoek op haar afdeling. Door haar toedoen 

en enthousiasme heb ik vele uren aan mijn onderzoek kunnen werken. Zij plande mij 

regelmatig vrij van poliklinische taken en daarvan heb ik veel profijt gehad, zeker na een 

aantal tijdrovende tegenslagen. 

164 



Dankwoord 

Dear professor Bishop, dear Paul, it is an absolute honour that you are willing 

to give your opinion on my research. A dream for a young PhD-student on the vitreous 

body! Your research on the vitreous was important for my thesis and that is likely the 

reason that our group raised the citation index of your papers. 

Geachte professor Everts en professor van Meurs, beste Vincent en Jan, ik 

wil jullie speciaal bedanken voor jullie bijdrage aan mijn proefschrift, welke veel verder gaat 

dan de beoordeling als leescommissie. lk kon laagdrempelig bij jullie terecht en dat heeft 

zijn vruchten afgeworpen voor een deel van mijn onderzoek. 

lk wil bovendien de volgende personen bedanken: (i) mijn mede-auteurs: llja Nolte, Jan 

van Meurs, Ruud Bank, Jessica Snabel, Marielle van Deemter, Gerrit Zijlstra en Hendri Pas 

voor hun aanvullingen en correcties op mijn stukken, (ii) Lisa Mulder en Bart Wullink, die 

als studenten hebben meegewerkt, (iii) een aantal onderzoekers voor hun suggesties en 

hulp: John Saari, Astrid Limb, Julie Oxford, Vincent Everts, Gerjo van Osch, Roel Kuijer, 

Rebecca Croxen, Monique van der Pauw en Guus Kloosterhuis, (iv) medewerkers van de 

elektronenmicroscopie: Han van der Want, letse Stokroos, Geert Kors, Bert Blauw, Henk 

de Weerd, Freek Dijk, Rubi Kalicharan en Nel Blom, (v) van mijn onderzoeksschool de 

SMSA: Theo van Kooten, Henny van der Mei, Henk Busscher, Wia Kloppenburg, Ellen van 

Droege en Ina Heidema, (vi) van de Medische Biologie: Marco Harmsen (discussies tav vele 

theorieen), Marja Brinker (RT-PCR), Geert Mesander (flow cytometrie), Jelleke Dokter

Fokkens (celkweken) en Peter Terpstra (ontwikkeling primers) en de voormalige groep 

"Tissue Engineering": Guido, Xavier, Barry, Eliane, Linda, Jasper B., Jasper K., Martin, Jelle, 

Josee, leneke, Henriette, Daniel, Machteld, Martine, Alice, Ali en Greetje. 

Zender het secretariaat oogheelkunde, Fenna, Stella en Ella, zou ik nu een gratenpakhuis 

zijn. Onder het genot van oneindige hoeveelheden koekjes, chocolade, "caramac", drop, 

"celebrations" en cherry tomaatjes kun je daar lekker even bijkletsen en bijkomen. 

Bovendien heeft Fenna bijna mijn gehele reference manager gevuld met de vele artikelen 

die zij heeft opgezocht en opgevraagd. Voor acute computerondersteuning en advies kon 

ik altijd bij Albert terecht. Wim zorgde voor een integere financiele afhandeling tijdens 

mijn onderzoek. 

Collega arts-assistenten en stafleden oogheelkunde wil ik bedanken voor hun 

interesse, meeleven en het opvangen van mijn afwezigheid. 
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Zender donoren geen donorogen en dankzij de inspanningen van Liesbeth Pels, Teja 

Wesseling en Wessel Vermeulen van de corneabank Amsterdam heb ik honderden 

donorogen ontvangen die ik geed kon gebruiken voor mijn onderzoek. 

Zender de financiele steun van de subsidieverleners: de Prof. Mulder stichting, de 

Rotterdamse Vereniging Blindenbelangen, de Stichting Oogheelkundig Onderzoek 

's- Gravenhage, de Algemene Nederlandse Vereniging ter Voorkoming van Blindheid en de 

Stichting Oogheelkundig Onderzoek Nederland had dit onderzoek niet uitgevoerd kunnen 

worden. 

Tot slot wil ik graag mijn familie en vrienden bedanken voor hun steun en interesse in 

mijn onderzoek. Lieve vader en moeder, dankzij jullie positieve ondersteuning ben ik een 

heel vrolijk, enthousiast en gelukkig mens geworden. lk ben ontzettend blij met de keuzes 

die ik heb kunnen maken en het enthousiasme dat jullie mij gaven om mijn dromen te 

verwezenlijken. Vader dank je wel voor je kritische Nederlandse tekstcorrecties. Lieve 

Bart, dank je wel voor je positieve discussies en (technisch-farmaceutische) adviezen 

gedurende mijn onderzoek. Lieve Marius en Riny, dank jullie wel voor het nauwkeurig 

doorlezen van mijn stukken. De overeenkomst tussen het glasvocht en Shell werd pas 

duidelijk toen het glasvocht door 6M HCI bij 110 °C compleet "gekraakt" was (Hoofdstuk 6). 

Diego Keijzer, tevens paranimf, je bent al meer dan 25 jaar een trouwe rots in de branding 

en zodoende een meer dan belangrijk aandeel in mijn leven. 

Lieve Rosette, mijn ware, de laatste loodjes van mijn onderzoek waren, met en door onze 

Marius, oprecht het zwaarst. Jouw onvoorwaardelijke liefde en steun hebben het mogelijk 

gemaakt het onderzoek ook daadwerkelijk af te ronden. De komst en eerste blikken van 

onze Marius op deze wereld (5 april 2008) zijn een onbetaalbaar geschenk en ik ben enorm 

trots op je! De eerstvolgende vakantie neem ik geen artikelen mee ... . .  
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