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STELLINGEN 
behorende bij het proefschrift: 

Monitoring Extra Cellular Fluid Volume during Renal Function Measurement 

1. The cold war may be over, the salt war endures (MH Alderman ;Am J Hypertens 1997) 

2. Bij elke 'tracer gemeten' GFR bepaling zou ECFV bepaald moeten warden 

(dit proefschrijt) 

3. Nierfunctie zou uitgedrukt moet worden in tijd die de nier nodig heeft om zijn 

werkvolume (lees: ECFV) van afvalstoffen te ontdoen: normalisatie van GFR ten 

opzichte van ECFV geeft deze maat (dit proefschriftJ 

4. Hoe hoger het kreatinine aanbod aan de nier, des te hoger de tubulaire excretie 

van kreatinine (dit proefschriftJ 

5. Het succes van dieten in de 1 e week kan toegeschreven word en aan daling van 

ECFV bij verlaging van de zoutinname (dit proej.:;chriftJ 

6. The fatter, the wetter (dit proefschriftJ 

7. Zoutgevoeligheid van bloeddruk wordt gekenmerkt door een verhoogde 

weefselactiviteit van het Renine-Angiotensine Systeem (dit proefschriftJ 

8. Bij studies naar anemie moet rekening gehouden worden met ECFV(dit proefschriftJ 

9. Matigheid is een deugd, omdat gulzigheid en dronkenschap slecht voor je 

gezondheid zijn (Epicurus;Griekenland; 342 - 270 v.C/ir) 

10. Door medisch handelen verdwijnt teleologie uit de humane fysiologie 

11. Er zit meer geloof in wetenschap dan wetenschap in geloof 

12. Believe nothing, no matter where you read it, or who said it, no matter if I have 

said it, unless it agrees with your own reason and your own common sense 

(Siddhartha Gautama; aka Boeddha; Nepal; ca. 450-370 v.Clir) 

13. Tijdens de huidige kredietcrisis houdt het socialisme het kapitalisme in stand 

14. Referenda zijn ondemocratisch 

15. Voetbal is opium voor het volk 

16. De mens is de maat van alle dingen (Protagoras; Griekenland; 490-420 v.Clir) 

ECFV = Extra Cellular Fluid Volume (Extracellulair Volume) 
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Introduction 

High salt intake as a pa tho genetic factor 

The association between a high salt intake and the risk for cardiovascular and renal 

disease has been a topic of long standing interest. Traditionally, the effect of high 

sodium intake on blood pressure is assumed to account for the association between 

salt intake and cardiovascular and renal disease. Epidemiological studies within 

and between different populations have provided extensive evidence for an 

association between mean sodium intake, blood pressure level, and the prevalence 

of hypertension1
-
3

• Short term4 and long term intervention studies (>l year)5
-
8 show 

that dietary sodium restriction results in a modest, but dose-dependent blood 

pressure lowering9• However, individual responses to sodium restriction are 

diverse. Approximately 50% of hypertensives are considered to be sodium­

sensitive10-13, meaning that blood pressure significantly drops when shifting from a 

normal to a low sodium diet. In normotensive subjects the proportion of sodium­

sensitive subjects is some 30%11• Thus, although a relation between sodium and 

blood pressure is clearly present, the individual variability is large. This could 

implicate that not all subjects are equally sensitive to the pathogenetic effects of a 

high sodium intake (which is probably true11,14), but also, that blood pressure may 

not be the best or the only relevant parameter to assess the pathogenetic effects of a 

high sodium intake. 

In line with the latter assumption, sodium intake has been shown to exert blood 

pressure independent effects as well15• First, blood pressure independent relations 

were found between higher sodium intake and parameters of cardiovascular end 

organ damage, such as a larger left ventricular mass16-20, and a higher arterial 

resistance21-24• Moreover, animal data as well as human experimental studies 

provided evidence for blood pressure independent effects of a high sodium diet on 
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Introduction and ainzs 

the vascular wall, such as endothelial dysfunction25, and increased ACE activity26,27• 

Interestingly, blood pressure independent associations were also observed 

between high sodium intake and parameters of renal damage such as proteinuria28, 

albuminuria29,30 and glomerular hyperfiltration31,32, in particular in association with 

overweight33• 

The relation between sodium intake and mortality has long been a matter of 

dispute. One of the factors fuelling the disparity is the difficulty in obtaining an 

accurate measure of sodium intake. During steady state 2 4  hour urinary sodium 

excretion provides a solid assessment of sodium intake, but the difficulties in 

obtaining large scale accurate 2 4  hour urine collections are considerable34• 

Accordingly, food-questionnaires have been used as an alternative in many 

studies, but unfortunately their accuracy in estimating true sodium intake is 

poor35,36• Yet, evidence has gradually accumulated over the years that support an 

adverse effect of sodium intake on mortality. First, in the INTERSALT study, an 

association was found between average sodium excretion per participating country 

and stroke mortality rate (figure 1)37• 

Figure 1 Relation between urinary 

Na+ excretion and death from stroke 

in 12 European populations from the 

INTERSALT study (adapted from 

Perry et al37
• 

Deaths From 
Stroke 

(per 100,000 
per year) 

2210 

1810 

1480 
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550 
7.5 
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r=0.832 
P<0.001 

Iceland 

8.0 8.5 9.0 9.5 10.0 10.5 
Urinary Salt Excretion 

(g/day) 
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In a prospective study of 2463 subjects in Finland, baseline urinary sodium 

excretion was directly correlated to mortality and risk of coronary events38, the risk 

being increased by some 50% by a 6 gram increase in daily salt intake. Remarkably, 

in the latter two studies the association between sodium intake and increased 

morbidity and mortality was independent of blood pressure level. Furthermore, a 

recent study provided landmark data from the follow-up of the TOPH I and II 

trial39, showing a reduced risk of cardiovascular events after 10-15 years of follow­

up in the original intervention groups as compared to the control groups, of pre­

hypertensive subjects. In the intervention group sodium intake had been reduced 

by some 50 mmol/day during the study period of 18-48 months. As the follow-up 

data were obtained by phone and post, unfortunately no data on blood pressure 

and sodium excretion during follow-up were available. 

However, reports from the NHANES (National Health And Nutrition Examination 

Survey) illustrate that analyses of the effects of sodium intake for long term 

prognosis can be complicated and thus raise considerable controversy. In this large 

population-based cohort study, with a follow-up of 27-31 years, sodium intake at 

baseline was assessed by questionnaires. First, Alderman et al40 showed an 

association between high sodium intake and survival benefit. Later, He et al41 

criticized the statistical analyses in the study from Alderman et al, and concluded 

from the same survey that a high sodium intake was associated with an increased 

cardiovascular morbidity and mortality. Interestingly, the analyses by He et al 

showed that high dietary sodium intake was associated with an increased risk only 

in overweight, but not in lean subjects, indicating an interaction between 

overweight and effects of sodium intake. 

14 



Introduction and aims 

Sodium intake and the regulation of body fluid volume 

Thus, whereas current evidence supports adverse effects of high sodium intake, 

controversies remain. So far, the large majority of studies on the adverse effects of 

high sodium focused on its effect on blood pressure. As it is becoming increasingly 

clear that sodium has also blood pressure independent effects, however, it might 

be fruitful to consider the physiological adaptations of the body to differences in 

sodium intake first. 

Sodium, or Na+, is the main positive electrolyte of the extra cellular fluid 

compartment. The concentration of the constituents of the different body fluid 

compartments, the intra cellular and the extra cellular fluid compartment, is kept 

within more or less stable limits by intricate regulation systems, thus ensuring 

stable conditions for the biochemical processes that constitute the human 

physiology. The maintenance of this stable condition is called homeostasis of the 

milieu interieur, and is an important prerequisite for the normal function of cells 

and organs in the body. The extra cellular fluid compartment, that provides the 

environment for the cells, accounts for approximately one-third of the human body 

volume whereas the cells account for approximately two-third. As sodium, with its 

corresponding negative electrolyte Cl- is the main electrolyte of the extra cellular 

fluid, it is also the main determinant of the extra cellular fluid volume (ECFV) and 

accordingly, regulation of sodium status is the key mechanism of volume 

homeostasis42,43• 

Sodium intake can vary extensively by differences in sodium content of the diet 

ranging from, for instance, 1 0  mmol/day in various indigenous populations, to 

over 800 mmol/day in Northern Japan44• Over this wide range the serum 

concentrations of Na+ are maintained stable despite varying intake, while higher 

and lower sodium intake are accompanied by corresponding changes in ECFV. 
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This is accomplished by the combined effects of osmoregulation and volume 

regulation. A rise in sodium intake elicits a subtle rise in plasma [Na+] that leads to 

release of the antidiuretic hormone (ADH) from the hypophysis in response to a 

rise in osmolality. ADH decreases water excretion and promotes thirst, to the 

extent that plasma [Na+] and osmolality return to their original values, at the 

expense of a rise in ECFV. When the higher salt intake persists the ensuing rise in 

ECFV elicits a rise in natriuretic peptides from the heart, and moreover, suppresses 

the renin-angiotensin-aldosterone system (RAAS), which allows to gradually 

increase the rate of renal sodium excretion until it matches intake again. By then, a 

new steady state is achieved, characterized by a stable [Na+], and an increase in 

total body sodium and a parallel increase in ECFV as illustrated in figure 2. Of 

note, in most healthy subjects this rise in ECFV, and consequently cardiac output, 

does not result in a rise in blood pressure, due to a concomitant decrease in 

peripheral vascular resistance.43
,
45 
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Figure 2 Shift in dietary sodium intake. 

Lower part: theoretical changes in Na+ 

excretion after a dietary shift from 50 to 200 

mmol Na+ 24h-1 

Upper part: corresponding change in body 

weight due to the change in dietary Na+ 

intake and balance. 

Figure adapted from Koomans et al45• 

In the Netherlands, in the general population29 mean sodium intake is 

approximately 137 mmol·24h-1 with an upper quintile of 220 mmol·24h-1 and a 

lower quintile of 80 mmol·24h-1• This amounts to an average difference in ECFV of 

approximately 1 liter45
,
46

• It would be logical to assume that the corresponding 

differences in volume load for the heart bear pathophysiological relevance. 
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Introduction and aims 

Accordingly, measurement of ECFV and its responses to differences in sodium 

intake might shed more light on both mechanisms of sodium-associated morbidity, 

and individual differences in susceptibility to the adverse effects of high sodium 

intake. However, large scale measurements of ECFV are not available so far. 

Methods of extra cellular fluid volume assessment 

The importance of assessment of ECFV is well-recognized in clinical practice, in 

particular in acute disease conditions. Yet, despite the fact that assessment of 

circulatory status is important in many clinical conditions, the measurement of 

ECFV has not become part of routine or even sophisticated clinical assessment, and 

has only a modest place in clinical research47• This relates to the fact that the 

available methods are either inaccurate, or considered too invasive for clinical 

routine. The distribution volume (Vd) of bromide provides the gold standard for 

ECFV measurement48,49• Its kinetics is well established and correction factors are 

proposed for correction of the Donnan equilibrium and for a small proportion of 

the bromide entering erythrocytes50• Its assessment however requires injection and 

timed follow-up, which is cumbersome in clinical practice. Bio-impedance has been 

proposed as a non-invasive method for measuring ECFV. However, its precision, 

reproducibility and accuracy are low. Especially the large inter-observer variability 

makes the method of less value in daily practice and also limits its value in 

scientific protocols51,52• 

An alternative way to measure ECFV may be by specific tracers used for 

measurement of glomerular filtration rate (GFR). Measurement of the renal 

clearance of specific tracers such as inulin, iothalamate, iohexol, and 51Cr-EDTA, 

provides the gold standard for renal function measurement, and is used in top­

clinical care as well as clinical research settings53• These methods are 
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predominantly based on the one-compartment technique, and therefore require 

tracers that distribute over the extra cellular space, since this is the fluid 

compartment which is cleared by the kidneys54-56 • Some studies were reported that 

used the distribution volumes of inulin57, 51Cr-EDTA54, 99mTc-DTPA58 and iohexol55, 

respectively, as measures for ECFV. Whereas these methods provide good 

estimates of ECFV, they are usually not applied to that purpose. As these tracers 

require injection and timed follow-up, they have no specific advantage over 

bromide. Yet, in patients in whom renal function is measured anyway they could 

provide an assessment of ECFV. As volume status, and in particular volume 

overload is an important pathophysiological factor in renal patients, this might not 

only be of scientific but also of clinical interest. Moreover, it has been suggested 

that normalization of renal function to ECFV could have specific advantages over 

normalization to body surface area (BSA), in particular in obese subjects54,59-63• 

In our centre measurement of GFR as the clearance of constantly infused 1251-

iothalamate (IOT)64,65 is routinely used for renal function for top-clinical care, such 

as kidney donor screening and follow-up of transplant recipients, as well as clinical 

research. Animal studies have shown a uniform distribution of JOT over the ECFV 

66-68, suggesting that the V d of this tracer is well-suited for the assessment of ECFV, 

be it or not simultaneously with GFR. However, the feasibility of this tracer for 

assessment of ECFV in human has not been demonstrated, and requires specific 

validation. If this could be accomplished the renal function measurements would 

provide, at no extra effort or cost, a simultaneous assessment of ECFV, thus 

providing data on ECFV on a scale that is unique world-wide, mostly obtained in 

renal patients, i.e. a population where disturbances of volume regulation plays an 

important pathogenetic role. 
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Aims of the thesis 

The aim of this thesis is, first, to develop and validate the method of measuring 

ECFV simultaneously with renal function measurement from the V d of IOT, and 

second, to explore its implications in relation to cardiorenal risk parameters in 

several populations. 

In chapter 1 we validate the measurement of ECFV simultaneously with GFR using 

the constant infusion method of IOT. As mentioned above, IOT is a radio-labeled 

tracer used in scientific and top-clinical settings to accurately measure GFR. 

Whereas theoretically its V d could be used as a measure for ECFV, studies 

calibrating and validating an ECFV assessment in the same procedure as the GFR 

measurement are lacking. This is accomplished in the studies described in chapter 

1. Measurement of ECFV by the IOT method is compared with the gold standard, 

i.e. the Vd of bromide, and its reproducibility and sensitivity to detect changes in 

ECFV is assessed. Moreover, the simultaneous assessment of GFR and ECFV 

provides the possibility to express renal function indexed to ECFV in stead of 

indexed to BSA. The implications of indexing GFR to ECFV are also explored in 

this chapter. 

Chapter 2 addresses the effects of weight excess on extra cellular volume 

regulation, renal function, and renal function assessment by creatinine clearance 

(CrCl). Weight excess, ranging from mild overweight to morbid obesity has 

become increasingly important as a cardiovascular and renal risk factor. Its effects 

on cardiorenal risk are mostly attributed to the concomitant presence of 

hypertension, insulin resistance and diabetes, but studies from our group 

demonstrated independent effects of weight excess as well. In many studies 

concerning the interaction between renal function and overweight, renal function 
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is estimated by creatinine-based methods. Whereas creatinine-based methods have 

been extensively explored in subjects with impaired renal function, their 

performance in subjects with normal, or even elevated renal function, has not been 

well-documented. The latter is relevant as the early changes of renal function in 

weight excess comprise a rise in GFR rather than a decrease. In chapter 2a 

therefore we study the performance of endogenous CrCl to estimate GFR in 

subjects without renal function impairment, and analyse for sources of systematic 

error, in particular in relation to body mass index (BMI) . Chapter 2b investigates 

the effects of weight excess on the response of ECFV and renal sodium handling to 

a rise in sodium intake in healthy subjects. As noted above, in epidemiological 

studies, the association between higher sodium intake and cardiovascular and 

renal risk is particularly prominent in subjects with weight excess. We therefore 

hypothesize that BMI determines the responses of renal sodium handling, and 

consequently ECFV to a rise in sodium intake, with a larger rise in ECFV in 

subjects with higher BMI. To avoid effects secondary to co-morbid conditions such 

as hypertension and insulin resistance, this study is conducted in healthy 

volunteers, thus allowing to identify primary mechanisms in overweight­

associated morbidity. 

Chapter 3 addresses the mechanisms underlying sodium sensitivity of blood 

pressure in healthy subjects. Sodium sensitivity of blood pressure has been 

associated with an increased risk for mortality and cardiovascular morbidity, not 

only in hypertension, but also when blood pressure is in the normotensive range, 

supporting the clinical relevance of sodium sensitivity in the absence of 

hypertension. In hypertensive subjects sodium sensitivity of blood pressure has 

been attributed to an increased intra-renal activity of the RAAS, the main 

regulating system of sodium and fluid homeostasis. Since sodium sensitivity in 
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hypertensives might be secondary to subclinical hypertensive renal damage, the 

mechanisms of sodium sensitivity in normotensive subjects may be different. 

Therefore, we investigate whether sodium sensitivity of blood pressure is related 

to inappropriately increased activity of the intra-renal RAAS, and its possible 

effects on regulation of ECFV in healthy subjects. 

In chapter 4 we study the effect of unilateral nephrectomy on renal sodium 

handling and ECFV. The pathogenesis of hypertension in conditions of renal 

disease has been postulated to be due to impaired sodium excretion and 

consequent expansion of ECFV. Kidney donation provides a setting well-suited to 

test the impact of reduction of renal mass on volume status in humans without 

possible confounding effects of renal disease. Therefore, we study whether 

donating a kidney results in a rise in ECFV in healthy kidney donors. 

In chapter S we consider the possible contribution of altered ECFV regulation in 

the pathogenesis of cardiorenal anaemia in two different populations. Cardiorenal 

disorders are not only characterized by altered volume regulation, but also by the 

frequent occurrence of anaemia. ECFV expansion might contribute to anaemia by 

haemodilution, but the impact of this possible interrelationship has not been well­

explored. Therefore, in chapter Sa, we study the relation between haemoglobin and 

ECFV in a condition characterized by fluid retention, namely chronic heart failure 

(CHF) patients. Second, in chapter Sb, we perform a corresponding analysis on the 

relation between haemoglobin levels and ECFV in stable renal transplant 

recipients. 

Chapter 6, finally, gives an overview of the results from the studies, and discusses 

their implications for clinical practice and for further research 
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Abstract 

The feasibility, validity and possible applications of the assessment of extra cellular 

fluid volume (ECFV) simultaneous with glomerular filtration rate (GFR) were 

assessed in a serie of validation studies using the constant infusion method of 125I­

iothalamate (IOT) . 

In 48 subjects with a broad range of GFR, distribution volume (V d) of IOT 

corresponded well with Vd-bromide (respectively 16.71 ± 3.0 and 16.73 ± 3.2 1, ns), 

with a strong correlation (r=0.933, p<0.01) and without systematic deviations. 

Reproducibility assessment in 25 healthy male subjects showed coefficients of 

variation of 8.6% of duplicate measurement of Vd10T during strictly standardized 

(50 mmol Na+/day) sodium intake. An increase in dietary sodium intake (200 mmol 

Na+/day) induced a corresponding rise in VdIOT of 1.11 ± 1.5 1 (p<0.01). In 158 

healthy prospective kidney donors we analyzed the impact of indexing of GFR to 

ECFV. Age, gender, height, and body surface area (BSA) were determinants of 

GFR. Whereas GFR, GFR/BSA and GFR/height were gender-dependent, 

GFR/ECFV was gender-independent and not related to height or BSA. This 

supports the potential of normalizing GFR by ECFV. 

We conclude that ECFV can be simultaneously assessed with GFR by the constant 

infusion method using IOT. After appropriate validation, also other GFR tracers 

could be used for such a simultaneous estimation, providing a valuable resource of 

data on ECFV in renal studies and moreover, allowing GFR to be indexed to the 

body fluid compartment it clears: the ECFV. 
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Introduction 

The gold standard for measuring glomerular filtration rate (GFR) is by specific 

tracers, such as inulin, Cr-EDTA, iothalamate and iohexol1. Since the distribution 

volume (V d) of these tracers for GFR ideally equal extra cellular fluid volume 

(ECFV)2-9, measuring GFR with such tracers could potentially be used for 

simultaneous assessment of ECFV. 

Simultaneously measuring ECFV and GFR has several advantages. First, it will 

allow better insight into the (pa tho )physiological and clinical role of ECFV in renal 

disease and its complications, such as hypertension and left ventricular 

hypertrophy. Second, it has been proposed that the best way to normalize GFR 

between different individuals would be by ECFV rather than by body surface area 

(BSA)6,10,1 1 • Whereas normalizing GFR for ECFV would be attractive from a 

theoretical perspective, it has not gained acceptance in practice as it is considered 

too cumbersome12• Validation of GFR measurement protocols for simultaneous 

assessment of ECFV would greatly increase the feasibility of normalizing GFR for 

ECFV. 

Various GFR tracers were used for measuring ECFV2-9, but their validation, 

reproducibility, and calibration against a gold standard for ECFV are not well­

documented. In our centre accurate GFR measurement is performed as the 

clearance of 1251-iothalamate (IOT) by the constant infusion method, simultaneously 

with effective renal plasma flow (ERPF)13• This renal function measurement is used 

in top-clinical care and for clinical research, and allows estimating GFR with a day­

to-day variability of only 2.5%14• The aim of the current study was to validate this 

renal function protocol for assessing ECFV, and to use the combined assessment 

for normalizing GFR to ECFV. To this purpose, we studied first, the agreement of 
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V dIOT with V d of bromide, the gold standard for ECFV measurements, over a wide 

range of renal function. Second, we assessed the reproducibility of ECFV 

measurements by assessing V d10T under conditions of standardized sodium intake 

in healthy volunteers. Third, in these volunteers we tested the sensitivity of V d10T 

to detect a change in ECFV. Finally, we analysed the impact of indexing GFR to 

ECFV in the above volunteers and in a cohort of 158 potential kidney donors. 

Methods 

All experiments were performed in adherence to the Declaration of Helsinki. 

Measurement of renal function 

Renal function measurements were performed using the constant infusion method 

with IOT and 1311-Hippuran as described before13-15• After drawing a timepoint- 0 

blood sample, a priming solution containing 20 ml infusion solution ( 0. 04 MBq of 

IOT and 0. 03 MBq of 1311-Hippuran) plus an extra of 0.6 MBq of IOT is given at 

08. 00 hours, followed by a constant infusion ranging from 6 ml·h-1 in subjects with 

impaired renal function to 12 ml·h-1 (based on previously known serum creatinine). 

Plasma concentrations of both tracers are allowed to stabilize during 1.5 hour 

equilibration, which is followed by two two-hour periods for simultaneous 

clearances of IOT and 1311-Hippuran. The latter are calculated as (UV)/Piot and 

(l·V)/Phipp, respectively. UV represents urinary excretion of the tracer; 1-V 

represents the infusion rate of the tracer, which equals clearance from plasma 

during steady state. P represents tracer values in plasma at the end of each 

clearance period. The plasma clearance (l·V)/Phipp equals its urinary clearance as 

there is no extrarenal clearance of this tracer. Thus, when plasma levels are in 

steady state ERPF equals l·V/Phipp. GFR is calculated as the urinary clearance of 
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IOT, corrected for voiding errors: (U-V/P)corr. As urinary clearance of 1311-Hippuran 

equals plasma clearance in case of perfect urine collection, we routinely use the 

ratio of plasma-to-urinary clearance of 1311-Hippuran to correct urinary clearance of 

IOT for voiding errors and dead space. By this method, coefficient of variation 

(COV) for GFR is 2.5% and for ERPF 5%13• 

Calculation of ECFV as Vd10T 

V dIOT is calculated as: amount of JOT in the patient divided by PIOT during steady state. 

The amount of IOT in the patient is calculated as: [IOTinfused - JOTexcreted]. The latter is 

calculated as: [bolus + I:,(I-V)] - [urinary + extrarenal excretion of JOT]. Urinary 

excretion of IOT is measured as I:,(U· V), corrected for voiding errors as described 

above. Extrarenal excretion of IOT is calculated as described below. Taken 

together, V dIOT is calculated as: {[Bolus + I:,(I-V)] - [I:,(U· V) +extrarenal excretion]} I P  

Calculation and validation of extrarenal clearance of IOT 

IOT is not exclusively cleared by the kidney, as some biliary excretion occurs as 

well. The latter is negligible when renal function is normal but is considerable in 

patients with impaired renal function13,14,16• To calculate V d10T as proposed above, 

extrarenal clearance has to be accounted for. In our set-up extrarenal clearance can 

be calculated from the difference between plasma and urinary clearance. 

Extrarenal excretion of IOT ( %  of input) is calculated during steady state as: [(I·V) -

(U.Y)] I (I-V) · 100 %. Subsequently total extrarenal excretion is calculated as: %ER 

excretion · [bolus + I:,(I.Y)]. 

To validate this algorithm for calculation of extrarenal clearance of IOT we 

measured urinary recovery of IOT in 24h urine collected during the 24 hours 

following IOT infusion in 31 subjects (Mean GFR: 6 8  ± 32 ml·min-1; range 2 0-152 
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ml·min-1) .  Urinary recovery of IOT (% of input) was strongly and negatively 

correlated with calculated extrarenal clearance (r=-0.80, p<0.001) .  Mean total 

urinary recovery was 87 ± 8%, mirrored by a calculated extrarenal clearance of 14 ± 

12% of total input, supporting the validity of our calculation of extrarenal clearance 

of IOT. 

Calibration of Vd10T against Vdbromide 

24 males and 24 females (age 49 ± 13 yr), routinely visiting our Medical Centre for 

renal function measurements were included in this experiment. To include subjects 

with a wide GFR-range we included potential kidney donors (n=13), renal 

transplant recipients (n=32) and subjects with chronic kidney disease (CKD) (n=3). 

Renal function and V drOT was assessed as described above. 

On the same day as assessing VdrOT, subjects received oral NaBr in an approximate 

dose of 50 mg·kg·1 • Blood samples were, simultaneously to blood samples for IOT, 

drawn after 4.5 and 5.5 hours and Vdbromide was calculated as17: Br dose I [Br]scrum · 

0.90 · 0.95 · 0.94 

In the latter formula, 0.90 is the fraction of bromide that is assumed to be 

distributed in non-extra cellular sites (principally erythrocytes), 0.95 is the Donnan 

equilibrium factor and 0.94 is the assumed amount of water in serum. 

The ECFV s assessed by V drOT and V dbromide were compared by investigating 

agreement between the two measures as recommended by Bland&Altman18 with 

calculation of 95% limits of agreement as mean ± 2 · SD of the difference between 

V drOT and V dbromide. 
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Reproducibility and sensitivity to detect changes in EFCV over time 

25 healthy normotensive men were studied. Renal function and ECFV were 

measured four times, on day 7 and day 14 of two 14-day study periods, with a 

wash-out of at least 3 weeks in between. Each study period consisted of two 7-day 

periods with a different dietary sodium content, i.e. low sodium (50 mmol 

Na+/day) and high sodium diet (200 mmol Na+/day), in randomized order. 

Potassium intake was standardized at 80 mmol/day. Otherwise, the subjects 

continued their usual food habits. For assessment of dietary compliance, 24h urine 

was collected at day 6 during each 7-day period. During all periods, subjects were 

ambulant and continued normal activities. During study-days subjects reported at 

the research-unit at 08. 00 hours, after having abstained from food and alcohol 

overnight. Height and body weight were measured, after which renal function and 

V drOT was assessed. 

Reproducibility was assessed by examining repeated measurements under the 

same sodium intake for bias and calculating the COV. Bias was investigated by 

examining the mean difference between repeated estimates. The COV was 

calculated as the within-subject variation as a percentage of the sample mean. 

The averaged value of the duplicate measurements was further used to assess the 

sodium induced change in ECFV. Additionally, creatinine based renal function 

was calculated according to the simplified MORD formula19  and 24 hour creatinine 

clearance (CrCl). Creatinine in blood and urine were determined by Kodak 

Ektachem dry chemistry (Eastman Kodak, Rochester, NY, USA). 
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Between subjects normalization of GFR by ECFV 

We assessed the impact of normalization of GFR by ECFV in 158 healthy subjects 

screened as potential kidney donors (table 2) . In this population we assessed the 

impact of normalization by ECFV on the difference in renal function between men 

and women. BSA was calculated according to DuBois20• Serum creatinine based 

renal function was calculated according to the simplified MORD formula19 • To 

analyze the separate contributors to differences in GFR, we performed linear 

regression, with respectively GFR, GFR/l .73m2BSA, GFR/height and GFR/ECFV as 

independent variables and age and gender as dependent variables. BSA or height 

was added as independent variable when appropriate. GFR, GFR/l .73m2BSA and 

GFR/height are expressed in ml·min-1, ml·min-1 . l .73m-2BSA, and ml·min-Lm-1, 

respectively. GFR/ECFV is expressed as %·h·1, corresponding to the % of the ECFV 

that is cleared per hour. This unit follows from dividing ml·min-1 (GFR) by ml 

(ECFV) · 60 (transforming min-1 in h·1) and · 100 (expression in %). 

Data analyses 

Data are expressed as mean ± SD in text and tables and plotted as mean ± SEM in 

figures. Student's T-Test or paired Student's T-test were used for comparing 

means, correlations were assessed as Pearson's Correlation coefficient. All analyses 

were performed by the Statistical Package SPSS 14.0. 
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Results 

Calibration of VdwT against Vdbromide 

In the experiments comparing V d10T and V dbromide, the GFR of the 4 8  included 

subjects ranged from 20 to 14 7 ml·min-1 (mean value 79 ± 41 ml·min-1). After 

equilibration-time serum levels of IOT were 2 79 ± 6 7, 2 79 ± 76, 2 76 ± 83, 2 80 ± 90 

and 2 84 ± 97 counts·ml-1·min-1 (ANOV A, p> 0.9), respectively at 1 .5, 2.5, 3.5, 4.5 and 

5.5 hours after start of the protocol. Thus, plasma levels of IOT were in steady state, 

a prerequisite for calculation of ECFV during the constant infusion method. 

In figure 1 the results of the simultaneous assessments of V d10T and V dbromide are 

shown. The ECFV obtained as Vdbromide was 16. 73 ± 3.15 1, and the ECFV obtained 

as Vd10T was 16. 71 ± 2.96 1 (ns). Vd10T and Vdbromide were strongly correlated (left 

panel, r= 0.933, p< 0. 001). In the Bland-Altman plot (right panel) no systematic error 

was apparent, with 95% limits of agreement ranging from -2.3 to 2.2 1. Similar 

results were obtained in the 30 subjects in which GFR was below 75 ml·min-1, i.e. 

subjects with a substantial extrarenal clearance of IOT, demonstrating the 

adequacy of our correction for extrarenal clearance of IOT. 
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Figure 1 left panel: scatterplot of extra cellular fluid volume (ECFV) simultaneously 

obtained as distribution volume (Vd) of bromide (y-axis) and Vd of 1251-iothalamate (IOT) 

(x-axis) with line of identihJ, Right panel: Bland Altman plot for Vdbromide and Vd10T with 

95% limits of agreement 
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Reproducibility and sensitivity to detect changes in ECFV 
Data from the reproducibility experiment are given in table 1, showing the 

duplicate measurements on low (50 mmol Na+/day) and high sodium (200 mmol 

Na+/day). Dietary compliance was good during all four periods, as shown by 24h 

urinary sodium excretion. ECFV, body weight (BW) and GFR were virtually 

identical during the duplicate measurements on low and high sodium, 

respectively. Reproducibility of the ECFV measurement was assessed separately 

for the two low sodium periods and the two high sodium periods. During low 

sodium the mean difference in ECFV (bias) was 1.3%, with a COV of 8.6 %. During 

high sodium, bias was 1.1 % with a COV of 13.1 %. 

Low sodium diet High sodium diet 

Period 1 Period 2 Period 1 Period 2 

Na+ excretion (mmol·24h·1) 35 ± 22 39 ± 16 250 ± 68 251 ± 65 

Body Weight (kg) 80.1 ± 11.0 80.2 ± 11.0 81.8 ± 11 .2 81 .7 ± 11 .3 

GFR (ml·min·1) 127 ± 20 129 ± 18 138 ± 21 137 ± 20 

ECFV as V dmT (I) 19.7 ± 2.7 20.0 ± 2.4 20.8 ± 2.8 21.1 ± 3.2 

MAP (mmHg) 85 ± 6  86 ± 8  87 ± 6  87 ± 7  

Table 1 Measurements in healthy young men (n=25) on four separate occasions 
Glomerular filtration rate (GFR); extra cellular fluid volume (ECFV); mean arterial 

pressure (MAP) 

In both periods, as anticipated, the shift from low to high sodium intake resulted in 

a rise in ECFV (Period 1: +1. 09 ± 2.2 1 (p= 0. 02); Period 2: +1 .13 ± 2. 0 1 (p< 0. 01)) 

without statistical differences between the two periods. The mean rise in ECFV 

induced by high sodium was 1.11 ± 1.491 (p< 0. 01), corresponding with a mean rise 

in BW of 1 .6 0 ± 0. 85 kg (p< 0. 01), as indicated in figure 2. The individual changes in 

BW were significantly and positively correlated to the individual changes in ECFV 

(r= 0.552, p< 0. 01). 
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Figure 2 Mean ± SEM for body weight 
(BW) and extra cellular fluid volume ECFV, 
respectively in subjects (n=25) in balance 
on low sodium (LS) and high sodium (HS) 
*p<0.001 
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GFR increased significantly from low to high sod.mm ( LL8 ± 18 versus 13'/ ± 18 

ml·min-1; p< 0. 01, figure 3). The sodium-induced rise in renal function was also 

significant for GFR/BSA (1 09 ± 13 versus 116 ± 12 ml·min-1·1 . 73m-2, p< 0. 01), as well 

as for GFR/BSA estimated by the MORD formula (97 ± 1 8  versus 1 05 ± 19 ml·min-

1·1. 73m-2, p< 0. 01) and for 24h CrCl/BSA: 94 ± 20 versus 1 06 ± 21 ml·min-Ll. 73m-2, 

p< 0. 01. However, renal function expressed as GFR/ECFV remained unchanged 

during the shift from low to high sodium: 39. 0 ± 3.6 %-h-1 and 39.6 ± 4.2 %·h-1(ns) as 

the rise in GFR was matched by a corresponding rise in ECFV. 
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Figure 3 Within-individual values: population of healthy young men (n=25), shown for 
subjects on low sodium diet (LS) and high sodium diet (HS), respectively. Mean glomerular 
filtration rate (GFR) ± SEM respectively for raw data, MDRD, indexed for body surface area 
(BSA) and indexed for extra cellular fluid volume (ECFV). *p<0.01- paired analyses. 
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Between subject normalization of GFR by ECFV 

To address the impact of expressing renal function as GFR/ECFV, we analysed 

data from 158 potential kidney donors. Their characteristics are given in table 2. 

Age (years) 

Body weight (kg) 

Height (cm) 

BSA (m2) 

GFR (ml·min·1) 

ECFV as V dwr (l) 

Potential kidney donors 

Male (n=73) Female (n=85) 

51 ± 11 52 ± 10 

91 ± 13 73 ± 11* 

183 ± 7  169 ± 6* 

2.07 ± 0.22 1.80 ± 0.20* 

132 ± 30 105 ± 20* 

22.9 ± 4.6 17.4 ± 2.5* 

Table 2 Characteristics of 

potential donor population 

(n=158). 

Body surface area (BSA); 

glomerular filtration rate 

(GFR); extra cellular fluid 

volume (ECFV); distribution 

volume of iothalamate (Vdiot). 

*p<0.01 male versus female. 

We analysed for the determinants of GFR, GFR/BSA, GFR/height and GFR/ECFV 

by multivariate modelling, and found the models shown in table 3. As shown in 

the left column, age, BSA and gender are all independent determinants of GFR. 

Second, in line with the first model, age and gender are both independent 

determinants of GFR/BSA, and of GFR/height. However, when GFR is indexed to 

ECFV, only age is an independent determinant for GFR. Thus, in healthy subjects, 

indexing to ECFV appears to nullify gender, BSA- and height-related differences in 

GFR. 

GFR GFR/BSA GFR/h GFR/ECFV 

� p � p � p � p 

Age -0.412 <0.01 -0.485 <0.01 -0.465 <0.01 -0.536 <0.01 

Gender -0.280 <0.01 -0.181 <0.01 -0.328 <0.01 0.058 ns 

BSA 0.329 <0.01 - - -0.146 ns 

Height * 0.342 <0.01 - - -0.092 ns 

Table 3 Linear regression models with respectively glomerular filtration rate (GFR) (r of 

model 0.702, p<0.001), GFR/body surface area (BSA) (r=0.518, p<0.01), GFR/height (r=0.580, 

p<0.01) and GFR/extra cellular fluid volume (ECFV) ( r=0.568, p<0.01) as dependent 

variable. *Height is replacing BSA in the models; all other f3 values are given for the 

models including BSA. 
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The impact of the various ways of indexing on the differences in renal function 

between men and women is illustrated in figure 4. Uncorrected GFR was higher in 

men (130 ± 2 8  versus 1 02 ± 25 ml·min-1, p< 0. 01). BW and height, and consequently 

BSA, were higher in men (table 2), but indexing to BSA did not nullify differences 

in GFR between men and women (GFR/BSA 1 05 ± 20 versus 96 ± 22 ml·min-Ll .73m-

2, p< 0. 01), and neither did indexing to height (GFR/height 72 ± 15 for men versus 62 

± 11 ml·min·m-1 for women, p< 0. 01). The same was true for GFR estimated by the 

MORD: 85 ± 1 8  and 76 ± 14 ml·min-Ll .73m-2, p< 0. 01. However, GFR indexed to 

ECFV was similar for men and women, being 35 ± 7 %-h-1 and 37 ± 6 %·h-1(ns). 
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E * 
140 � 90 M ' .... 
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1 30 
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Figure 4 Between-individual values: population of potential kidney donors shown by a 

break-up by men (n=73) and women (n=BS). Mean glomerular filtration rate (GFR) ±SEM 

respectively for raw data, MDRD, indexed for body surface area (BSA) and indexed for 

extra cellular fluid volume (ECFV). *p<0.01 

39 



Measuremrnt of Extra Cellular Fluid Volume with 1251-iothalamate 

Discussion 

Our study demonstrates the validity and reproducibility of assessing ECFV 

simultaneously with GFR by the constant infusion method with IOT. This provides 

not only a useful tool for pathophysiological studies on ECFV in renal conditions, 

but also allows the indexing of GFR to ECFV without need for additional 

procedures or parameters. As the Vd of other GFR-tracers also equal ECFV, renal 

function protocols with other tracers could similarly be validated for simultaneous 

assessment of ECFV. This will increase the diagnostic yield of renal function 

measurements by specific tracers. 

This is the first study to validate V dror as a measure for ECFV in human subjects. 

V dror was in good agreement with V dbromide as a gold standard for ECFV over a 

wide range of renal function. Moreover, the day-to-day variation of V dror was low, 

at least during standardized sodium intakes in healthy subjects, i.e. conditions 

where the biological variation in ECFV is low. Finally, a change in ECFV induced 

by a shift in sodium intake could be adequately detected by the assessment of 

Vdror. 

Other GFR tracers, such as inulin, 99mTc-DTPA, 51Cr-EDTA and iohexol2-9 have also 

been used for simultaneous assessment of GFR and ECFV. ECFV assessed as Vd of 

51Cr-EDTA had a day-to-day variation of 11.4%7; comparable to the reproducibility 

of Vdror in our study. Most studies report that ECFV can be adequately assessed by 

the GFR tracer studied, without however calibrating V d of the tracer against a gold 

standard for ECFV 4,6-8• V dbromide is considered the gold standard for ECFV 

assessment since its tissue content and serum distribution are well documented21 • 

Only one small study, in 10 healthy subjects, calibrated tracer V d against V dbromide. 
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In this study2 Vdiohexo1 correlated well with Vdbromide but Vdiohexo1 was on average 0. 7 

1 lower than V dbromide. For use in renal populations, however, the calibration in 

subjects with renal function impairment is needed, as renal function impairment 

can affect several factors relevant to the validity of the ECFV assessment, such as 

steady state kinetics and possible extrarenal clearance. Our study is by far the 

largest to provide calibration against V dbromide and moreover is the only to include 

subjects with renal function impairment, thus allowing conclusions on the use of 

combined measurements of GFR and ECFV in renal populations. 

The clearance of specific tracers such as iothalamate, iohexol or Cr-EDT A provides 

the gold standard for GFR measurement. As such measurements are relatively 

laborious and expensive, their use is mainly limited to specialized nephrological 

settings, such as screening of potential kidney donors, and research applications. 

Our data shows that the yield of GFR measurements can be increased by 

additionally providing an estimate of ECFV. As abnormalities in volume status are 

important in renal disease and its complications, this might prove a valuable tool 

for future studies. 

Body dimensions differ between individuals. GFR is usually indexed to account for 

differences in body dimension, generally to BSA22• However, the use of BSA for 

indexing has been criticized by several authors23-25• Indexing to height or ECFV has 

been recommended, but neither gained broad acceptance despite studies 

supporting their superiority over indexing to BSA11,26,27• In our study, GFR was 

gender dependent. This is in line with data by Turner, showing a difference in 

GFR/l. 73m2 BSA between men and women, which could be traced back to a fallacy 

of indexing for BSA27• The difference in renal function between men and women, 

as found for GFR/l. 73m2 BSA was annihilated when GFR was indexed to ECFV. 

Indexing for height, as recommended by others26,28, did not annihilate the 

41 



Mensure111e1 1 t  of Extra Cellular Fluid Volume with 125I-iothnln111nte 

difference between males and females in our study either, providing an argument 

against indexing to height. 

It has been pointed out recently that no gold standard is available to determine 

which indexing factor is best12 and that the best indexing factor for GFR would be 

the one which provides the best clinical validity. Final proof whether ECFV is 

indeed the best indexing factor for GFR, should therefore be provided by long term 

follow-up studies in which superiority of GFR/ECFV as predictor of renal outcome 

is studied. 

What is the physiological meaning of GFR/ECFV? ECFV is the body compartment 

which is cleared from toxins and waste products by the kidney. Expressing GFR as 

proportion of ECFV thus expresses clearance as a percentage of the volume 

compartment it clears. For instance, in our healthy volunteers GFR/ECFV was 

approximately 4 0%/hour, implicating that 4 0% of the ECFV is cleared per hour, 

and -the other way around-, that the kidneys need 2.5 hours to clear the complete 

ECFV. 

ECFV is regulated within relatively narrow boundaries, but it is not fixed. It adapts 

to altered sodium intake, as also confirmed here. It could be argued that this 

hampers its suitability as indexing parameter. On the other hand, considering GFR 

in relation to the prevalent ECFV may allow better interpretation of changes in 

GFR, by distinguishing between changes in GFR secondary to altered volume 

status and changes in GFR dissociated from changes in ECFV. In the current study 

we induced a modest change in ECFV by a shift in sodium intake to investigate 

whether the estimate by V dIOT was sufficiently sensitive to detect the change in 

ECFV. Indeed, V dm was significantly higher during high sodium intake. The rise 

in ECFV matched the anticipated rise in GFR and accordingly, GFR indexed to 
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ECFV was similar during low and liberal sodium intake. It would be of interest 

therefore, to have the information on simultaneous values of ECFV and GFR also 

in disease conditions where GFR, ECFV or both are disturbed. In diabetes for 

instance, elevated GFR and volume expansion occur in incipient diabetic 

nephropathy29,30• Although in a small cohort hyperfiltration seemed to be 

independent of ECFV expansion30, studies in large cohorts are lacking. Routinely 

implementing ECFV assessment in tracer-based GFR assessment potentially yields 

large study-cohorts which have an enormous explanatory potential for studying 

not only GFR, but also ECFV. 

Several limitations should be mentioned. First, P10T is used for the calculation of 

both GFR and ECFV, so the two are not arithmetically independent. As a 

consequence, a correlation between GFR and ECFV cannot simply be interpreted 

as a biological association. It should be emphasized however, that this does not 

invalidate the use of GFR/ECFV, as in this ratio Pm falls out of the equation. For 

this reason, as also pointed out by others, assessment of GFR/ECFV is less sensitive 

to procedural errors than assessment of GFR alone5,1 1 • Second, this is a single centre 

study, investigating one tracer and one measurement protocol only. Thus, for other 

settings separate validation and calibration is warranted. Yet, from a theoretical 

perspective and supported by several studies, single infusion methods using 

plasma disappearance curves are well-suited for ECFV assessment as well4• Finally, 

we studied mainly healthy subjects, and only a limited number of subjects with 

renal function impairment, none of them with clinically overt volume overload or 

oedema. Therefore, extrapolation of our findings to populations with gross 

abnormalities of ECFV and/or abnormal distribution of body fluid compartments 

needs more extensive validation. 
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In clinical practice creatinine-based approaches, be it renal function equations or 

CrCl, are the usual way to estimate renal function31,32• Creatinine-based renal 

function estimates are also generally indexed to body dimensions, usually BSA. 

However, the V d of creatinine cannot directly be established, so our strategy is 

unfortunately not applicable to creatinine based renal function measurements. 

In conclusion, our study demonstrates the feasibility and validity of measuring 

ECFV simultaneously with assessing GFR by 125I-iothalamate clearance, without 

need for adapting the GFR protocol. This not only enables indexing of GFR to 

ECFV but also provides information on ECFV in studies on renal function. ECFV is 

a major physiological parameter and disturbances are common in renal patients. 

By our approach, that also could be implemented for other GFR tracers, 

information on ECFV can be conveniently obtained as an additional parameter in 

subjects in whom GFR is measured. This will increase the yield of measurements of 

true GFR. 
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Abstract 

Accurate renal function measurement in subjects with normal or higher renal 

function is important for epidemiological screening and in the work-up for kidney 

donation. Creatinine based equations perform poorly in this range of renal 

function. Its 24h clearance (CrCl) may provide an alternative as tubular creatinine 

secretion is assumed absent when renal function is normal. Data on the validity of 

CrCl as estimate for glomerular filtration rate (GFR) in the normal or higher range 

are sparce. Therefore, we studied the predictive performance of 24h CrCl in 100 

potential kidney donors, and moreover, studied tubular handling of creatinine 

(FEcreat) by simultaneous assessment of true GFR (iothalamate clearance) and CrCl. 

Mean GFR was 117 ± 24 and 24 h CrCl 111 ± 31 ml·min-1• CrCl assessed 

simultaneously with GFR was 116 ± 27 ml·min-1 . Mean bias of 24h CrCl was 5.6 

ml·min-1; precision (r2) 0.582, and 30%-accuracy 87%. Bias of 24h CrCl significantly 

correlated to body mass index (BMI) (r=0.23, p<0.03) . FEcreat was 110 ± 11 %. BMI 

(r=0.388, p<0.01) was independently associated with higher FEcreat. 

In conclusion, the predictive performance of 24h CrCl as an estimate of GFR in 

healthy subjects was fair with however, systematic overestimation of GFR, in 

particular in overweight subjects. Tubular secretion of creatinine is present in 

healthy subjects, in particular in association with overweight. CrCl is useful to 

estimate GFR in the normal or higher range of renal function, but the impact of 

BMI on the systematic error should be taken into account. 
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Introduction 

Extensive and long standing experience is available on the measurement of renal 

function in subjects with renal disease and renal function impairment1,2• More 

recently, measurement of renal function in subjects without renal disease has 

become a focus of interest for several purposes, such as early detection of renal 

disease in the general population3, and screening of prospective kidney donors4• In 

addition, an elevated glomerular filtration rate (GFR) has recently been identified 

as an early manifestation of a metabolic risk profile5;6,7, re-emphasizing the need for 

well-validated renal function estimates for populations where renal function is in 

the normal, and higher range. 

The gold standard for GFR assessment is by the clearance of specific tracers, such 

as inulin and iothalamate2, but these are not routinely available. Creatinine-based 

renal function equations are therefore recommended in several guidelines (i.e. 

KDOQI8), as these are simple and cheap, and thus well-suited to the outpatient 

setting9,10• However, these equations were empirically developed in populations 

with renal function impairment, and their performance is modest to poor in 

populations without renal function impairment11-14• Creatinine clearance (CrCl) 

calculated from 24h urine collection is not recommended currently as an 

alternative, for two main reasons. First, the inaccuracy due to inaccurate 24h urine 

collection (i.e. the non-systematic error), and second, the considerable 

overestimation of GFR by CrCl in subjects with moderate to severe renal function 

impairment, due to tubular secretion of creatinine (i.e. the systematic error)15,16• As 

tubular secretion is assumed to be absent in subjects with normal or high GFR, 24h 

CrCl could be a suitable alternative for renal function measurement in populations 

with normal or even elevated renal function, provided that adequate 24h urine 

collection is ensured by a dedicated setting with proper instructions for urine 
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collection. However, data on the predictive performance of 24h CrCl for true GFR 

in non-renal populations, are sparse. 

The purpose of the current study is therefore, first, to determine the predictive 

performance of 24h CrCl in subjects without renal disease, and, second, to identify 

determinants of the systematic error, as the latter could potentially be eliminated 

by proper correction factors. To these purposes we measured 24h CrCl and true 

GFR (1251-iothalamate (IOT) clearance) in a population of prospective kidney 

donors, and analysed for the determinants of bias. Moreover, we assessed 2h CrCl 

simultaneously with IOT clearance, in order to assess possible tubular creatinine 

handling in this population. 

Methods 

Study population 

100 subjects screened as kidney donor between March 2006 and September 2007 

are included in the study. Subject characteristics are shown in table 1. 

Renal haemodynamic measurement 

GFR was measured by constant infusion of IOT, with correction for voiding errors 

by simultaneous measurement of the clearance of 1311-Hippuran as described by 

Danker et al. and Apperloo et al17,18• Briefly, an intravenous cannula was inserted 

for tracer infusion at 08.00 hours. The infusion fluid consisted of 4 MBq 1311-

Hippuran and 3 MBq IOT per 100 ml saline. First, a priming solution of 0.4 ml·kg-1 

BW was administered plus an extra 0.6 MBq IOT to ensure steady state of the 

plasma tracers within the time frame of the measurement. Thereafter, a continuous 

infusion was started. After a stabilization period of 1.5 hour, two 2-hour clearance 
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periods followed. GFR was measured as the urinary clearance of IOT (U-V/P) and 

corrected for voiding errors by multiplying U-V/Piot by the ratio of plasma 

clearance of 1311-Hippuran to urinary clearance of 1311-Hippuran. This correction 

method is based on the fact that, during steady state, the plasma clearance of 1311-

Hippuran equals its urinary clearance when urine collection is perfect. Thus, the 

voiding error can be calculated from the ratio of urinary clearance and plasma 

clearance of 1311-Hippuran. This GFR measurement has a day-to-day coefficient of 

variation (COV) of 2.2%. 

Creatinine Clearance 

Creatinine was measured with the Roche enzymatic creatinine assay. Serum 

creatinine samples were obtained during the measurement of iothalamate-GFR. All 

subjects collected a single 24h urine sample the day preceding iothalamate-GFR 

assessment, being out of hospital. 24h CrCl was calculated as U-V/P, in where U 

represents the concentration of creatinine in urine, V represents the volume of the 

24h urine sample and P represents the concentration of creatinine in serum. 

CrCl was also simultaneously measured to 'true GFR'. During the measurement of 

iothalamate-GFR, creatinine was measured in a 2 hour urine portion also used for 

iothalamate measurement. CrCl in this portion was subsequently calculated 

according U·V/P and corrected for voiding errors by the ratio of plasma clearance 

of 1311-Hippuran to urinary clearance of 1311-Hippuran. From the same sample also 

fractional excretion of creatinine (FEcreat) was calculated as (U·V/P)creat/ (U-V/P)iot. 

The MORD equation for estimated GFR (eGFR) was calculated as: 186-([creat]/88.4)-

1.154.age-0-203·0.742 (if female)19• As the MORD equation was developed based on 

creatinine measurements in the Cleveland Clinic laboratory, the absolute value of 
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eGFR depends on proper calibration of the creatinine assay, i.e. calibration of the 

creatinine values measured in our laboratory against those of the Cleveland Clinic 

Laboratory. This provided the following calibration equation: (creatinine 

Cleveland)= 1.07 · (Groningen enzymatic) + 2.92. The data on eGFR are presented 

in the current paper after adjustment for this calibration factor. Data used for the 

calculation of CrCl were not adjusted for the calibration factor as calculation of 

CrCl also involves urinary creatinine, for which no calibration was performed. 

Data analysis 

Predictive performance of 24h CrCl, simultaneously assessed CrCl, MORD and 

calibrated MORD were analyzed according to the method proposed by Bostom et 

al20, which expresses predictive performance of a measurement as bias, precision 

and accuracy. Bias is the mean prediction error and calculated as (CrCl-GFR) .  

Precision is  a value for the degree of spread and expressed as Pearson's correlation 

quotient {R2) .  Accuracy is expressed as % of observations within respectively 10% 

and 30% of true GFR. For the comparison of 24h CrCl and GFR, we used the 

method described by Bland and Altman33, plotting the average value of 24h CrCl 

and GFR against the difference (bias: 24h CrCl - GFR). 

Statistical analyses were performed using SPSS software version 14.0 (SPSS Inc., 

Chicago, IL, USA). Data are given as mean ± standard deviation. Pearson's 

correlation coefficients were calculated to account for univariate correlations. 
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Results 

Characteristics and measured variables of the population are given in table 1, 

showing that our population was middle-aged with a slight preponderance of 

women, and, as anticipated, normal renal function. Remarkably, FEcreat as 

calculated from the simultaneous clearances of IOT and creatinine was 11 0 ± 1 1  %, 

suggesting that some 1 0% of CrCl was accounted for by tubular secretion. 

Sex (male: female) 

Age (years) 

Body weight (kg) 

Height (cm) 

BMI (kg·m·2) 

Systolic blood pressure (mmHg) 

Diastolic blood pressure (mmHg) 

MAP (mmHg) 

GFR (ml·min·1) 

GFR/BSA (ml·min·1·1.73m·2) 

24h CrCl (ml·min·1) 

Simultaneously assessed CrCl ( ml·min-1) 

FEcreat (%) 

eGFR (ml·min-1·1.73m·2) 

Table 1 Baseline characteristics. 

45:55 

52 ± 11 

81.4 ± 15.1 

175 ± 9  

26.4 ± 4.0 

127 ± 15 

75 ± 10 

92 ± 11 

117 ± 24 

102 ± 17 

123 ± 37 

128 ± 37 

110 ± 11 

78.8 ± 13.2 

Body mass index (BMI); mean arterial pressure (MAP); glomerular filtration rate (GFR); 

body surface area (BSA); creatinine clearance (CrCl); fractional excretion of creatinine 

(FEcreat), estimated GFR (eGFR). 

In table 2 the predictive performance of 24h CrCl for the assessment of GFR is 

given, showing the mean prediction error (bias), the degree of spread (Pearson's 

R2) and accuracy ( %  of observations within respectively 1 0% and 30% of true GFR). 

The predictive performance of simultaneously assessed CrCl is also given, which 

allows to evaluate predictive performance devoid of urine collection errors. Both 

24h CrCl and simultaneously assessed CrCl significantly overestimated true GFR 

(p= 0. 02 and p< 0. 01,  respectively) Whereas 1 0% accuracy was poor for both 24h 
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CrCl and for simultaneously assessed CrCl, the 30% accuracy was high, in 

particular for the simultaneously assessed CrCl. As anticipated, eGFR significantly 

underestimated true GFR, with a mean bias of -23.5 ± 13.7 ml·min· l .73m-2. R2 was 

0.384, and 10%- and 30% accuracy were 21 % and 74%, respectively. 

Bias (ml·min-1) Precision (R2) 10%-accuracy (%) 30%-accuracy (%) 

24h CrCI 5.6 ± 22.4 0.582 48% 87% 

Simultaneous CrCI 12.3 ± 13.9 0.826 58% 95% 

"c 

Table 2 Predictive performance of 24h creatinine clearance (CrCl) and simultaneously 

assessed CrCl. 

Individual values for GFR and 24h CrCl are plotted in figure 1 (left panel), 

showing a reasonably good correlation (r==0.763, p<0.01) . A Bland-Altman plot of 

the correspondence between 24 hr CrCl and true GFR is given in figure 1 (right 

panel), showing a significant positive correlation (r==0.441, p<0.01), indicating a 

systematic error with overestimation of GFR by 24h CrCl in the higher range of 

GFR. 
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Figure 1 Left panel: scatterplot showing the univariate correlation between glomerular 

filtration rate (GFR; iothalamate clearance) and 24h creatinine clearance (CrCl); R2=0.568, 

p<0.01). Right panel: Bland-Altman plot for GFR and 24h CrCl. The dotted line shows a 

significant association between level of renal function and bias (r=0.441; p<0.01). 
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To identify determinants of the systematic error in table 3 univariate correlations 

between bias of 24h CrCl (left column) and simultaneously measured CrCl (middle 

column), respectively, and patient characteristics are given. 

Bias 24h CrCl 
Bias simultaneous 

FEcreat 
assessed CrCl 

r p r p r p 

Age -0.098 0.36 -0.087 0.39 0.002 0.98 
Gender -0.148 0.16 -0.241 0.02 -0.161 0.11 
Body weight 0.311 <0.01 0.417 <0.01 0.305 <0.01 

Height 0.194 0.07 0.095 0.35 -0.011 0.91 
MAP 0.100 0.35 0.012 0.91 -0.020 0.85 
BMI 0.234 0.03 0.459 <0.01 0.388 <0.01 

BSA 0.284 <0.01 0.344 <0.01 0.225 0.03 

24h Creatinine excretion Nd * 0.302 <0.01 0.180 0.08 

Table 3 Univariate correlations (r) between baseline characteristics and respectively: 

bias in 24h Creatine clearance (24h CrCl); bias in simultaneously assessed CrCl and 

fractional excretion of creatinine (FEcreat). Mean arterial pressure (MAP); body mass 

index (BMI); body surface area (BSA). *  data not given as 24h CrCl has a mathematical 

association with 24h creatinine excretion. 

The bias in 24h CrCl significantly and positively correlated with body weight 

(BW), body surface area (BSA) and body mass index (BMI; figure 2, right panel). 

When analysed by a break-up of BMI in weight categories, bias in 24h CrCl 

increased from 0.3 ± 17 ml·min-1 in lean subjects (BMI <25 kg·m-2) to 8.2 ± 25 ml·min-

1 in overweight (BMI 25-30) and 10.1 ± 24 ml·min-1 in obese subjects (BMI >30). A 

higher bias in simultaneously assessed CrCl (table 3, middle column) significantly 

and positively correlated to male gender, higher BW, BMI, BSA and 24h creatinine 

excretion. The univariate correlations between FEcreat and patient characteristics are 

given in the right column of table 3. FEcreat positively correlated with BW, BMI 

(figure 2, left panel) and BSA. In lean subjects FEcreat was 106 ± 12 %, in overweight 

and obese subjects it was 112 ± 11 % and 115 ± 8 %, respectively. 
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Figure 2 Scatterplot with univariate correlations for the association between body mass 

index (BMI) and fractional excretion of creatinine (FEcreat; left panel, r=0.388, p<0.01) and 

bias in 24h creatinine clearance (24h CrCl; right panel; r=0.234, p=0.03). 

To identify the independent contribution of the various univariate determinants, 

multivariate linear regression models were constructed. For simultaneously 

assessed CrCl the bias was best predicted by a model including gender (higher bias 

in men; �=0.205, p=0.04) and BMI (�=0.351, p<0.01), whereas 24h creatinine 

excretion dropped out of the model. In models including BW (R=0.380, p=0.001) or 

BSA (r=0.321, p<0.01) gender dropped out of the model; however, these models 

had a lower R. In the regression model with FEcreat as dependent variable, gender 

and 24h creatinine excretion dropped out of the model. A significant model could 

be built with only BMI (�=0.388, p<0.01) as independent variable. Models with only 

BW or BSA had lower R. 

A higher BMI itself was correlated to a higher serum creatinine (r=0.283, p<0.01) 

and a higher 24h creatinine excretion (r=0.439, p<0.01). Moreover, males had a 

higher BMI (27.3 ± 3.8 kg·m·2) than females (25.8 ± 3.9 kg·m-2, p=0.04). 
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Discussion 

In this study in healthy kidney donors the predictive performance of 24h CrCl for 

assessment of renal function was fair. Thus, in dedicated settings 24h CrCl can be 

useful to measure renal function in populations with renal function in the normal 

or higher range when gold standard methods are not available. However, a 

systematic error was identified with overestimation of GFR by CrCl that was 

particularly apparent in subjects with weight excess, amounting from 

approximately zero in lean subjects to approximately 10 ml·min-1 in obese subjects. 

FEcreat indicated net tubular secretion of creatinine in these healthy subjects. 

Remarkably, a higher BMI was an independent determinant of a higher FEcreat. 

Thus, the impact of BMI on the bias of CrCl and its impact on tubular handling of 

creatinine need to be accounted for in the interpretation of creatinine-based renal 

function assessment. 

Our first goal was to assess the predictive performance of 24h CrCl in a population 

with renal function in the normal or higher range. Albeit not perfect, the predictive 

performance of CrCl was satisfactory, and better than for eGFR. The predictive 

performance of eGFR in our population was in line with reports in the literature on 

populations with normal or only slightly impaired renal function11-13• Our data 

indicate that, at least in a dedicated setting where subjects are highly motivated to 

accurately collect 24h urine, 24h CrCl is better suited than eGFR for estimation of 

renal function in subjects with renal function in the normal and higher range. 

Remarkably, CrCl systematically overestimated GFR, suggesting net tubular 

secretion of creatinine. Overestimation of GFR due to tubular secretion of 

creatinine is well-established in subjects with moderate to severe renal function 

impairment15,21 but, to the best of our knowledge, it has not been established in 
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subjects with normal renal function. To establish the extent of tubular secretion of 

creatinine we measured FEcreat during simultaneous assessment of CrCl and 

iothalamate-GFR, to circumvent confounding effects by urine collection errors or 

by the diurnal rhythm of GFR. The mean FEcreat of 11 0% strongly supports the 

presence of net tubular secretion of creatinine in these healthy subjects. Higher BW, 

BSA and BMI were all associated with a higher FEcreat, suggesting that larger body 

dimensions and larger net creatinine supply are the common denominator of a 

higher FEcreat. However, the association between FEcreat and 24h creatinine excretion 

was of borderline significance only, and thus does not unequivocally support this 

assumption. 

Data from the literature nevertheless support an association between creatinine 

supply (i.e. creatinine levels in the peritubular capillaries) and tubular secretion of 

creatinine. First, the presence of net secretion of creatinine in subjects with renal 

function impairment and accordingly elevated creatinine levels, is well­

established15,21. In healthy subjects recent studies demonstrated that infusion of 

exogenous creatinine leads to increases in FEcreat up to 200% immediately after 

infusion22,23. Thus, apparently, also in healthy subjects tubular secretion rate of 

creatinine increases along with the supply of creatinine. As BW, BSA and BMI are 

probably all associated with larger muscle mass, larger food intake and therefore 

larger creatinine supply, we consider it likely that creatinine supply is at least 

partially involved in tubular secretion of creatinine in our population. However, 

the supply hypothesis does not explain why BMI was the main determinant of 

FEcreat, rather than BSA or 24h creatinine excretion. Differences in signal-to-noise 

ratio for the different parameters could be involved, but alternatively, specific 

effects of weight excess on tubular function could be postulated, that deserve 

further investigation. 
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For clinical application the systematic error in 24h CrCl warrants proper attention. 

The average overestimation was smaller than for the simultaneously assessed 

CrCl, probably due to the diurnal rhythm of renal function with lower values 

during the night that are incorporated in 24h CrCl24• Nevertheless, a higher BMI 

was also significantly associated to a higher bias in 24h CrCl. Whereas the 

overestimation was absent or negligible in lean subjects, it amounted to 8 and 1 0  

ml·min-1 in overweight and obese subjects, respectively. This systematic error will 

have to be taken into account when CrCl is used to evaluate renal function in 

subjects with weight excess. Increasing evidence supports an association between 

early metabolic abnormalities and elevated CrCl25,26, assessed from creatinine­

based renal function estimates. Whereas the association between weight excess and 

an increase in true GFR is well-established27,28, our current data suggest that 

elevation in measured CrCl contains not only a component of elevated filtration, 

but also of elevated tubular secretion of creatinine. Whether accounting for this 

differential mechanism of increased creatinine clearance can improve its prognostic 

impact, would be highly interesting to pursue in epidemiological studies. 

Our findings suggest that the validity of expressing tubular function as clearance 

of a substance divided by clearance of creatinine is biased in a BMI dependent 

way. For instance, FENa+ would be underestimated by some 8 to 1 0  % in overweight 

and obese subjects, leading to biased conclusions on the extent of altered sodium 

handling in subjects with weight excess. 

For better estimation of renal function from CrCl correction for BMI could be 

considered, as this can reduce or annihilate the BMI-related error. This would 

require data from larger populations. Furthermore, cimetidine can block tubular 

handling of creatinine29, and may thus be useful as a tool to substantiate our 
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inferences on tubular secretion of creatinine. Finally, it should be noted that 

Cystatin C, rather than creatinine has been advocated as a suitable marker for renal 

function in the normal or upper range30
,
31

• Further studies would be needed to 

determine the performance of CrCl with proper correction for tubular handling, as 

compared to Cystatin C. 

Several limitations of our study should be considered. First, we used a single 

outpatient collection of 24h urine. Inaccurate urine collection is considered the 

most important threat to the validity of 24h urine. The use of 2 or 3 24h urine 

samples to improve the validity of 24h CrCl has been proposed32, so possible the 

predictive performance of 24h CrCl could be improved. Second, we had no 

information on food intake, which may have been involved in some of the 

associations we observed. Finally, it should be mentioned that the absolute level of 

the bias strongly depends on the actual calibration of the creatinine assay. 

However, the absolute values of creatinine cannot explain the association of 

creatinine handling with BMI. 

In conclusion, in this population of healthy kidney donors the predictive 

performance of 24h CrCl was satisfactory, demonstrating its feasibility for renal 

function assessment in subjects with renal function in the normal or upper range. 

Remarkably, our data support the presence of tubular secretion of creatinine in 

these healthy subjects, that was particularly apparent in overweight and obesity. 

The impact of BMI on tubular handling of creatinine will have to be accounted for 

in studies addressing the renal phenotype in overweight and obesity. 
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Abstract 

A high sodium intake (HS) is associated to increased cardiovascular and renal risk, 

especially in overweight subjects. We hypothesized that abnormal sodium and 

fluid handling is involved, independent of hypertension or insulin resistance. 

Therefore, we studied the relation between body mass index (BMI) and sodium 

induced changes in extra cellular fluid volume (ECFV; distribution volume of 1251-

iothalamate) in 78 healthy men, not selected for BMI. 

78 subjects with a median BMI of 22.5 (range: 19.2-33.9 kg·m-2) were studied after 

one week on a low sodium diet (LS, 50 mmol Na+/day) and after one week on HS 

(200 mmol Na+/day). The change from LS to HS resulted in an increase in ECFV of 

1.2 ± 1.8 1. Individual changes in ECFV were correlated to BMI (r=0.361, p<0.01). 

Furthermore, in response to HS, a higher BMI was associated to a higher rise in 

filtered load of sodium (FLNa+= [Na+] -GFR, r=0.281, p<0.05). 

Thus, a shift to HS leads to a larger rise in ECFV in healthy subjects with higher 

BMI, associated with an elevated FLNa+ during HS. Although no hypertension 

occurred in these healthy subjects, our data provide a potential explanation for the 

interaction of sodium intake and BMI on cardiovascular and renal risk. 

Exaggerated fluid retention may be an early pathogenic factor in the cardio-renal 

complications of overweight. 
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Introduction 

Several lines of evidence suggest an interaction between weight excess and high 

sodium intake on cardiovascular and renal risk profile. First, epidemiological 

studies have shown an association between high dietary sodium intake and an 

increased cardiovascular morbidity and mortality1-3, that appears to be absent in 

lean subjects4,5• In line, in the PREVEND study an association between sodium 

intake and the cardiovascular and renal risk marker micro-albuminuria was found 

that was strong in overweight, and particularly obese subjects, but absent in lean 

subjects6• Moreover, weight excess is well-known to be associated with the sodium 

sensitivity of blood pressure7,8• Finally, we recently reported that high sodium 

elicits a renal hyperfiltration profile in overweight, but not lean young men9• 

Together, these data suggest that weight excess modulates the adverse effects of 

excess sodium intake on cardiorenal risk profile. 

The mechanism underlying this interaction has not been well established, but 

effects of weight excess on renal sodium handling and volume homeostasis are 

likely. In obese subjects with the metabolic syndrome tubular sodium reabsorption 

is increased10• Moreover, hypertensive obese subjects have a higher extra cellular 

fluid volume (ECFV) than non-obese subjects without hypertension11• Metabolic 

syndrome and insulin resistance may well be involved in the association between 

weight excess and volume homeostasis12, but data from our group demonstrate 

that renal effects of weight excess also occur independent of the metabolic 

syndrome and/or hypertension9,13 • Of note, the effects of body mass index (BMI) on 

renal risk profile are not limited to overt or morbid obesity, but extend to well into 

the overweight range, i.e. a BMI between 25-30 kg/m2, and perhaps even lower, 

thus extending to a considerable proportion of the population. To test the 

hypothesis that BMI is a determinant of volume homeostasis in healthy subjects we 
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studied renal sodium handling and ECFV in 78 normal subjects in balance on low 

and high dietary sodium intake, respectively, and analysed for a possible 

interaction between BMI and sodium homeostasis. 

Methods 

This study is a post-hoc analysis from a larger study published earlier on the 

impact of BMI on the renal haemodynamic adaptation to high sodium intake9• 

Recently, we showed that renal function assessment with the specific tracer 1251-

iothalamate (IOT), could also be used for estimation of ECFV14
• The assessment of 

ECFV needs a single additional urine sampling that is not needed for glomerular 

filtration rate (GFR) assessment, to assess urinary excretion of IOT during the run­

in period. This additional sampling was introduced only after the first 18 subjects 

had been studied. Accordingly, ECFV could be estimated in 78 out of the original 

96 subjects; only these 78 healthy males were included in the current analyses. The 

subset of 78 subjects was not different to the total population of 96 subjects in age, 

blood pressure, body weight (BW), length, BMI or ECFV (all p>0.5). The study was 

approved by the local medical ethics committee, in accord with the Declaration of 

Helsinki Principles, and all participants gave written informed consent. 

Study protocol 

Subjects were studied at the end of two different 7-day periods, during which they 

used a low sodium diet (LS; 50 mmol Na+/day) and a high sodium diet (HS; 

200 mmol Na+/day), respectively. Potassium intake was standardized at 

80 mmol/day. Otherwise, the subjects continued their usual food habits. For 

assessment of dietary compliance and sodium balance, 24 h urine was collected at 
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day 4 and day 6 during each period. During both periods, the subjects were 

ambulant and continued their normal activities. 

At day 7 of both study periods, the subjects reported at the research unit at 08. 00 

hours, after having abstained from food and alcohol overnight. Height and BW 

were measured at the start of this day. During the study day, subjects remained in 

a semi-supine position except during voiding. One intravenous cannula was 

inserted in each forearm. One was used for infusion of tracers and the other for 

infusion of fluids and blood sample withdrawal. Blood was collected for fasting 

glucose and insulin determination. At 11 . 00 hours, blood was withdrawn for 

determination of active plasma renin concentration and aldosterone. Sodium 

intake during the day was adjusted according to the actual diet in the concerning 

diet period. To ensure sufficient urine output, 250 ml of 5% glucose solution was 

administered in the right antecubital vein and subjects were provided with 250 ml 

of oral fluids every hour. After a 2 hour run-in period, GFR and ERPF were 

measured as the clearances of constantly infused IOT and 1311-Hippuran, 

respectively. In this set-up, GFR is measured as the urinary clearance of IOT, and 

corrected for voiding errors by the ratio of plasma to urinary clearance of 131I­

Hippuran15,16. ECFV is measured as the distribution volume of IOT during steady 

state, as described in more detail previously14. Briefly, the distribution volume of 

IOT is calculated from the plasma level of IOT divided by the total amount of IOT 

in the body, which equals the amount infused minus the amount excreted. It is 

calculated as 'f.(I-V)+Bolus-'f.(U-V)/P, and expressed as ECFV/BSA, i.e. l·l. 73m-2BSA. 

GFR, ERPF and ECFV measured as outlined above, has a day-to-day variation of 

2.5, 5 and 9.2 %, respectively14,15. 

Blood pressure was assessed with an automatic device (Dinamap®) at 15 min 

intervals. Mean arterial pressure (MAP) was calculated as diastolic pressure plus 
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one-third of the pulse pressure. Data on sodium handling were calculated as the 

mean of the two one-hour clearance periods, simultaneously with the GFR 

measurements. Fractional excretion of sodium was calculated as (U-V)/P of sodium 

divided by GFR and expressed as %. Filtered load FLNa+ was calculated as 

[Na+] -GFR and tubular reabsorption of sodium (TRNa+) as FLNa+ minus urinary 

excretion; both were expressed in mmol·min-1 . 

Calculation of BSA and BMI 

Body Surface Area (BSA) and BMI were calculated from data obtained after a one­

week low sodium diet. BMI was calculated as BW (in kg) divided by the square of 

height (m) . BSA was calculated according to17: 0.007184-height (cm)o.72s.Bw (kg)D-425• 

ECFV is given indexed to l.73·BSA, to make comparison between subjects possible. 

Chemical analysis of urine and blood samples 

Urinary concentrations of sodium and potassium and blood concentrations of 

sodium and lipids (fasting) were measured by standard auto-analyser technique 

(MEGA, Merck, Darmstadt, Germany) . Insulin was determined on an AxSym with 

a threshold of 1.0 µU·ml-1 and intra-assay and inter-assay coefficients of variation 

of 2.6 and 4.3%, respectively (Abbott BV, Amstelveen, The Netherlands). Plasma 

glucose was determined by glucose-oxidase method (YSI 2300 Stat plus, Yellow 

Springs, OH, USA). Active plasma renin concentration was determined in terms of 

angiotensin I generation using a radioimmunoassay18• Aldosterone was measured 

with a commercially available radioimmunoassay kit (Diagnostic Products 

Corporation, Los Angeles, CA, USA). As a measure for insulin resistance, the 

HOMA index was calculated as19 [insulin (fasting plasma level)·glucose (fasting 

plasma level)] / 22.5. 
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Data analysis 

Data were analyzed using SPSS 14. 0 (SPSS Inc., Chicago, IL, USA). Data were 

expressed as mean ± SD in text and tables and as mean ± SEM in figure 1. Simple 

Pearson's parametric correlation was used for continuous analysis. Furthermore, 

the paired sample T-test was used for paired analyses (LS versus HS), the 

independent samples T-test for other parametric data and a Wilcoxon's signed rank 

test for other non-parametric data. Data on ECFV were analyzed both as crude 

values and after normalization for BSA. Since no essential differences between the 

two analyses were found, ECFV is only given normalized to BSA. 
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Results 

The study population consisted of 78 healthy normotensive Caucasian men (age 24 

± 6 yrs) not selected for BMI. All subjects had normal blood pressure, with a 

systolic blood pressure <140 mm Hg and diastolic blood pressure <90 mm Hg, both 

after low sodium (LS) and high sodium diet (HS). All medical histories were 

without significant disease, and results of physical examination were 

unremarkable. In none of the subjects signs of diabetes or the metabolic syndrome 

were present. Height was 185 ± 7 cm; BW during low sodium 79.0 ± 10.4 kg. 

Median BMI was 22.5, ranging from 19.0 to 33.7 kg/m2• 

Subject characteristics by BMI: effect of sodium intake 

In table 1 subject characteristics are shown for measurements after one week LS 

and one week HS diet, and by a break up by median BMI. No differences in blood 

pressure, fasting glucose, insulin, HOMA index, serum cholesterol, HDL 

cholesterol, LDL cholesterol or triglycerides were found between the subgroups 

with highest and lowest BMI. Blood pressure rose significantly when shifting from 

LS to HS (MAP: 86 ± 7 vs 88 ± 7 mmHg respectively, p<0.01); however, without 

differences between the BMI groups. 

Adherence to the sodium diet was good and equal between the BMI groups. [Na+] 

rose significantly when shifting from LS to HS (138 ± 3 vs 139 ± 3 mmol-1-1 

respectively, p=0.01), without differences between the BMI groups. During LS 

intake all parameters of renal function and sodium handling, as well as 

ECFY.1.73m-2 were similar between the groups. However, during HS, significant 

differences in renal sodium handling and volume status emerged between the 

groups. ECFV· l .73m-2 was significantly higher in the higher BMI group, i.e. 16.7 ± 

1.4 vs 18.1 ± 1.6 l·l.73m-2 (p<0.001) as also illustrated in figure 1. Renal sodium 
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handling was different between the groups during high sodium only, with a 

higher FLNa+ in the higher BMI group, mainly related to the significantly higher 

GFR. TRNa+ was higher as well; FENa+ was lower in the higher BMI group, but this 

difference did not reach statistical significance (p=O.l). 

Low Sodium intake High Sodium intake 

BMI < median BMl > median BMI < median BMl > median 

MAP (mmHg) 85 ± 6  88 ± 8  87 ± 7  89 ± 6  
Body Weight (kg) 73.4 ± 6.2 84.5 ± 10.8* 74.6 ± 6.4 86.0 ± 10.9* 
Height (cm) 186 ± 6  185 ± 7  - -
BMI (kg·m·2) 21.1 ± 0.9 24.6 ± 2.5* 21.5 ± 0.9 25.0 ± 2.5* 
Glucose (mmol·I-1) 4.7 ± 0.7 4.6 ± 0.7 4.6 ± 0.6 4.5 ± 0.5 
Insulin (mU·l·1) 11 .1 ± 6.7 10.2 ± 4.9 9.4 ± 4.3 9.9 ± 5.3 
HOMA 2.4 ± 1.7 2.1 ± 1.1 1.9 ± 1 .0 2 .0 ± 1 .2 
Total cholesterol (mmoH-1) 4.3 ± 0.8 4.2 ± 0.6 4.1 ± 0.8 4.2 ± 0.7 

Triglycerides (mmoH-1) 1.2 ± 0.6 1.2 ± 0.6 1.1 ± 0.6 1.1 ± 0.5 
HDL-cholesterol (mmoH-1) 1 .3 ± 0.3 1 .3 ± 0.3 1.3 ± 0.3 1 .3 ± 0.3 
LDL-cholesterol (mmoH-1) 2.6 ± 0.6 2.5 ± 0.6 2.4 ± 0.6 2.6 ± 0.6 

Na+ excretion (mmol·24h·1) 38 ±25 37 ± 21 241 ± 68 243 ±61 
Serum [Na+] (mmoH-1) 138 ± 3  139 ± 3  139 ± 3 140 ± 3  
ECFV (1·1.73m·2) 16.3 ± 1.8 16.7 ± 1.4 16.7 ± 1.4 18.1 ± 1.6* 
FLNa+ (mmol·min·1) 17.4 ± 2.2 18.4 ± 2.6 18.5 ± 2.3 20.2 ± 2.7* 
TRNa+ (mmol·min·1) 17.3 ± 2.2 18.3 ± 2.6 18.1 ± 2.3 19.9 ± 2.8* 
FENa+ (%) 0.51 ± 0.4 0.45 ± 0.4 1 .75 ± 0.6 1 .52 ± 0.7 
GFR (ml·min·l) 125 ± 16 132 ± 18 131 ± 15 145 ± 18* 
PRA (nmoH-1·h·1) 6.4 ± 3.2 6.5 ± 3.6 2.3 ± 1 .2 2.3 ± 1.2 
Aldo (nmol·l·1) 135 ± 71 160 ± 104 46 ± 26 42 ± 28 

Table 1 Characteristics after one week low sodium and one-week high sodium diet 

according to a break-up according to median body mass index (BMI); MAP, mean arterial 

pressure(MAP) ; homeostatic model assessment (HOMA); extra cellular fluid volume 

(ECFV); glomerular filtration rate (GFR); filtered load of sodium (FLNa+); tubular 

reabsorption of sodium (TR.Na+; fractional excretion of sodium (FENa+); plasma renin 

activity (PRA); aldosterone (Aldo) . * p<0.01 low vs high BMI-group. 
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* 
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Figure 1 Values for extra cellular 

fluid volume (ECFV), for 

respectively low (LS) and high 

dietary sodium (HS) intake shown 

for a break-up according to 

median body mass index (BMI). 

* p<0.01 low versus high sodium 

intake. # p<0.01 BMI below versus 

above median. 

": - HS 
r'" 18 * 

� 17 

� 16 

BMI < median BMI > median 

In table 2 the sodium induced changes in renal sodium handling and ECFV are 

summarized. The shift from low to high sodium elicited a modest rise in ECFV 

(p< 0. 05) in the lower BMI group with a significantly larger rise in ECFV (p< 0. 01 

low vs high BMI group) in the higher BMI group. FLNa+ increased more in the 

higher BMI group, reflecting a larger rise in GFR (+ 12.3 ± 9. 8 vs +6. 7 ± 12. 0 ml·min·1 

in the lower BMI group, p= 0. 02) and larger rise in filtration fraction (FF) (+ 0.97 ± 2 

vs - 0.16 ± 2 %, p= 0. 03) in that group. TRNa+, expressed in mmol·min-1 also increased 

more in the highest BMI group. Thus, the sodium-induced increase in TRNa+ was, in 

parallel to the increase in FLNa+ higher in the highest BMI group. As a measure for 

relative blunting of tubular reabsorption, FENa+ rose less in the highest BMI group, 

but this finding did not reach statistical significance (p= 0.12). 

Sodium induced changes Correlation (r) 

BMl< median BMl > median with BMI 

A ECFV (l·m·2·1.73·1) 0.5 ± 1.6 1 .5 ± 1 .5* 0.361** 

A FLNa+ (mmol·min·1) 1.0 ± 1.6 1.9 ± 1 .3* 0.329** 

A TR.Na+ (mmol·min·1) 0.8 ± 1.6 1 .7 ± 1 .2* 0.341** 

A FENa+ (%) 1 .25 ± 0.6 1 .12 ± 0.6 -0.210 (ns) 

Table 2 Sodium induced changes shown according to a break-up according to median body 
mass index (BMI) with in the right column the correlation coefficient (r) for the univariate 
correlation with BMI., extra cellular fluid volume (ECFV); filtered load of sodium (FLNa+); 
tubular reabsorption of sodium (TRNa+); fractional excretion of sodium (FENa+). *p<0.05 low 
vs high BMI group. **p<.05 for continuous univariate correlation with BMI. 
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BMI as a determinant of ECFV during high sodium intake 

A higher BMI significantly correlated to a larger rise in ECFV (r= 0.361, p< 0. 01) as 

shown in figure 2 and table 2, right column. The correlation was still significant 

after exclusion of the 2 subjects with a BMI >30 kg·m-2 (n= 76; r= 0.32 8, p< 0. 01). These 

univariate data were confirmed by multivariate analysis. In the model, with an r2 

of 0.131, BMI was the only significant predictor of the change in ECFV (f3= 0.361, 

p< 0. 01) as dependent variable; forced entry of blood pressure, age and renal 

haemodynamics did not improve the model. Furthermore, as shown in table 2, 

BMI correlated with a larger sodium induced change in FLNa+ (r= 0.2 81, p< 0. 05) and 

in TRNa+ (r= 0.293, p< 0. 05), but not to the change in [Na+] or MAP. Correlations with 

the changes in FENa+ did not reach statistical significance. During LS diet, FLNa+, 

TRNa+ and FENa+ did not correlate to BMI. During HS however, a higher FLNa+ ( 0.356, 

p< 0. 01 ), a higher TRNa+ (r= 0.373, p< 0. 01) and a lower FENa+ (r=- 0.263, p< 0. 05) was 

significantly correlated to a higher BMI. 

Figure 2 Scatterplot for the 

shift in extra cellular fluid 

volume (ECFV) from low 

sodium to high sodium intake 

versus body mass index (BMI). 

r=0.361, v<0.01 
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Results on correlations between BMI and sodium induced renal haemodynamic 

changes presented in earlier report9, were reproduced in the subset used for the 

current study, namely a correlation between BMI and a sodium induced rise in 

GFR (r= 0.233, p< 0. 05) and in FF (r= 0.2 7  4, p< 0. 05); BMI was not related to the 

sodium induced rise in ERPF. 
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Discussion 

The current study is the first to demonstrate that BMI determines the response of 

ECFV to a rise in sodium intake in healthy young adults. The rise in ECFV in 

response to a high sodium diet was larger in subjects with a higher BMI, even in 

the absence of overt obesity, or hypertension. As a consequence, during high 

sodium intake ECFV /BSA was significantly higher in overweight subjects than in 

lean subjects, whereas during low sodium diet it was not different. Our data 

suggest that effects of BMI on volume regulation may be involved in the combined 

effects of weight excess and sodium intake in long term cardiovascular risk in 

epidemiological studies. 

Our study was performed in healthy young men. To be able to dissect the effects of 

a higher BMI as such from those of its complications, hypertension and diabetes 

were exclusion criteria. Moreover, none of the subjects in our study met the criteria 

of the metabolic syndrome, and HOMA was normal in all subjects, suggesting that 

insulin resistance was not involved. The effects on sodium homeostasis thus 

appear to be related to the higher BMI per se as rather than to any of its 

complications. Our population was not selected for weight excess, median BMI 

was 22.5 kg·m-2, and only two subjects were obese. Thus, the weight excess in our 

population was not particularly prominent and it is remarkable that clear-cut 

effects on volume status could nevertheless be observed. Yet, this is consistent with 

data demonstrating that the association between young adult BMI, metabolic risk 

factors, and long term risk also extends to the range of BMI below 259,13,20,21 • 

Altered sodium handling and volume excess have been reported previously in 

overt obesity and the metabolic syndrome10,12,22-24• In the Olivetti study obesity and 

the metabolic syndrome were associated with increased tubular sodium 
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reabsorption as well as hypertension10,12, and Chagnac reported altered tubular 

sodium handling in morbidly obese subjects24. Our study is the first to demonstrate 

BMI-dependent altered volume homeostasis in the absence of overt obesity, i.e. in 

the overweight range, in healthy young adults. Apparently, overt obesity or 

presence of the metabolic syndrome are not a prerequisites for BMI dependent 

alterations in sodium status. This is consistent with the assumption that abnormal 

renal sodium may be a causal factor in overweight-associated morbidity rather 

than a consequence. 

In our study the effects of BMI on volume status were not associated with an effect 

on blood pressure. Apparently in these normotensive subjects blood pressure was 

not volume-dependent - at least not over the range of volume change investigated 

here - and peripheral vasodilatation accounted for a stable blood pressure despite a 

higher ECFV. The absence of an association with higher blood pressure allows to 

conclude that the altered sodium handling was not secondary to the presence of 

hypertension in subjects with higher BMI. This is relevant to note, as most 

observations on altered sodium handling in obesity were made in hypertensive 

conditions, be it in animal studies or in human10,1z,zz,24-26. 

What could be the clinical relevance of an effect on sodium status without a blood 

pressure effect? Several lines of evidence support adverse effects of high sodium 

intake that are independent of blood pressure. For instance, the association 

between high sodium intake and left ventricular hypertrophy is on partly 

dependent on blood pressure27. Moreover, several epidemiological studies have 

shown an association between sodium intake and cardiovascular morbidity and 

mortality that is independent of blood pressure1,2. Remarkable, this also accounts 

for the combined effects of BMI and sodium intake on long term outcome4,5• Excess 
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expansion of ECFV, and its consequent volume load for the heart would be a 

plausible candidate mechanism underlying blood pressure independent effects of 

high sodium intake. As ECFV is not usually measured however, data to directly 

support this assumption are lacking. 

We previously reported on the effect of BMI on the renal haemodynamic response 

to high sodium intake9• Our current report addresses the concomitant effects on 

ECFV in a large subset of this population. The effects on renal haemodynamics in 

this subset were fully in line with those of the whole population, namely a more 

pronounced rise in GFR in the subjects with the higher BMI. In fact, the impact of 

BMI on the responses of GFR and ECFV to high sodium was strikingly similar, 

suggesting that the more pronounced rise in GFR in the overweight subjects might 

be due to the more pronounced rise in ECFV. In this concept, overweight­

associated hampered suppression of tubular reabsorption would be the primary 

phenomenon, and the exaggerated rise in ECFV and GFR its consequence, 

allowing the achievement of sodium balance by a larger increase in filtered load. 

This study has several limitations. First, we used BMI as a measure for adipose 

tissue, although it is only an indirect assessment. Second, we approximated renal 

sodium handling by measuring the fractional excretion of sodium, without 

however data allowing to dissect between proximal and distal tubular sodium 

handling. Moreover, it should be mentioned that ECFV is directly related to body 

dimensions. Thus, differences between individuals should be interpreted with 

caution as these are less robust than those on the within-individual sodium­

induced changes. Finally it should be mentioned that we investigated ECFV after 

only one week of altered sodium intake. Whereas this was sufficiently long to 
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achieve sodium balance again, it is unknown whether the differences observed 

here persist during long term follow-up. 

From our data it could be hypothesized that a low sodium intake could have the 

potential to prevent part of the cardiovascular and/or morbidity associated with 

weight excess, but long term data would be needed to substantiate this 

assumption. 

We conclude that in young healthy men a higher BMI is associated with a larger 

increase in ECFV during high sodium intake. These data suggest that altered 

sodium and fluid handling may be an early phenomenon in the pathophysiological 

consequences of weight excess, and that dietary sodium restriction may have 

preventive potential in overweight subjects. 
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Abstract 

In hypertension, sodium sensitivity of blood pressure (SS) is associated with renal 

haemodynamic abnormalities, related to increased activity of the renal renin 

angiotensin aldosterone system (RAAS). The renal mechanisms of SS in 

normotensives are unknown. Therefore we studied whether SS is related to renal 

haemodynamics and renal responsiveness to angiotensin II (AngII) in young 

healthy adults. 

Blood pressure and renal function and extra cellular fluid volume (ECFV; 

distribution volume (Vd) of 1251-iothalamate (IOT)) were measured in 34 healthy 

men after one week low (LS; 50 mmol Na+·2 4h-1); one week high sodium diet (HS; 

200 mmol Na+·24h-1); and one week HS-ACEi (enalapril 20 mg/day). The responses 

of effective renal plasma flow (ERPF; 1311-Hippuran clearance) to graded infusion of 

AngII were assessed during each condition. 

The sodium-induced change in mean arterial pressure (MAP) ranged from - 7  to + 

1 4  mmHg. SS (a sodium-induced increase in MAP >3 mmHg) was present in 13 

subjects. ERPF was lower in SS subjects during LS and during HS-ACEi. ECFV was 

higher during HS intake. The AngII-induced decrease in ERPF was blunted in SS 

on LS (-25 ± 6 vs -29 ± 7 %  in sodium resistant subjects, p< 0. 05) and on HS (-30 ± 5 vs 

-35 ± 6 %, p< 0. 05). The blunting was corrected by ACEi (-36 ± 6 vs -37 ± 7 %, ns). 

SS normotensive subjects have a blunted renal response to exogenous Angil. This 

is ameliorated by ACEi, supporting a role for inappropriately high intra-renal 

RAAS activity. As these findings cannot be attributed to subclinical renal 

hypertensive damage, high intra-renal RAAS activity and altered renal 

haemodynamics may be primary phenomena underlying SS. 
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Introduction 

The response of blood pressure to a change in sodium intake is characterized by a 

wide interindividual variability. In hypertensive patients sodium sensitivity of 

blood pressure (SS) is associated with the presence of cardiovascular risk factors1-3, 

an elevated cardiovascular and renal risk2,4 and an elevated mortality5• Thus, SS 

appears to herald susceptibility to cardiovascular and/or renal damage. Therefore, 

elucidation of its underlying mechanisms is important. 

The pathogenesis of SS is complex and multiple pathways appear to be involved, 

such as hampered action of natriuretic peptides, elevated endogenous ouabain like 

substances, reduced excretion of renal kallikrein, renal inflammation, oxidative 

stress and blunted arterial baroreflex sensitivity6• A consistent line of research 

points towards a role of the renin angiotensin aldosterone system (RAAS)7. 

Suppression of RAAS-activity, leading to vasodilatation in the renal and systemic 

vascular bed, and facilitating sodium excretion, plays a main role in the adaptation 

to a higher sodium intake8• A role for inappropriately high intra-renal RAAS­

activity in SS, during high sodium in particular, is supported by studies in SS 

hypertensives. These studies showed SS hypertension to be associated with 

decreased renal plasma flow1,2,9 and a blunted renal vasodilator response to high 

sodium intake8,9• Moreover, the renal haemodynamic response to exogenous 

angiotensin II (AngII) is blunted. The latter is corrected by RAAS blockade8,9• 

Finally, there is a more pronounced renal haemodynamic response to RAAS­

blockade during high sodium intake3
,
8

• Together these findings suggest a role for 

increased intra-renal RAAS-activity, in particular during high sodium intake. 

Most human data on renal mechanisms of sodium sensitivity were obtained in 

middle-aged subjects with established hypertension and/or signs of target organ 
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damage1-3,8,9• Elegant animal data support a role for acquired subclinical renal 

interstitial damage in the pathogenesis of SS, as induction of interstitial changes 

consistently induced 5510• Thus, the RAA5-dependent renal mechanisms of 55 as 

documented in S5 hypertensives, might be the result of secondary subclinical renal 

damage due to the pre-existent state of hypertension. 

In normotensive subjects S5 can also be present, albeit at a lower prevalence than 

in hypertensive populations11 • Interestingly, in normotensive subjects SS predicts 

mortality as well5, supporting its pathophysiological relevance. The aim of the 

present study therefore, was to investigate renal mechanisms of 5S, independent of 

possible subclinical hypertensive renal damage. In particular, we investigated 

whether the above-mentioned signs of inappropriate intra-renal RAA5 activity, as 

documented in hypertensives, could also be detected in normotensive sodium 

sensitive young men. 

Methods 

Study population 

34 healthy, non tobacco or medication using Caucasian men (26.5 ± 9 .4 years) were 

recruited for the study. Their medical history revealed no significant diseases. 

Physical examination was unremarkable. All subjects were normotensive with a 

systolic blood pressure lower than 140 mmHg and diastolic blood pressure lower 

than 85 mmHg in the sitting position. Family history of hypertension was defined 

as at least one parent or sibling with hypertension. This study was approved by the 

medical ethical committee of the University Medical Centre Groningen and all 

participants gave written informed consent. 
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Study design 

This cross-over protocol consisted of three randomized one-week periods, a 7-day 

period on a high sodium diet (HS; aim: 200 mmol Na+/day); a 7-day period on a 

low sodium diet (LS; aim: 50 mmol Na+/day) and a 7-day period on a high sodium 

diet combined with the use of Enalapril 20mg taken every morning (HS-ACEi), 

which was placebo-controlled and double-blind. A 7-day-period of sodium 

restriction is sufficient for stabilization of circulatory hormones12, for induction of 

RAAS activation and for conducting sodium balance13• Sodium intake during the 

study was adjusted according to the prescribed diet, which was iso-caloric with a 

similar balance between protein, carbohydrate and fat during the study. On day 4 

and day 6 of each dietary period, subjects collected 24-hour urine to assess dietary 

compliance and the achievement of a stable sodium balance. When sodium balance 

was not achieved the testing day was postponed for 3 or 7 days. On day 7 the 

subjects reported to the research unit at 08.00 hours after an overnight fast. 

An intravenous cannula was inserted into the forearm for drawing blood samples; 

infusion of 250 ml·hour-1 of glucose 5% kept the cannula open. This infusion and 

250 ml of oral water intake allowed hourly voluntary voiding. Into the contra­

lateral arm another cannula was inserted for tracer and AngII infusion. Glomerular 

filtration rate (GFR) and effective renal plasma flow (ERPF) were measured as 

previously described from the clearance of constantly infused 1251-iothalamate 

(IOT) and 1311-Hippuran, respectively14• The clearances were calculated using the 

formula U·V/P and l·V/P, respectively. U·V represents the urinary excretion of the 

tracer, l·V represents the infusion rate of the tracer and P represents the tracer 

plasma value during steady state, which was established after a run-in of 2 hours. 

The coefficients of variation (COV) for GFR and ERPF are 2.2% and 5.0% 

respectively. In this setting, we have found the reproducibility of dietary sodium 

induced shift in renal haemodynamics to be satisfactory (standard deviation of 
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�GFR: 9.9%; SD of �ERPF: 1 0.1 %)15 • Extra cellular fluid volume (ECFV) was 

estimated from the distribution volume (Vd) of IOT and calculated as [(I·V + B·V)­

(U-V)]/Aot during steady state. B· V represents the bolus infusion of the tracer16 • 

During the experiments the subjects remained in semi-supine position, except for 

standing up briefly for voiding. Blood pressure was measured, while the subjects 

were in semi-supine position at 15-minute intervals using a non-invasive device 

(Dinamap®; GE Medical systems, Milwaukee, USA). Baseline values for blood 

pressure were obtained from 1 0. 00 to 12. 00 hours. Between 12. 00 and 15. 00 hours 

AngII (Clinalfa, Merck Biosciences AG, Laufelfingen, Switzerland) was 

administered intravenously in constant infusion rates of 0.3; 1 and 3 ng·kg-1 .h-1, 

each during one hour. The measurement of ERPF by clearance methods has a 

certain lag-time during acute changes. Our method is based on the assumption of 

steady state, which is by definition disturbed by acute interventions. We used one­

hour clearances, which amount to four times the estimated half life of 1311-

Hippuran in normal renal function. Accordingly, the plasma levels at the end of 

the clearance period approximate the true steady state levels. To account for the 

lag-time in steady state, we only used the ERPF data from the last clearance period 

for the assessment of the quantitative relationship with sodium sensitivity. So, the 

nominal values of the ERPF response may be somewhat underestimated, but this is 

not likely to modify the between-individual relationship with blood pressure. 

During the AngII infusions blood pressure was measured at 5-minute intervals. 

Laboratory measurements 

Urinary sodium and serum cholesterol (fasting) were measured by a standard 

autoanalyzer technique (SMA-C, Technicon®) .  Insulin (fasting) was determined on 

an AxSym with a threshold of 1 . 0 µU/ml (Abbott BV, Amstelveen, The 
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Netherlands). Plasma glucose (fasting) was determined by glucose-oxidase method 

(YSI 2300 Stat plus, Yellow Springs, OH, USA). Urinary albumin excretion (UAE) 

was determined by nephelometry with a threshold of 2.3 mg·l-1 (Dade Behring 

Diagnostic, Marburg, Germany). Blood for measurement of humoral parameters 

was rapidly drawn in EDT A tubes, immediately centrifuged at 4 QC and stored at -

20 °C. Aldosterone was measured with a commercially available 

radioimmunoassay kit (Diagnostic Products Corporation, Los Angeles, CA, USA). 

Plasma renin activity (PRA) was measured as described previously with a 

radioimmunoassay that detects the amount of angiotensin I produced per hour in 

the presence of excess exogenous angiotensinogen17, with an incubation time of 1 

hour. 

Data analysis 

Data are presented as mean ± standard deviation (SD) in text and table and as 

mean ± SEM in figures when normally distributed and as median (25th- 75th 

percentile) when appropriate. The mean of all systolic and diastolic blood pressure 

recordings were calculated for baseline and for every infusion step of Angil. 

Subsequently, mean arterial pressure (MAP) was calculated as the mean systolic 

pressure plus two times the mean diastolic pressure, divided by three. 

The sodium induced change in MAP was normalized for a targeted difference in 

sodium excretion between LS and HS of 150 mmol Na+·24h-1. SS was calculated 

according to the following formula: 

Baseline MAP HS - Baseline MAP LS 

24h Na+ excretion HS - 24h Na+ excretion LS X 1 50 
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Data were analyzed in two ways; first we compared sodium sensitive subjects with 

sodium resistant subjects. To this purpose SS was defined as a sodium induced rise 

in MAP of more than 3 mmHg per 150 mmol Na+, as used before18, and which was 

shown to be reproducible (Cohen's K=0.87)19• In our setting15 repeated assessment 

of SS in healthy young males was reproducible with a Cohen's K of 0.75 and a 

correlation of r=0.641 (p<0.01) for the individual subjects (unpublished data). 

Mann-Whitney U-tests were used for comparisons between the subgroups, 

Wilcoxon-sign-rank test for paired analyses. With the current study size, the power 

to detect a difference between subgroups in baseline ERPF of 50 ml·min-Ll .73m-2 

(SD 60 ml·min-L l.73m·2; a=0.05, two-tailed) is 63%. The power to detect a difference 

of 5% in response to AngII infusion (SD 5%, a=0.05, two-tailed) is 78%. 

Second, since using a cut-off value is arbitrary, we also performed a continuous 

analysis, assessing correlation with individual responses of blood pressure to 

increased sodium intake with Spearman Rho correlation coefficient. Differences in 

baseline values between LS, HS and HS-ACEi were tested with the paired 

Student's T-tests for normally divided data, and Mann-Whitney U-tests for skewed 

distributed data. 
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Results 

Baseline data 

All subjects were normoalbuminuric (UAE <30mg·24h-1) and their blood pressure 

remained in the normotensive range, during both LS and HS. 7 subjects had a 

positive family history of hypertension (22 %, 2 subjects unknown). 

Low sodium 

(U·V)Na+ (mmol/day) 37 ± 23 
Body weight (kg) 79.4 ± 9.4 
ECFV (I) 19.0 ± 2.9 
BMI (kg·m·2·) 22.4 (21.3;24.7) 
SBP (mmHg) 117 ± 10 
DBP (mmHg) 69 ± 8  
MAP (mmHg) 85 ± 7  
ERPF (ml·min·1·1.73m·2) 456 ± 61 
GFR (ml·min·1·1.73m·2) 105 ± 13 
PRA (ng angl·ml·1·h·1) 6.2 (4.5;8.1) 
Aldo (ng·I-1) 130 (81;180) 
UAE (mg·24h·1) 6.6 (4;8) 
glucose (mmol-1·1) 4.7 ± 0.7 
Insulin (mU·I-1) 8 (6;14) 
Cholesterol (mmoH-1) 4.5 ± 0.7 

Table 1 Baseline characteristics 

High Sodium High sodium 
ACE inhibition 

218 ± 57* 224 ± 72 
80.7 ± 9.5* 80.5 ± 9.5 
20.4 ± 3.0* 20.3 ± 3.0 

22.8 (21.8;24.8)* 22.7 (21.7;24.8) 
122 ± 12* 116 ± 10** 

70 ± 7  65 ± 13** 
88 ± 8* 82 ± 8** 

488 ± 66* 511 ± 70** 
113 ± 14* 114 ± 13 

2.8 (l.6;3.5)* 8.8 (3.6;14.0)** 
44 (24;57)* 31 (20;43)** 

4.5 (3;6) 5.4 (4;6) 
4.6 ± 0  .7 4.5 ± 0.6 
8 (6;12) 10 (7;14) 
4.3 ± 0.7 4.4 ± 0.8 

24 h urinary sodium excretion ((U·V}Na+>; extra cellular fluid volume (ECFV); body mass 

index (BMI); systolic blood pressure (SBP); diastolic blood pressure (DBP); mean 

arterial pressure (MAP); effective renal plasma flow (ERPF); glomerular filtration rate 

(GFR); plasma renin activity (PRA); plasma aldosterone(Aldo); urinary albumin 

excretion (UAE). Data expressed as mean (2St11-7St11 percentile) or as mean ± SD for 

normal divided data. * p<0.05 compared to low sodium; **p<0.05 compared to high 

sodium 

As indicated in table 1, urinary sodium excretion indicated satisfactory dietary 

compliance, accompanied by an adequate suppression of PRA and aldosterone by 

HS. HS induced a rise in body weight (BW) of 1 .3 ± 1. 0 kg, which was reflected by a 

rise in ECFV of 1.4 ± 2.2 1 (p< 0. 05). As anticipated both GFR and ERPF increased 
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significantly in response to HS. MAP was slightly but significantly higher on HS 

compared to LS. ACE inhibition led to a significant decrease in blood pressure, a 

rise in ERPF and PRA and a drop in aldosterone. UAE, glucose, insulin and 

cholesterol were not influenced by sodium diet or use of ACEi. 

Responses to angiotensin II 

The responses of blood pressure to increasing doses AngII during LS, HS and HS­

ACEi are shown in Figure 1 (upper panel) as group means. It shows that the lowest 

dose, 0,3 ng·kg-Lmin-1, was a non-pressor dose, with subsequent significant dose­

dependent increases during 1 and 3 ng·kg-Lmin-1 . The blood pressure responses to 

AngII were not significantly different between LS and HS or HS and HS-ACEi. 

The responses of ERPF to AngII in the three periods are shown in Figure 1 (lower 

panel) as group means. ERPF significantly and progressively decreased in response 

to increasing doses of AngII during all periods. The magnitude of response was 

significantly more pronounced on HS compared to LS (p<0.05) and on HS-ACEi 

compared to HS (p<0.05). The range of the individual responses assessed during 

the 3 ng·kg-1 ·min-1 dose was -40% to -16% (LS); -46 to -20% (HS) and -51 to -26% 

(HS-ACEi). 

Baseline determinants of sodium sensitivity of blood pressure 

The inter-individual differences in the blood pressure response from LS to HS 

ranged from -7 to + 14 mmHg, with a rise in MAP over 3 mmHg·150mmol-1 Na+ in 

13 subjects (38%). The sodium sensitive subjects (SS; n=13) and the sodium resistant 

subjects (SR; n=21) were similar in age (respectively 28 ± 13 and 25 ± 6, p=0.5) and 

in body mass index (BMI) (respectively 22.5 (20.9;25.8) and 22.5 (21.7;24.0) kg·m-2, 

p=0.9). 4 SS subjects (33%, 1 missing value) and 3 SR subjects (15%, 1 missing 

value) had a positive family history of hypertension (p=0.4). 
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Figure 1 The dose response curves 
for mean arterial pressure (MAP) 
(pressor response - upper panel) 
and effective renal plasma flow 
(ERPF) (renal response-lower 
panel) in response to angiotensin 
II (AngII) while subjects were on a 
low sodium diet (LS); a high 
sodium diet (HS) and HS 
combined with ACE inhibition 
(HS-ACEi). *p<0.05 compared to 
baseline values for LS, HS and 
HS-ACEi. 

indicated in table 2 dietary 

compliance was similar in the two 

subgroups. Furthermore baseline blood 

pressure on LS was not significantly 

different between SS and SR subjects, 

but ss subjects had higher baseline 
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- Ls 
-r· HS 

- ·-..· HS-ACEi 

MAP on HS (p=0.02). This difference between the groups disappeared on HS­

ACEi. ERPF was lower in SS subjects during all conditions, although during HS the 

difference did not reach statistical significance (p=0.13). The shift from LS to HS 

induced an increase in ERPF of 30 ± 51 ml·min-1 in SR subjects (p=0.01) and 37 ± 51 

ml·min-1 in SS subjects (p=0.02; SR vs SS subjects: p=0.7). Baseline GFR, FF, PRA, 

aldosterone, UAE, glucose, insulin and cholesterol were not different between SS 

and SR subjects, and the changes in these parameters induced by HS, and HS-ACEi 

were not statistically different between SS and SR either. 
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Low Sodium High Sodium 
High Sodium -
ACE inhibition 

SR ss p SR ss p SR ss 

n 21 13 21 13 21 13 

(U•V)Na+ 
32 ± 21 46 ± 23 0.99 227 ± 58 204 ± 55 0.26 227 ± 74 220 ± 73 

(mmol/day) 
MAP 

87 ± 5  83 ± 10 0.18 85 ± 6  92 ± 8  0.02 83 ± 7  83 ± 9  
(mmHg) 
BW 77.9 ± 81.9± 

0.24 
79.0 ± 83.2± 

0.22 
79.4 ± 82.3± 

(kg) 7.0 12.3 7.1 12.4 7.3 12.3 

ECFV 17.9 ± 19.2 ± 
0.14 

18.9 ± 21.0 ± 
0.03 

19.4 ± 20.1 ± 

(H.8m-1) 2.0 3.2 2.0 3.2 1.7 3.5 

ERPF (ml· 472 ± 56 429 ± 60 0.04 502 ± 64 467 ± 67 0.13 531 ± 65 480 ± 69 
min·l.73m·2) 

GFR (ml· 
108 ± 12 101 ± 14 0.18 114 ± 12 112 ± 17 0.75 117 ± 10 110 ± 17 

min·l.73m·2) 

FF 23.0 ± 23.8 ± 
0.41 

22.9 ± 24.1 ± 
0.12 

22.1 ± 23.1 ± 

(%) 2.5 2.7 2.3 2.1 1 .8 2.0 

PRA 5.8 6.5 
0.70 

3.0 1.8 
0.12 

10.5 5.8 

(nmoH·h-1) (5.1;8.2) (3.0;8.5) (l .9;3.7) (l .2;3.2) (4.2;15.5) (3.0;13.2) 

Aldo 130 130 
0.84 

43 45 
0.89 

29 35 

(nmol-1·1) (81;216) (81;171) (24;57) (27;60) (20;40) (20;49) 

UAE 
5.9 (3;7) 6.8 (6;15) 0.37 4.0 (3;6) 4.7 (3;7) 0.63 5.4 (4;6) 5.3 (4;10) 

(mg·24h·1) 

glucose 
4.5 ± 0.6 4.9 ± 0.9 0.29 4.5 ± 0.5 4.8 ± 0.9 0.29 4.4 ± 0.4 4.7 ± 0.8 

(mmoH-1) 

Insulin 
8 (6;14) 8 (6;13) 0.68 9 (6;12) 9 (6;11)  0.58 11 (7;14) 8 (7;14) 

(mU·l·1) 

Cholesterol 
4.5 ± 0.8 4.5 ± 0.7 0.89 4.3 ± 0.7 4.3 ± 0.7 0.87 4.5 ± 0.9 4.3 ± 0.6 

(mmol-1·1) 

Table 2 Baseline characteristics sodium resistant (SR) vs sodium sensitive (SS) subjects. 

24 h urinary sodium excretion ((U· V)Na+); mean arterial pressure (MAP); body weight (BW); 

extra cellular fluid volume (ECFV); effective renal plasma flow (ERPF); glomerular filtration 

rate (GFR); filtration fraction (FF); plasma renin activity (PRA); plasma aldosterone(Aldo); 

urinary albumin excretion (UAE). 

Data expressed as mean (25t"-75ti, percentile) or as mean ± SD for normal divided data. P 

values given for the comparison between SR and SS. 

In SS subjects ECFV was higher than in SR subjects during HS (table 2); during LS 

there was a tendency for a difference as well but this did not quite reach statistical 

significance. (p=0.10) .  As a consequence the HS induced change in ECFV was not 
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statistically different between the subgroups, as indicated in figure 2. After ACEi 

ECFV was not significantly different between the groups (p= 0.32). As indicated in 

figure 2 (right panel) the ECFV response to ACEi seemed to be stronger in SS 

subjects (- 0. 88 ±2.4 1 in SS vs + 0.25 ±1.9 1 in SR), but this difference did not reach 

statistical significance (p= 0 .1 7). 

Figure 2 Changes in baseline 

extra cellular fluid volume 2.5 

ECFV between low sodium 
1 .5 

i:; 0.5 

HS induced change 

and high sodium diet period 

(left panel) and between high 

sodium and high-sodium 

combined with ACE-inhibitor 

period (right panel). 

w 1-------
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ACEi induced change 

Renal angII response as determinant of sodium sensitivity of blood pressure 

In Figure 3 the renal responses to 3 ng/kg/min Angil are shown for respectively LS, 

HS and HS-ACEi. In SS subjects the renal response to Angil was less pronounced 

than in SR during LS (-25 ± 6 vs -29 ± 6 %; SS vs SR; p< 0. 05), as well during HS (-30 ± 

5 vs -35 ± 6 %; p< 0. 05), but not during HS-ACEi (-36 ± 6 vs -37 ± 6 %). As a 

consequence the renal response to Angil was significantly enhanced by RAAS 

blockade (HS vs HS-ACEi) in SS but not in SR. 

Figure 3 Mean effective renal 

plasma flow (ERPF) responses to 3 

ng·kg-1 ·min-1 Angll while subjects 

were on a low sodium diet (LS), a 

high sodium diet (HS) or HS 

combined with ACE inhibition (HS­

ACEi), shown for the subgroup of 

sodium sensitive subjects (n=13) and 

sodium resistant subjects (n=21). 

* p<0.05 between subgroups. # p<0.05 
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When analyzed as a continuous variable, SS negatively correlated with the renal 

responses to Angll during HS as shown in figure 4 (r=-0.400, p=0.019). This 

correlation was abolished by ACEi. During LS, there was a trend for association 

between sodium sensitivity of blood pressure and the response of ERPF to Angil 

(r=-0.298, p=0.087) . No significant association between SS and the Ang II induced 

responses of urinary excretion of sodium, and circulating levels of PRA and 

Aldosterone was detected. 
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Figure 4 Scatterplot for sodium sensitivihJ of mean arterial pressure (MAP) and the 

renal response to 3 n·k�1·min·1 AngII (change in effective renal plasma flow (ERPF) 

(%), during respectively LS (r=-0.298, p=0.087), HS (r=-0.400, p=0.019) and HS-ACEi 

(r=0.09, p=0.6). 
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Discussion 

This study shows that SS in healthy young men is associated with distinct 

haemodynamic characteristics. First, SS was generally associated with lower 

baseline ERPF, although during HS this association did not reach statistical 

significance. Second, in SS the renal vasoconstrictor response to exogenous AngII is 

blunted, which is ameliorated by ACEi, suggesting an inappropriately high intra­

renal RAAS activity. Finally, our data suggest that SS is accompanied by relative 

ECFV expansion irrespective of sodium intake. As these observations were made 

in healthy normotensives, the abnormalities cannot be due to hypertensive organ 

damage, and might thus be primary factors in SS. 

In our population ERPF was generally lower in SS subjects, which parallels 

findings in SS hypertensives1,2,9, but to the best of our knowledge has not been 

shown in SS normotensives before. During HS the difference in ERPF between SS 

and SR subjects did not reach statistical significance, which may be due to a lack of 

power of our study. This less clear-cut difference under HS is at variance with SS 

hypertensives, in which a lower ERPF is especially observed during HS intake. 

Consequently, the response of ERPF to sodium loading was normal in our 

population, whereas this response is blunted in SS hypertensives3,8,9• As a poor 

renal vasodilator response to HS can be expected to hamper urinary sodium 

excretion by its effects on peritubular Starling forces, such an abnormal response 

has been postulated to play a pathogenic role in SS in hypertension3• Whereas this 

may be true, our data demonstrate that an abnormal vasodilator response to HS is 

not a prerequisite for SS as such. 

Moreover, ACEi increased ERPF in SR as well as SS, but did not abolish the 

difference between the groups. This suggests that the lower ERPF in SS is not due 
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to a RAAS-mediated increase in renal vascular tone. However, whether ACEi 

results in full blockade of the intra-renal RAAS is questionable20, and more 

extensive blockade of the RAAS, for instance by renin-inhibition, would be needed 

to conclusively exclude a role for the RAAS in the lower ERPF in SS 

normotensives. Other factors linked to SS6,21 may give alternative explanations: 

lower nephron numbers, increased sympathetic tone or endothelial dysfunction 

could all lead to lower ERPF. 

We used the renal vasoconstrictor response to AngII as an indirect estimate of 

intra-renal RAAS-activity. The mean renal vasoconstrictor response to AngII was 

increased by HS, which is well in line with earlier findings9• The increase in Angil 

response during HS is attributed to an upregulation of AngII type 1 receptors22, 

reflecting suppression of intra-renal RAAS-activity and lower intra-renal AngII, i.e 

the appropriate response to increased sodium intake. In our population, as 

anticipated, ACEi further increased the mean vasoconstrictor response to AngII, 

thus reflecting pharmacological inhibition of the intra-renal RAAS-activity. 

In SS subjects the renal response to AngII was blunted during HS, and this 

blunting was corrected by ACEi. Together these results suggest inappropriately 

high intra-renal RAAS-activity in SS subjects during HS. However, the results of 

the comparison between SS and SR can be strongly influenced by the cut-off used 

to define SS. Therefore we sought to confirm the results by analysing SS as a 

continuous variable as well, i .e. as the change in blood pressure elicited by HS. 

This analysis confirmed the results of the dichotomous analysis, showing a 

significant correlation between a higher SS and less pronounced renal AngII 

response during HS, which was no longer present during HS-ACEi, supporting the 

robustness of our finding. These data parallel findings in hypertensives, in whom a 
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blunted renal vasoconstrictor response to AngII during HS was present, that could 

be corrected by ACEi. Accordingly, it has been attributed to poor suppression of 

the intra-renal RAAS by HS8,9• 

To our knowledge, no data are available on the renal response to AngII during LS 

in relation to SS, neither in hypertensive nor in normotensive subjects. In the 

current study, the renal response to AngII was blunted in SS not only during HS, 

but also during LS. Thus, also during LS intra-renal RAAS activity may be higher 

in SS subjects. These SS subjects may therefore have a constitutively increased 

intra-renal RAAS activity as primary phenomenon, with genetic factors23, lower 

nephron numbers21 or both involved. However, when analysed as continuous 

variable, the association between SS and renal response to AngII was of borderline 

significance only. So the findings on LS are less robust than on HS, and need 

further confirmation. 

A rise in ECFV is the basis of the adaptation to an increased sodium intake6; in our 

population this is shown by an average increase in ECFV of 1.4 1. Subgroup­

analyses on ECFV in our population were unfortunately underpowered, but the 

results can serve to elicit the hypothesis that independent of sodium intake SS 

subjects are characterized by an increased ECFV, relative to SR subjects. We 

hypothesize that not adaptation to HS intake is impaired and causes fluid 

retention, but that volume homeostasis is set at a higher set-point in SS subjects. 

Interestingly, the difference in ECFV between SS and SR subjects was no longer 

apparent during ACEi, suggesting a role of increased activity of the RAAS in the 

higher set-point for volume regulation in SS subjects. 
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Our results were obtained in healthy young volunteers, without influence of 

factors previously linked to SS in hypertensives as race24, obesity25, 

hyperinsulinemia26, hypercholesterolemia27 and albuminuria1 • Thus, these factors 

are apparently not a prerequisite, or a causal factor for sodium-sensitivity. 

Our study has several limitations. First, our study population was relatively small, 

which relates to the demanding study protocol. Second, our population may have 

contained subjects that will develop hypertension at older age, but we have no 

means of identifying these. Third, our low sodium diet was not very strict, with a 

target intake of 50 mmol Na+/day, whereas other studies on SS use 10-20 mmol 

Na+/day, which hampers direct comparison with these studies. Fourth, the 

reproducibility of the renal AngII response has not been established. Furthermore, 

the duration of the diet periods was only one week. This is sufficient to re-establish 

sodium balance, but does not necessarily reflect the state of sodium balance on 

long term. Finally, we only studied males, as in women regulation of the RAAS 

and sodium responses are under influence of the menstrual cycle28• Since it has 

been proposed that woman are characterized by a different reactivity to sodium29, 

translation of our results to women is not straight-forward. 

Our study demonstrates that SS in healthy young men is associated with a lower 

ERPF during LS intake, with a normal renal response to high sodium intake, but 

with a blunted renal response to AngII, which is ameliorated by pharmacological 

ACE-inhibition. Our findings are compatible with the assumption of inappropriate 

activity of the intra-renal RAAS as a mechanism underlying sodium sensitivity of 

blood pressure. The data on ECFV suggest that not the adaptation of ECFV to a 

change in sodium intake, but rather the setpoint of ECFV may be altered in SS. As 

these observations were made in healthy young men, it is unlikely that these renal 
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characteristics reflect subclinical hypertensive renal damage, and they may 

therefore reflect a primary phenomenon. Whether these abnormalities could be 

involved in the increased risk for development of cardiovascular risk factors, and 

even more importantly, in the elevated mortality in sodium-sensitive subjects, 

should be the subject of further studies. 
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Abstract 

In chronic kidney disease a decline in renal function is associated with fluid 

retention. Whether this relates to the renal function impairment as such, or to renal 

parenchymal abnormalities is unknown. To investigate the effect of reduction in 

renal mass per se, we measured extra cellular fluid volume (ECFV), as well as renal 

haemodynamics before and 2 months after donor nephrectomy. 

194 consecutive living kidney donors ( 88 men; 1 06 women; 49 ± 1 1  yr) were 

included. No dietary restrictions were applied. Glomerular filtration rate (GFR) 

was measured as the clearance of 125I-iothalamate (IOT) and ECFV as its 

distribution volume. GFR decreased by 37 ± 7 %, effective renal plasma flow (ERPF) 

by 33 ± 7 %  (both p< 0. 01 ). Consequently, filtration fraction (FF) decreased from 2 7.3 

± 3.2 to 25. 8 ± 2.9% respectively before and after donation (p< 0. 01). ECFV decreased 

from 19. 7  ± 3.4 to 1 8.5 ± 3. 0 1 (p< 0. 01). Blood pressure, serum sodium levels and 

daily sodium excretion were similar before and after donation. In a subset of 37 

subjects we assessed renal sodium handling. Filtered load of sodium per kidney 

increased by 33 ± 16 % (p< 0. 01), with a corresponding rise in tubular sodium 

reabsorption of 32 ± 16 %. Fractional excretion of sodium (FEna+) increased by 1 8  [-

1 8- 83] % (p= 0. 02). 

In conclusion, in healthy subjects ECFV decreases after unilateral nephrectomy 

despite reduction in renal mass and renal function. The lower FF after donation, 

with consequently altered peritubular starling forces, may reflect an adaptive 

response to facilitate renal sodium excretion with a lower nephron mass. 
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Introduction 

Living kidney donation programs have become increasingly important due to 

shortage of kidneys from deceased donors. Donor safety is an important 

consideration to justify living kidney donation programs. Fortunately, so far long 

term donor and kidney survival after kidney donation is excellent1,2, probably due 

to careful screening and selection of kidney donors. Caution is warranted however, 

as the current donor selection criteria tend to become more liberal as regards older 

donor age, and presence of hypertension, and long term follow up of the current 

donor population will have to substantiate the safety of current donation practice. 

Donor nephrectomy leads to a substantial reduction in renal mass and renal 

function. In renal disease, as well as animal models of renal disease, reduction of 

renal mass and renal function are often associated with volume expansion and 

systemic and glomerular hypertension3-7• These are assumed to reflect adaptive 

responses to nephron loss, aimed at preservation of glomerular filtration rate 

(GFR), at the expense however of long term systemic and glomerular hypertensive 

damage8• However, whether this is related to the loss of renal mass as such, or to 

presence of parenchymal abnormalities has not been well-established. After donor 

nephrectomy clear-cut adaptive responses occurs in the remaining kidney, leading 

to substantial increases in single kidney GFR and effective renal plasma flow 

(ERPF), respectively9,10• Whether this adaptation is associated with expansion of the 

extra cellular fluid volume (ECFV) is unknown. In the current study, therefore, we 

measured ECFV and renal haemodynamics in a cohort of 194 living kidney donors, 

both before and 2 months after kidney donation. 
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Methods 

Data from 194 consecutive living kidney donors that participated in the donor 

screening protocol with subsequent donation between 2000 and 2007 were 

included in the present analyses. None had a history of kidney disease, diabetes, 

and cardiovascular events. 13 subjects used anti-hypertensive drugs in a stable 

dose during the observation period. Physical examination did not reveal abnormal 

findings. Assessments were made 138 ± 1 7 0 days before and at 59 ± 13 days after 

the kidney donation procedure. No dietary restrictions were applied at any time 

during screening or follow-up. 

Assessment of renal haemodynamics and extra cellular fluid volume 

Renal haemodynamics, i.e. GFR, ERPF and filtration fraction (FF) and ECFV were 

measured as part of the screening and follow-up protocol during the constantly 

infusion protocol of 1251-iothalamate (IOT) and 1311-Hippuran, as described in detail 

previously1 1,12• Briefly, GFR was measured as the urinary clearance (U-V /P) of IOT. 

Simultaneous infusion of 1311-Hippuran was used to correct the GFR values for 

inaccurate urine collection as described previously. The coefficient of variation 

(COV) for this GFR measurement is 2.2 %. ERPF was measured as the plasma 

clearance (l·V/P) of 1311-Hippuran. The COV for this ERPF measurement is 5%. FF 

was calculated as GFR/ERPF * 1 00%. ECFV was calculated as the distribution 

volume (Vd) of IOT. Previously, we found a COV for this ECFV assessment of 8.6 %  

and good agreement between this method and the gold standard in ECFV 

assessment: bromide V d 13• 

The procedure was as follows. The donors were in a quiet room, in semi-supine 

position. After drawing a blank blood sample, a priming solution containing 0. 04 

ml·kg-1 body weight (BW) of the infusion fluid (4 MBq of 1311-Hippuran and 3 MBq 
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of IOT per 1 00 ml saline) plus a bolus of 0.6 MBq of IOT was administered at 08. 00 

hours, after which the radio-isotopes were infused at a constant rate of 12 ml·h-1 . 

After an equilibration period of 1.5 hour to allow for stable plasma concentrations, 

two clearance periods of 2 hours were conducted and the mean value of these two 

periods was used for analysis. Urine was collected by spontaneous voiding. Blood 

samples were drawn at start, middle and end of each clearance period. 

Blood pressure 

Blood pressure was measured with a semi-automated device (Dinamap® 1 846, 

Critikon, Tampa, FL, USA). Mean arterial pressure (MAP) was calculated as the 

sum of systolic blood pressure and 2 times diastolic blood pressure divided by 3. 

Renal Sodium Handling 

Renal sodium handling was assessed in a subset of 37 subjects (1 8 men; 19 women, 

age 49 ± 1 0) from 24h urine sodium excretion and from a 2-hour urine collection 

obtained simultaneously with the assessment of GFR. Calculations were as 

follows: 

• Filtered load of sodium (FLNa+ ) = GFR · [Na+] 

• Fractional excretion of sodium (FENa+) = (U·V)Na+/ [Na+] divided by (UV)creat 

/ [creat], in where V drops out of the equation, leaving: 

FENa+ = {UNa+ / [Na+]) / Ucreat / [ creat] 

• Tubular re absorption of sodium (TRNa+) = FLNa+ · (1-FENa+) 

Statistical analysis 

Analyses were performed using SPSS software version 14. 0 (SPSS Inc., Chicago, IL, 

USA). Data are given as mean ± standard deviation or median [25th- 75th percentile] 
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when not normally distributed. Pearson's correlation coefficients were calculated 

to account for univariate correlations. Student's paired T-test was used to compare 

values pre- and post donation when data was normally divided, otherwise 

Wilcoxon non-parametric test was used. When post-donation are expressed as % of 

pre-donation values, these values are tested with an one-sample T-test against the 

value of 100%. 

Exclusion in the analysis of the 13 subjects using anti-hypertensive treatment did 

not influence the results presented in the results section. Therefore, these are not 

presented separately. 
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Results 

88 men (age 49 ± 12) and 106 women (age 49 ± 9) were included in this study. In 

table 1, characteristics before and after nephrectomy are given. MAP was equal 

before and after kidney donation. BW was 0.5 ± 2.6 kg (p=0.02) lower after 

nephrectomy. BMI before unilateral nephrectomy was 26.0 ± 4.1 kg·m-2 without 

differences between men and women. 

ECFV decreased with -1 .2 ± 2.2 I (p<0.01) after kidney donation. ECFV as a % of 

BSA decreased as well, by -1.1 ± 1 .9 1-1 .73-m-2 (p<0.01). The decrease in ECFV was 

not related to gender, age, BMI, MAP or the use of anti-hypertensives. After the 

kidney donation GFR decreased to 63 ± 7% and ERPF to 67 ± 7% (both p<0.01) of 

their pre-donation values. Consequently, single-kidney GFR increased with 26 ± 

13% and single kidney ERPF with 33 ± 13% (both p<0.01), leading to a slight but 

significant decrease in FF to 95 ± 9% (p<0.01) of its pre-donation value. Urinary 

albumin excretion was low and well within the normal range both before and after 

donation. 

Before donation After donation p-value 

MAP (mmHg) 93 ± 11 93 ± 10 ns 

Body Weight (kg) 79.0 ± 14.0 78.5 ± 13.8 <0.02 

ECFV (1) 19.7 ± 3.4 18.5 ± 3.0 <0.01 

GFR (ml·min·1.73m-2) 105 ± 15 66 ± 10 <0.01 

ERPF (ml·min·1.73m-2) 390 ± 69 I 259 ± 44 <0.01 

FF (%) 27.3 ± 3.2 25.8 ± 2.9 <0.01 

Serum creatinine (umol·l-1) 85 ± 13 115 ± 22 <0.01 

Urinary albumin (mg·l-1) 2.3 [l.0-3.8] 2.3 [l.1-3.8] ns 

Table 1 Donor characteristics before and after living kidney donation. 

Mean arterial pressure (MAP); extra cellular fluid volume (ECFV); glomerular filtration 

rate (GFR); effective renal plasma flow (ERPF; filtration fraction (FF.) 
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Renal sodium handling 

Table 2 gives data on renal sodium handling as assessed in a subset of 37 subjects 

simultaneously with GFR. Serum sodium levels were not significantly different 

before and after kidney donation. In this subset the decrease in ECFV was similar 

to that in the total population, namely 1.2 ± 1.8 1 (p<0.01). 24 hour urinary sodium 

excretion was equal before and after donation as shown in table 2. Also in the 2-

hour portion sodium excretion was not significantly different before and after 

donation (0.23 ± 0.1 mmol·min-1 and 0.21 ± 0.01 mmol·min-1, respectively). The 'total 

body' FLNa+ and TR.Na+ both decreased after donation. However, the single kidney 

values increased by approximately one-third. FENa+, i.e. the % of the filtered load 

that is actually excreted, increased significantly by an absolute value of 0.23 [-0.28-

0.62] % (p=0.02). 

Before donation After donation p 

[Na+] (mmol·I-1) 142 ± 2  141 ± 2  ns 

ECFV (I) 20.0 ± 3.7 18.8 ± 3.1 <0.001 

(U·V)Na+(mmol·24h-1) 178 ± 70 171 ± 69 ns 1:1 per kidney (%) 

FLNa+ (mmol·min-1) 17.18 ± 3.3 11.28 ± 2.1 <0.001 7 +33 ± 16* 

TRNa+(mmol ·min-1) 17.11 ± 3.2 11.15 ± 2.0 <0.001 7 +32 ± 16* 

FENa+ (%) 1.12 [0.8-1.54] 1 .39 [l .06-1.66] 0.02 7 + 18 [-18-83]* 

Table 2 Sodium handling in a subset of n=37. Extra cellular fluid volume (ECFV); sodium 

excretion ((U· V)Na+); filtered load of sodium (FLNa+); tubular reabsorption of sodium (TRNa+); 

fractional excretion of sodium (FENa+). The latter three are also given as donation induced 

relative change (Ll) per kidney (right column). *p<0.05: change is different from 0. 
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Discussion 

Donor nephrectomy was associated with a significant decrease in ECFV two 

months after donation, despite the substantial reduction in renal mass and in renal 

function. This decrease is remarkable, since in renal disease and in animal models 

of renal damage, reduction of renal mass has been reported to be associated with 

an increased ECFV14• The adaptive response of renal haemodynamics, with a lower 

FF after donation, may have accounted for facilitated excretion of sodium, due to 

altered peritubular Starling forces. 

The average decrease in ECFV was some 5%, without a detectable effect on blood 

pressure. Other reports on kidney donors are not uniform as regards blood 

pressure, and some have reported an increased prevalence of hypertension15-17• Our 

data suggest that expansion of ECFV, at least on the relative short term studied 

here, is not a likely causal factor for the small increases in blood pressure reported 

in some studies. The other way around, in the current study the decrease in ECFV 

did not result in a lower blood pressure, so apparently blood pressure was not 

volume dependent in our population. Generally homeostatic mechanisms such as 

activation and suppression of the renin angiotensin aldosterone system (RAAS) 

ensure stable blood pressure during changes in volume status14 • However, we have 

no data on parameters of the RAAS to substantiate this in the current population. 

Dietary sodium intake is a main determinant of ECFV13• Dietary intake was not 

standardized in our population, so a decrease in dietary sodium intake could 

theoretically be involved in the decrease in ECFV after donation. However, in a 

subset of the population we documented 24h sodium excretion. In this subset, that 

was not different from the total population in any of the tested characteristics; 24h 

urinary sodium excretion after donation was similar before and after donation. 
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From these data it is unlikely that a reduction in habitual sodium intake accounted 

for the post-donation decrease in ECFV. 

In our study, ECFV and renal haemodynamics were measured approximately 2 

months after donor nephrectomy. This period of time is considered long enough 

for achieving stable renal haemodynamics, and sodium and water balance9,18 • As 

sodium intake was unaltered, apparently a lower set-point for ECFV must be 

present. What could be its underlying mechanism? Uninephrectomy is associated 

with a substantial adaptation of glomerulo-tubular balance9,10,18-20• In the single 

kidney, filtered load of sodium is substantially increased, due to the adaptive rise 

in single-kidney GFR. Single kidney tubular sodium reabsorption increases to a 

smaller extent with, consequently a rise in fractional excretion of sodium. Several 

mechanisms could be involved in the resetting that can lead to the negative sodium 

balance. 

First, the time course of glomerular and tubular adaptation is probably dissimilar, 

with a fast rise in single kidney GFR, and a slower rise in tubular reabsorption, as 

shown in rat studies where this was associated with net natriuresis early after 

uninephrectomy18,19• However, this mechanism cannot explain why a lower ECFV 

is maintained after the initial phase. Second, the observed reduction of the 

filtration fraction could be involved21• A lower FF leads to altered peritubular 

Starling forces, with a lower hydrostatic and a higher oncotic pressure, together 

facilitating sodium excretion22• Finally, after uninpehrectomy the single-kidney 

load for nutritional waste products is increasing, which could promote natriuresis 

by modulation of glomerulo-tubular balance, as suggested by experimental 

studies23• We have no data however, to substantiate this assumption for the current 

study. 
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What could be the implications of our findings? Expansion of ECFV is assumed to 

be a pathogenetic factor in cardiovascular and renal damage24• Thus, the decrease 

in ECFV observed here could be a favourable prognostic sign. Yet, a lower ECFV 

could also have adverse consequences, for instance when dehydration from other 

causes is superimposed. However, from our data it cannot be derived whether the 

reduction in ECFV is maintained during long term follow-up, and what its effects 

on long term cardiorenal risk profile might be. These issues should be subject of 

further research. 

Our study has several limitations. First, we have only data at one time-point after 

kidney donation. Second, sodium intake was not standardized. Furthermore, data 

on renal sodium handling, especially tubular sodium handling were assessed 

indirectly, and experiments which could discriminate proximal and distal tubular 

functions would be of additive value. 

In conclusion, ECFV decreases after donor nephrectomy in healthy living kidney 

donors. An altered setpoint of glomerulo-tubular balance might be involved in this 

decrease in ECFV, related to the lower filtration fraction observed after donation. A 

lower ECFV may contribute to long-term cardiovascular and renal health in kidney 

donors, but long term studies are warranted to confirm this hypothesis. 
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Abstract 

Anaemia is prevalent in the chronic heart failure (CHF) population, but its cause is 

often unknown. The present study aimed to investigate the relation between 

anaemia, renal dysfunction, erythropoietin (EPO) production and fluid retention in 

CHF patients. 

We studied 97 patients with CHF, of which 15 had anaemia (Hb <13. 0  g/dl in men) 

and Hb <12. 0 g/dl in women), without haematinic deficiencies. Glomerular 

Filtration Rate (GFR) and extra cellular fluid volume (ECFV) were measured as the 

clearance and the distribution volume of constantly infused 1251-iothalamate, 

respectively. Effective renal plasma flow (ERPF) was determined as the clearance 

of 1311-Hippuran. Anaemic CHF patients displayed significantly reduced GFR 

(p= 0. 002), ERPF (p= 0. 005) and EPO production (p= 0. 001), and an elevated ECFV 

(p= 0. 015). Multivariate analysis demonstrated that lower GFR (p= 0. 003), lower 

ERPF (p= 0. 004), lower EPO production (p= 0. 006), and a higher ECFV (p= 0. 001), 

were significant independent predictors of lower haemoglobin levels. 

Anaemia in CHF is not only independently associated with impaired renal 

function and blunted EPO production, but to fluid retention as well. 
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Introduction 

Anaemia is present in a substantial part of the chronic heart failure (CHF) 

population, ranging from 15-55%, depending on the definition of anaemia and 

severity of disease1 • Anaemia is independently associated with increased morbidity 

and impaired prognosis, although the cause of anaemia is often unknown1-5. CHF 

is associated with elevated levels of erythropoietin (EPO), suggesting impaired 

erythropoietic activity in the bone marrow1,6,7• Recently we demonstrated that 

anaemia in CHF could partly be explained by increased serum levels of AcSDKP, a 

negative regulator of haematopoietic stem cell proliferation8• In addition, we 

hypothesize that CHF will compromise renal perfusion resulting in impaired EPO 

production, thereby causing anaemia. Finally, it has been suggested that anaemia 

in CHF may be partly explained by fluid retention and consequent haemodilution9• 

However, the relative contribution of renal perfusion, EPO production, and fluid 

retention to the presence of anaemia in CHF has so far not been well described. We 

therefore evaluated the relation between anaemia, effective renal plasma flow 

(ERPF), EPO production and extra cellular fluid volume (ECFV) in CHF patients. 

Methods 

Patient population 

Clinically stable CHF patients on outpatient follow-up at our department were 

asked to participate, as described in detail previously10• Approximately 121 

patients were asked to participate. 11 0 patients were included into the original 

analysis and finished the study. Owing to missing haemoglobin levels, 13 patients 

were excluded from analysis, leaving 97 subjects for analysis. Briefly, inclusion 

criteria were age > 1 8  years and left ventricular ejection fraction (L VEF) <45%. All 

patients used renin angiotensin aldosterone system (RAAS) blockers, and 
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medication had remained stable for at least one month. Exclusion criteria included 

stroke, myocardial infarction or cardiac revascularization procedures within the 

last 3 months or scheduled for these procedures, unstable angina, primary renal 

disease, prior organ transplant, or chronic use of renal function compromising 

medication. 

Cardio-renal haemodynamic parameters 

L VEF was determined by nuclear ventriculography or echocardiography using 

Simpsons rule. Mean arterial pressure (MAP) was calculated from systolic and 

diastolic blood pressure measurements obtained immediately before 1251-

iotholamate (IOT) and 1311-Hippuran clearance measurements from 10 consecutive 

measurements in supine position using an automated system. N-terminal proBNP 

(NT-proBNP) was determined by electrochemiluminescence immunoassay on the 

Roche Elecsys (Roche diagnostics, The Netherlands) . Glomerular filtration rate 

(GFR) and ERPF were measured by constant infusion of radiolabelled tracers IOT 

and 131I-Hippuran11 • Briefly, after drawing a blank blood sample, a priming 

solution containing 0.4 ml·kg-1 body weight (BW) of the infusion solution (0.04 

MBq of IOT and 0.03 MBq of 1311-Hippuran) plus an extra amount of 0.6 MBq of 

IOT was given at 08.00 hours, followed by infusion at 12 ml·h-1, adapted to 9 ml·h-1 

in subjects with renal function impairment as estimated from previously obtained 

serum creatinine values. This ensures steady-state plasma levels of 1311-Hippuran 

and IOT after a run-in period of 2 hours, as verified by hourly blood samples. 

Subsequently, clearances of IOT and 1311-Hippuran and the distribution volume 

(Vd) of IOT were measured during steady state. The GFR and ERPF were 

calculated as (U·V)/P(iothalamateJ and (I·V)/P(hippuranJ, respectively, and (U.Y)/P(iothalamateJ 

was corrected for voiding errors by the ratio of the urinary to plasma clearance of 

1311-Hippuran. U.Y represents the urinary excretion of the tracer, I.Y represents the 
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infusion rate of the tracer; P represents the values in plasma calculated from the 

samples bracketing each clearance period. The body surface area (BSA) was 

calculated as 0.007184 · weight°-425 • length0-725, and GFR and ERPF were expressed 

per l .73m2 of BSA. Renal blood flow (RBF) was calculated as ERPF/1-haematocrit. 

The filtration fraction (FF) was calculated as the ratio of GFR and ERPF and 

expressed as percentage. ECFV was estimated from the V d of IOT12,1 3  and 

calculated as [(I.Y + B·V) - UV] / P(iothaiamate) during steady state. B·V represents the 

bolus infusion of the tracer. ECFV was expressed as 1/kg BW. 

Haemoglobin levels, haematinic parameters and EPO levels 

Haemoglobin, iron, ferritin, transferin, vitamin Bll and B12 levels were 

determined at the local laboratory facilities. EPO levels were determined by 

IMMULITE EPO assay (DPC, Los Angeles, California, USA). To define the relation 

between EPO levels and a given Hb we included 15 reference subjects referred to 

our department with complaints of chest pain or palpitations. The reference 

subjects had a mean age of 50 ± 4.5 and had normal L VEF (L VEF >60% ), normal 

renal function, no signs of inflammation, or symptoms of CHF14• An exponential 

regression equation of serum EPO vs. Hb (mmol·l-1) was calculated, resulting in the 

following equation: log EPO = 3.015 - (0.130·Hb). Predicted log EPO and observed/ 

predicted (O/P) log EPO ratio (log serum EPO/predicted log EPO) were calculated 

with this equation. Mean O/P ratio in reference subjects was 0.90 ± 0.029 (95% CI 

0.64 - 1 .12). Total iron binding capacity (TIBC) was calculated by multiplying 

serum transferrin with 20. Transferin saturation (FeSat) was calculated as serum 

(serum iron/TIBC)·l00%. Iron deficiency was defined as ferritin levels <30 µg·l-1 or 

FeSat <15%. According to local laboratory reference ranges, deficiency in vitamin 

Bll and B12 was defined as levels below 142 pmol·l-1, and 50 pmoH1 respectively. 
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High sensitive C-reactive protein (CRP) was determined by nepholometry. The 

threshold for detection was 0.156 mg·l-1; When CRP levels were below the detection 

limit, they were assigned the value 0.156 mg·l-1 for statistical purposes. 

Statistics 

Data are given as mean ± standard deviation (SD) when normally distributed, as 

median and interquartile range when skewed distributed and as frequencies and 

percentages for categorical variables. Differences between groups were compared 

with Student's T-test, Mann Whitney-CT test or Fisher's exact test when 

appropriate. A p-value < 0. 05 was considered statistically significant, and all 

reported probability values are two-sided. Correlation between Hb, EPO or O/P 

ratio and various other variables was performed using Pearson's correlation 

coefficients. Non-normally distributed continuous variables were log-transformed. 

The variables age, sex, pharmacological treatments, New York Heart Association 

(NYHA) functional class, L VEF, ERPF, GFR, FF, ECFV, NT-proBNP, CRP, and 

MAP were assessed for univariate linear association with Hb or log EPO. Variables 

that showed a significant (p< 0.15) univariate association were included stepwise in 

a multivariable linear regression model on the basis of on the strength of the 

univariate associations. All the variables described earlier were added to the final 

model simultaneously to assure that addition of these variables did not 

significantly increase the predictive accuracy of the model. The final model was 

assessed for first line interaction. 
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Results 

Patient characteristics 

76 % of subjects were male and age ranged from 2 7  to 81 years. NYHA functional 

classes I, II, III and IV comprised 14 %, 44 %, 31 %, and 1 0% of patients, respectively. 

Differences in characteristics between anaemic and non-anaemic CHF patients 

In the total population, 19 patients (20%) were anaemic according to the WHO 

criteria (Hb <13. 0  g·dl-1 in men and Hb <12. 0 g·dl-1 in women). Iron deficiency was 

present in 4 out of 19 anaemic (21 %) and 3 out of 7 8  non-anaemic (4 %) CHF 

patients. Other haematinic deficiencies were not observed. The iron-deficient 

patients were excluded from further analysis, leaving 75 non-anaemic subjects and 

15 subjects with unexplained anaemia. Differences in characteristics between 

anaemic and non-anaemic subjects are summarized in table 1 .  

Anaemic subjects were significantly older and in a higher NYHA class. Although 

L VEF was comparable, anaemic patients showed more severe haemodynamic 

impairment, reflected by reduced MAP ( 86. 8 ± 13 vs. 76. 8 ± 14 mmHg; p= 0. 007) and 

ERPF (2 86 ± 83 vs. 219 ± 74 ml·min-Ll . 73m-2; p= 0. 005) and RBF (502 ± 150 vs. 34 8 ± 

121 ml·min-Ll. 73m-2; p< 0. 001) and elevated NT-proBNP levels (1 0 (26 0-1355) vs. 

1 004 ( 720-1904) pg·ml-1; p= 0. 029). Anaemic CHF patients more often used diuretics 

(65 vs. 87 %; p= 0. 045), and despite this displayed a significantly elevated ECFV 

( 0.25 ± 0.5 vs. 0.29 ± 0.4 1·/kg-
1; p= 0. 015), implicating fluid overload. 

The fluid retention was subclinical, as anaemic patients did not display oedema, 

nocturia, or dyspnoea more frequently (data not shown). Plasma sodium levels 

and fractional sodium excretion were similar, implicating that the elevated ECFV 

was not caused by excess sodium intake. 
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Non-anaemic Anaemic 
(n= 75) (n=15) 

Age (years) 56.3 ± 12 65.6 ± 9 
Sex (n % male) 58 (85) 10 (71) 
NYHA class 2.3 ± 0.8 2.8 ± 0.8 
BMI (kg·m·2) 27.8 ± 3.9 26.1 ± 3.0 
Ischemic etiology (n %) 38 (50) 7 (47) 
Cardiorenal haemodynamic parameters 
Heart rate 65 ± 2  64 ± 3  
MAP (mmHg) 86.8 ± 1.5 76.8 ± 3.6 
LVEF (%) 28 ± 10 26 ± 6  
NT-proBNP (pg·ml·1) 510 (260-1355) 1004 (720-1904) 
Creatinine (mg·dl-1) 1.2 (1-2) 1 .2 (1.1-1 .7) 
Urea (mg·cll-1) 19 (16-22) 35 (23-40) 
GFR (ml·min·1• 1.73m·2) 79 ± 25 56 ± 28 
ERPF(ml ·min·1• 1. 73m·2) 286 ± 83 219 ± 74 
RBF (ml·min·1·1.73m·2) 502 ± 150 348 ± 121 

FF (%) 28 (26-30) 26 (20-29) 
FENa+ (%) 0.88 ± 0.33 0.97 ± 0.52 
ECFV/BW (l·kg-1) 0.25 ± 0.1 0.29 ± 0.1 
Mild RF (GFR <60) 16 (21%) 9 (60%) 
Severe RF (GFR <30) 4 (5%) 3 (20%) 
Erythropoietic and inflammatory parameters 
Hb (mg·dl-1) 15 ± 0.7 12.7 ± 0.4 
Serum EPO (U·I-1) 15.7 (11-21) 18.5 (12-31) 
0/P ratio 1.15 ± 0.20 0.93 ± 0.18 
CRP (mg·I-1) 2.15 (0.95-4.06) 2.38 (0.77-5.66) 
Medication 
ACE inhibitors, n (%) 66 (88) 12 (80) 
ARB, n (%) 9 (12) 3 (20) 
Beta blockers, n (%) 62 (83) 13 (87) 
Diuretic, n (%) 49 (65) 13 (87) 
Aldosteron ant., n (%) 51 (88) 7 (47) 

Table 1 Characteristics of anaemic and non-anaemic CHF patients. 

p-value 

0.004* 
0.510 
0.036* 
0.140 

1 

0.834 
0.007* 
0.525 
0.029* 
0.150 

<0.001* 
0.002* 
0.005* 

<0.001* 

0.080 
0.370 
0.015* 
0.004* 
0.088 

<0.001* 
0.357 
0.001* 
0.733 

1 
0.414 

1 
0.045* 
0.144 

All continuous variables are presented as mean ± SD if normally distributed and as median 
value with 25th-75tl, percentile when skewed distributed. New York Heart Association 
(NYHA); body mass index (BMI); mean arterial pressure (MAP); left ventricular ejection 
fraction (L VEF); N-terminal proBNP (NT-proBNP); glomerular filtration rate (GFR); 
effective renal plasma flow (ERPF); renal blood flow (RBF); filtration fraction (FF); 
fractional excretion of sodium (FENa+); extra cellular fluid volume (ECFV); body weight (BW); 
renal failure (RF); erythropoietin (EPO); observed/predicted ratio (O/P ratio); C-reactive 
protein (CRP); angiotensin receptor blocker (ARB); aldosteron antagonists (aldosteron ant.). 
*p<0.05 
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Although creatinine levels were comparable between groups, urea levels were 

elevated (19 (16-22) vs. 35 (23-4 0) mg·dl-1; p= 0. 007) and GFR ( 79 ± 25 vs. 56 ± 2 8  

ml·min-I.l . 73m-2; p= 0. 002) was significantly reduced in the anaemic patients. 

Moreover, anaemic patients had a higher incidence of moderate renal failure (RF) 

(GFR <6 0 ml·min-I.l. 73m-2) and a trend towards more severe RF (GFR <30 ml·min-

1·1. 73m-2) (21 vs. 6 0%, p< 0. 005 and 5 vs. 20%, p= 0. 088), respectively. 

By definition, Hb level was significantly lower in anaemic subjects. However, EPO 

levels were comparable between anaemic and non-anaemic CHF patients. 

Additionally O/P ratio was significantly reduced in anaemic subjects (1.15 ± 0.2 vs. 

0.93 ± 0.2, p= 0. 001), indicating blunted EPO production. O/P ratio was significantly 

higher in non-anaemic CHF patients compared to reference subjects (p= 0. 026), 

whereas O/P ratio in anaemic CHF patients and controls were comparable. Thus, 

EPO production is elevated both in anaemic and non-anaemic CHF patients, but 

based on their Hb, it should have been higher in anaemic CHF patients. It therefore 

seems that the compensatory rise in response to anaemia is impaired. 

Hb levels and EPO production in the CHF population 

As previously described, CHF patients displayed a relatively moderate negative 

correlation between EPO and Hb levels (r=- 0.2 81, p= 0. 007). A moderate significant 

correlation was also observed between EPO levels and both CRP (r= 0.2 81, p= 0. 007) 

and NYHA class (r= 0.21 0, p= 0. 05), and a trend with NT-proBNP (r= 0.193, p= 0. 07). 

No significant correlation was observed between EPO levels and other markers for 

cardiorenal haemodynamic status, or renal function parameters. O/P ratio 

correlated with Hb (r= 0.39 7, p= 0. 001), GFR (r= 0.237, p= 0. 024) and FF (r= 0.2 85, 

p= 0. 007). 
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Predictors of HB and serum EPO 

Univariate and multivariate linear associations between Hb and EPO levels are 

displayed in tables 2 and 3, respectively. 

Haemoglobin 
Univariate 

B SE p-value B SE 
Sex -1 .41 0.30 <0.001 -1.189 0.258 

Age -0.022 0.012 0.077 

GFR 0.02 0.005 <0.001 0.037 0.009 

ERPF -0.004 0.002 0.013 -0.008 0.003 

NYHA -0.04 0.17 0.013 

EPO -1.55 0.57 0.007 -1 .422 0.430 

ECFV -6.36 2.95 0.034 -7.120 2.215 

MAP -0.03 0.01 0.002 

BNP -0.399 0.144 0.007 

Table 2 Univariate and multivariate predictors of Hb levels. 

Multivariate 

B Part.cor p-value 
-0.394 -0.449 <0.001 

0.744 0.414 <0.001 

-0.534 -0.310 0.004 

-0.266 -0.399 0.001 

-0.259 -0.330 0.004 

Glomerular filtration rate (GFR); effective renal plasma flow (ERPF); New York Heart 

Association (NYHA); erythropoietin (EPO); extra cellular fluid volume (ECFV); mean arterial 

pressure (MAP). Adjusted R2 = 0.436. {3, standardized beta; part.cor., partial correlation 

EPO 
Univariate Multivariate 

B SE p-value B SE � p-value 
Sex 0.03 0.233 0.6 

Age 0.027 0.6 0.233 

Hb -0.052 0.019 0.007 -0.044 0.019 -0.233 0.025 

NYHA -0.06 0.031 0.061 

CRP 0.345 0.126 0.006 0.125 0.054 0.234 0.024 

Table 3 Univariate and multivariate predictors of serum erythropoietin (EPO) levels. 

New York Heart Association (NYHA); C-reactive protein (CRP). 

Adjusted R2 = 0.111; standard error (SE); standardized beta ({3;). 
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Sex, lower EPO (figure la), lower GFR (figure lb), lower ERPF (figure le), and 

higher ECFV (figure ld) were independently associated with lower Hb levels, 

accounting for 31-44 % of the variance in Hb levels. The variables CRP, NYHA 

class, NT-proBNP, and Hb showed significant univariate association with plasma 

EPO. However, higher CRP and lower Hb levels were the only independent 

predictors of higher serum EPO levels. Inclusion of the full list of possible 

predictive variables did not result in a significant increase in the adjusted r2, slope, 

or partial correlation coefficient of the variables in our model. 
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Figure 1 Relation between haemoglobin levels and erythropoietin (EPO), glomerular 

filt1'ation rate (GFR), effective renal plasma flow (ERPF) and extra cellular fluid volume 

(ECFV). 
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Discussion 

The present study demonstrated that anaemia in CHF patients was not only 

independently related to impaired renal haemodynamics and blunted EPO 

production, but to an increased ECFV as well. However, in contrast to our 

expectations, serum EPO levels were not directly related to renal perfusion. 

The association between anaemia in CHF and impaired EPO production has been 

suggested previously3,7• Nevertheless, the presence of defective endogenous EPO 

production was not formally evaluated until recently. In a comprehensive 

retrospective analysis on the cause of anaemia in CHF patients, Opasich et al.15 

found that 50% of anaemic CHF patients showed evidence of impaired EPO 

production. Our data further substantiate these findings. 

The relation between renal perfusion and EPO levels has been evaluated 

preciously in two populations comprising 13 and 14 CHF patients16,17• In these 

studies, EPO production inversely correlated with RBF, ERPF, and renal oxygen 

delivery, suggesting that impaired renal oxygenation caused the elevated EPO 

levels. However, in our far larger cohort, these findings could not be reproduced. 

Although there was no relation between ERPF and EPO, an univariate moderate 

correlation between EPO production and GFR was observed, which might 

implicate that blunted EPO production results from impaired renal function and 

structural renal damage. Furthermore, circulating inflammatory cytokines and 

ACE-inhibitors can directly inhibit EPO production in the kidney and might 

contribute to the blunted EPO production18,19• Additionally, impaired GFR could 

attenuate the excretion of circulating erythropoiesis-inhibiting factors (e.g. 

AcSDKP), leading to enhanced plasma levels, as has been demonstrated in a 

haemodialysis population20• 
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The non-anaemic CHF patients displayed higher EPO levels and O/P ratios than 

reference subjects, as has been described previously. Elevated EPO levels were 

independently related to higher CRP levels, suggesting that elevated EPO 

production is directly related to an enhanced inflammatory state. Several pro­

inflammatory cytokines have inhibitory effects on erythropoiesis, and are 

established as the cause of anaemia associated with chronic inflammatory disease21• 

CHF is associated with enhanced expression of a variety of pro-inflammatory 

cytokines, possibly contributing to the development of anaemia6• In addition, we 

recently demonstrated that anaemia in CHF could be partially explained by 

elevated levels of AcSDKP, a negative regulator of haematopoietic stem cells8 • 

These circulating factors inhibit erythropoiesis and can eventually result in 

elevated EPO requirements. Indeed although EPO production was blunted, the 

circulating EPO levels in anaemic CHF patients were not reduced but slightly 

elevated compared to non-anaemic patients. The slightly elevated EPO levels were 

however insufficient for the prevailing Hb, reflected by significantly impaired O/P 

ratio. Hence, anaemia in CHF does not result from the inability to produce EPO, 

but an inability to further increase baseline EPO production. 

As expected, anaemic patients displayed elevated ECFV, which was independently 

related to lower Hb levels. Impaired renal haemodynamics in CHF causes 

activation of RAAS and vasopressin systems, resulting in salt and fluid retention 

and consequently increased ECFV. Fluid retention in CHF can cause 

haemodilution, resulting in pseudo-anaemia, which carries even a worse prognosis 

than true anaemia9• In the present study, anaemic subjects more frequently 

received diuretics but nonetheless displayed elevated ECFV. Importantly, although 

fluid retention was related to anaemia, signs and symptoms of fluid retention 

were absent. Thus, haemodilution seems to precede the clinical presentation of 
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fluid retention. Therefore, starting or increasing the dose of diuretics should be 

considered before starting with EPO treatment. Since the aetiology of anaemia in 

CHF seems multifactorial, the preponderant cause should be identified on an 

individual basis, for instance, by determining the O/P ratio or ECFV in addition to 

regular diagnostic procedures. 

Although the reduced renal function, the blunted EPO production and higher 

ECFV could be the cause of anaemia in CHF, they could also be a consequence. 

Lower Hb levels can result in peripheral tissue hypoxia, causing vasodilatation and 

consequently reducing blood pressure22• This will result in activation of the RAAS 

and further compromise of RBF by renal vasoconstriction and fluid retention. The 

compromised kidney seems unable to meet the increased demand, and anaemia 

ensues. The vicious cycle of CHF causing anaemia, and anaemia causing further 

deterioration of CHF has been described as the cardiorenal anaemia syndrome23• 

Thus, anaemia in CHF is directly related to an impaired haemodynamic state, 

compromising renal perfusion, attenuating EPO production, and increasing fluid 

retention. Therefore, improvement of cardiac function and cardio-renal 

haemodynamics would be the most rational approach for the treatment of anaemia 

in CHF. Additionally, administration of recombinant human EPO might also break 

the vicious cycle by replenishing the insufficient EPO levels24• It is however 

uncertain whether supplementation of EPO in anaemic CHF patients will decrease 

morbidity and mortality, as anaemia might merely be a marker for impaired 

cardiac function. This will emerge from scheduled randomized clinical trials. 

However, whether this will improve Hb and outcome in this population is 

uncertain. 
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Our study has limitations. Apart form the obvious cross-sectional design, the CHF 

population contained relatively few anaemic CHF patients and anaemic subjects 

had relatively mild anaemia. Therefore our data might not be representative for 

more severe forms of anaemia and should be regarded as hypothesis generating. 

We conclude that anaemia in CHF is not only independently associated with 

impaired renal function and blunted EPO production, but to fluid retention as 

well. 
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Abstract 

Anaemia is common after renal transplantation, and bears prognostic impact. Its 

pathogenesis is multifactorial, but incompletely elucidated. Recent data in cardiac 

patients, demonstrating an independent role for a higher extra cellular fluid 

volume (ECFV) in anaemia in stable heart failure, elicited the hypothesis that a 

higher ECFV might be involved in late post-transplant anaemia. 

103 stable renal transplant recipients, who underwent renal function 

measurements with constant infusion of 1251-iothalamate (IOT) between March and 

October 2006, were included. Glomerular filtration rate (GFR) was measured as the 

clearance of IOT and ECFV as its distribution volume. In anaemic subjects GFR, 

serum iron and folic acid were significantly lower than in non-anaemic subjects (all 

p< 0.05). ECFV, renin angiotensin aldosterone system inhibiting medication usage 

and proteinuria were higher in anaemic subjects (all p<0. 05) . Age, length, body 

mass index, mean arterial pressure, erythropoietin, smoking, immunosuppressive 

medication and diuretics use were not different at p< 0. 05 level. On multivariate 

analysis female sex (p<0. 005), higher ECFV (p< 0.004), lower GFR (p< 0. 003), more 

proteinuria (p<0. 05) and lower folic acid (p< 0. 05) were independent predictors for 

lower Hb. 

Thus, a higher ECFV is independently associated with a lower Hb in stable renal 

transplant recipients. Volume expansion may contribute to the adverse long term 

prognostic impact of a lower Hb level. 
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Introduction 

Anaemia is common after renal transplantation with estimates ranging from 20% 

up to 76%1, depending on the definition of anaemia and the time after 

transplantation. Late post transplant anaemia is defined as anaemia at more than 

six months after transplantion2,3, i.e. when peri-operative events can be assumed to 

have abated. Possible causes of late post transplant anaemia include chronic renal 

failure with its associated erythropoietin (EPO) deficiency or EPO resistance3, as 

well as possible bone marrow suppression due to immunosuppressants, iron/ folic 

acid/ vitamine B12 deficiency, inflammation, infections and use of renin 

angiotensin aldosterone system (RAAS) blocking medication3,4 It has been pointed 

out that unidentified, non-transplant-related factors may also be involved5,6• 

Considering the prognostic impact of anaemia after renal transplantation7-10, it 

would be important to unravel the contribution of the various possible 

determinants of anaemia after renal transplantation, as this could guide the most 

appropriate way of intervention. 

In a recent study in patients with chronic heart failure (CHF) and heart failure­

related renal function impairment we showed that an increased extra cellular fluid 

volume (ECFV) was an independent determinant of anaemia. Remarkably, this 

was independent of renal function11 • Whether ECFV is also a determinant of 

anaemia in renal transplant recipients has not been evaluated so far. In our centre, 

renal function measurement by 1251-iothalamate (JOT) is used for monitoring of 

renal function in transplant recipients12,13• This allows to estimate ECFV as the 

distribution volume (Vd) of IOT11 • In the current study, therefore, we investigated 

whether ECFV is a determinant of haemoglobin levels in a cross-sectional analysis 

in stable transplant recipients, and, if so whether such an effect was independent of 

renal function and EPO levels. 
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Methods 

Study population 

Data from 138 consecutive stable renal transplant recipients, who visited our 

outpatient clinic between March and October 2006 for assessment of glomerular 

filtration rate (GFR) by IOT clearance, and of whom all clinical data were available, 

were considered for inclusion. Inclusion criteria were a minimal time after 

transplantation of one year, a functioning graft and age > 1 8. 1 03 recipients were 

included. Clinical data included gender, age, height, length, time since 

transplantation, immunosuppressive regimen, use of diuretics and RAAS blockers 

and previous history of smoking. The immunosuppressive regimen consisted of 

triple therapy with cyclosporine A (CsA) or tacrolimus, azathioprine and steroids 

(15 patients); if treatment started after May 1997 the regime consisted of CsA or 

tacrolimus, mycophenolate mofetil (MMF) and steroids (53 patients). 19 patients 

were on a dual immunosuppressive regimen after stepwise withdrawal of CsA or 

tacrolimus and another 16 patients were on a dual regimen consisting of a 

calcineurin inhibitor with steroids. 

Renal function measurements 

During their visit, recipients underwent renal function measurement with IOT and 

131I-Hippuran by the constant infusion method12,13, to measure GFR and effective 

renal plasma flow (ERPF), respectively, as part of their routine follow-up. In short, 

participants arrived at 08. 00 hours. A baseline blood sample was drawn, which 

was used for laboratory measurements. Thereafter, a priming solution was given 

with 0.4 ml per kg body weight (BW) of the infusion solution ( 0. 04 MBq of IOT and 

0. 03 MBq of 131I-Hippuran) plus an extra amount of IOT ( 0.6 MBq), followed by 

constant infusion at 9 ml·h-1• After one-and-a-half hour, steady state of IOT and 131I­

Hippuran was achieved. In steady state, over a 4 hour period, hourly blood 
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samples were taken and urine was collected every two hours. GFR was calculated 

as the renal clearance of JOT by the formula U·V/P wherein UV represents the 

amount of JOT excreted in the urine and P represents the plasma concentration of 

JOT. ERPF was calculated as the plasma clearance rate, by the formula J·V/P, where 

J·V represents the infusion rate and P represents the plasma concentration of 131J­

Hippuran. Correction of GFR measurement for voiding errors was done using the 

ratio of urinary to plasma clearance of 131J-Hippuran: (UV/P)rothalamate · (I·V/P)Hippuran / 

(U·V /P)Hippuran. 

Body surface area (BSA) was calculated according to Boyd's formula (0.01 7 8  · 

Height°5 • Weight0.484)14 and GFR and ERPF expressed as ml·min-1 per l. 73m2 of 

BSA. ECFV was calculated as the Vd of JOT11,15 in steady state as (B·V + J·V -

U·V)/Protha1amate, wherein B·V represents the bolus given at 0 8.00, J·V represents the 

infusion rate and P represents the plasma concentration of JOT. ECFV was 

expressed as a percentage of BW. 

Laboratory measurements 

Haematological parameters were determined from blood samples drawn at 

baseline. Haemoglobin, haematocrit, iron, ferritin, transferrin, folic acid, vitamin 

Bl2, N-terminal proBNP (NT-proBNP) and EPO levels were determined at the 

local laboratory facilities, as well as sodium and creatinine levels. EPO levels were 

measured on the Immulite 2000 assay (DPC, Los Angeles, CA, USA), NT-proBNP 

levels on the Roche Modular E1 70 (F. Hoffmann-La Roche Ltd., Basel, 

Switzerland). Anaemia was defined based on local laboratory values. Anaemia in 

males was defined as Hb < 8. 7  mmoH-1 (14.0 g·dl-1) and anaemia in females as Hb 

< 7.5 mmoH1 (12.1 g·dl-1) .  To define the relation between haemoglobin and EPO 

levels, an Observed/Predicted (O/P) ratio for EPO levels was calculated using the 
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formula as used by Westenbrink et al. 11, log Predicted EPO = 3. 015-( 0.130·Hb). 

Fractional excretion of sodium (FENa+) was calculated as ((UV)Na+ . Pcreat) I (PNa+ . 

GFR) ·1 00. 

Statistics 

To identify the determinants of anaemia in our study population, data were 

analyzed in a dual way. First, the study population was divided into two groups, 

based on presence or absence of anaemia. Second, multivariate analysis was 

performed with Hb as the dependent variable. 

Data are given as mean ± standard deviation (SD) when normally distributed and 

as median and 25th- 75th quartile when distribution was skewed. Frequencies and 

percentages are given for categorical variables. Differences between groups were 

compared with T-test, or x2 test for categorical variables. A p-value < 0. 05 (two­

sided) was considered to be significant. Non-normally distributed values were log 

transformed as appropriate. 

For multivariate analysis, all differences found between the anaemic and the non­

anaemic group with p< 0.1  were included as independent variable into a backward 

stepwise multivariate linear regression model with Hb as a continuous dependent 

variable. 
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Results 

Patient characteristics 

Patient characteristics are given in table 1, for the whole population and with a 

break up by presence or absence of anaemia. Of all 1 03 renal transplant recipients 

included, 57 were male. Mean age was 53 ± 13 years with a minimum of 19 years. 

Mean GFR was 54 ± 19 ml·min-1 •  l. 73m-2• Proteinuria > 0.3 g/day was present in 35 

recipients (34 %). All patients used immunosuppressive medication, 86 using 

calcineurin inhibitors in combination with prednisolon, potentially combined with 

azathioprine or MMF. None of the recipients used iron suppletion therapy or 

recombinant human erythropoietin (rHuEPO). 

Differences between anaemic and non-anaemic patients 

Fifty patients ( 49%) were classified as anaemic. Among the anaemic patients men 

were overrepresented (66 % male versus 45% in the non-anaemic group, p< 0, 05). 

Anaemic patients had, by definition, significantly lower Hb levels ( 7.4 ± 0. 7 mmoH-

1 vs. 9.1 ± 0. 8 mmol·l-1; p< 0. 001), a lower GFR (4 8 ± 1 7  vs. 6 0  ± 19 ml·min-1 · 1 . 73m-2; 

p= 0. 002), higher ECFV (20.6 ± 3.61 vs. 1 8.4 ± 3.5 I (p< 0. 002), corresponding to 25.6 ± 

4.6 % vs. 22.9 ± 3. 8% of BW; p< 0. 003), more proteinuria ( 0.59 g·24h-1 vs. 0.30 g·24h-1; 

p< 0. 05), lower serum iron levels (13.3 vs. 15. 7  µmol·l-1; p< 0. 03) and lower serum 

folic acid levels (9. 8 vs. 12. 0 nmol·l-1; p< 0. 004). Immunosuppressive medication, use 

of diuretics and 24-hour Na+ excretion was not different between the groups. 

However, use of RAAS blocking medication was higher in the anaemic patients. 

EPO levels were not significantly different between the groups, yet the O/P ratio 

was significantly lower in the anaemic group ( 0.56 vs. 1.20; p< 0. 001). Analysing the 

data for men and women separately did not alter the differences between anaemic 

and non-anaemic recipients (data not shown). 
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Total Anaemic Non-anaemic 
(n=103) (n= 50) (n = 53) 

Sex (male/female) 57/46 33117 24/29 

Age (years) 53 ± 13 53 ± 14 53 ± 13 

Length (m) 1.73 ± 0.09 1.75 ± 0.09 1.71 ± 0.09 

Weight (kg) 81.7 ± 15.5 82.3 ± 16.3 81.1 ± 14.7 

MAP (mmHg) 98.8 ± 11.6 100.5 ± 12.3 100.0 ± 12.1 

Time after Tx (months) 59 (12-121) 67 (12-119) 82 (12-123) 
Haemoglobin (mmol·I-1) 8.3 ± 1 .1 7.4 ± 0.7 9.1 ± 0.8 

Haematocrit (%) 41 ± 5  37 ± 3  44 ± 4  

EPO (U·l·1) 15.9 ± 9.7 17.3 ± 11.3 14.6 ± 7.9 

O!P ratio EPO 0.89 ± 0.70 0.56 ± 0.31 1.20 ± 0.82 

GFR (ml·min·1·1.73m·2) 54 ± 19 48 ± 17 60 ± 19 

ERPF (ml ·min·1• 1.73m·2) 197 ± 64 209 ± 62 185 ± 65 

ECFV (1) 19.5 ± 3.7 20.6 ± 3.6 18.4 ± 3.5 

ECFV (% of BW) 24.2 ± 4.4 25.6 ± 4.6 22.9 ± 3.8 

24-h Na Excretion (mmol·24h·1) 161 ± 60 169 ± 71 153 ± 47 

Proteinuria (g·24h·1) 0.25 (0.19-0.40) 0.26 (0.14-0.54) 0.24 (0.20-0.32) 

Smoking n (%) 19 (18) 8 (16) 11 (21) 

Serum Iron (µmol-1·1) 14.2 ± 4.7 13.3 ± 5.1 15.7 ± 4.8 

Folic Acid (nmoH-1) 11.0 (5-81) 9.8 (8.4-11 .0) 12.0 (9.5-15.3) 
Vitamin B12 (pmol·I-1) 297 (197-335) 270 (214-324) 254 (202-343) 

Ferritin (µg·I-1) 192 (36-199) 97 (33-260) 123 (56-296) 
Transferrin (g·l·1) 2.56 ± 0.53 2.52 ± 0.47 2.60 ± 0.50 

NT-ProBNP (ng·I-1) 282 (116-702) 292 (141-993) 237 (90-648) 
RAAS inhibiting 

50 (48) 33 (66) 17 (32) 
medication, n (%) 

Diuretics, n (%) 45 (44) 24 (48) 21 (40) 

CNI + Aza + Pred, n (%) 15 (14) 10 (20) 5 (9) 
CNI + MMF + Pred, n (%) 53 (54) 22 (44) 31 (59) 
CNI + Pred, n (%) 16 (16) 8 (16) 8 (15) 
Aza + Pred, n (%) 9 (9) 4 (8) 5 (9) 

MMF + Pred, n (%) 10 (10) 6 (12) 4 (8) 

Table 1 Characteristics of 50 anaemic and 53 non-anaemic renal transplant patients. 

p-value 

0.04 

ns 

ns 

ns 

ns 

ns 

<0.001 

<0.001 

ns 

<0.001 

0.002 

ns 

0.002 

0.002 

ns 

0.05 

ns 

0.02 

0.003 

ns 

ns 

ns 

ns 

<0.001 

ns 

ns 

ns 

ns 

ns 

ns 

All continuous variables are presented as mean ± SD if normally distributed and as median value 

with 25th-75th percentile when skewed distributed. Mean arterial pressure (MAP); erythropoietin 

(EPO); Observed/Predicted (0/P) ratio; glomerular filtration rate (GFR); effective renal plasma 

flow (ERPF); extra cellular fluid volume (ECFV); N-terminal proBNP (NT-proBNP); renin 

angiotensin aldosterone system (RAAS); Calcineurin Inhibitor (CNI); Azathioprine (Aza); 

Prednisolon (Pred); mycophenolate mofetil (MMF). 
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Determinants of Hb 

The univariate correlation between ECFV and Hb, analysed as a continuous 

variable, is given in figure 1 for the population as a whole. It shows a significant 

negative correlation between ECFV and Hb (r=- 0.34; p< 0. 001). When analysed by a 

break-up for GFR above (triangles) or below (circles) the median (45 ml·min­

Ll. 73m-2), the graphs shows that the negative association between ECFV and Hb 

was present both in subjects with lower GFR (r=- 0.43; p< 0. 002) and subjects with 

higher GFR (r=- 0.26; p< 0. 05), with a lower Hb for any given level of ECFV in the 

subgroup with lower GFR. 
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Figure 1 Correlations between extra cellular fluid volume (ECFV) and haemoglobin levels 

for subjects with glomerular filtration rate (GFR) <45 ml·min-1 ·1.73m-2 (r = -0.43; p<0.002); 

subjects with GFR > 45 ml·min-1·1.73m-2 (r = -0.26; p<0.05) and total study population (r = -

0.34; p<0.001) 
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The independent associations of GFR and ECFV with Hb were confirmed on 

multivariate analysis, as were the independent contributions of female sex, lower 

EPO levels, use of RAAS blockade, and proteinuria, with an r2 of the model of 

0.451 (p< 0. 001; table 2). The colinearity index, an index of colinearity, remained 

below 15, indicating that GFR and ECFV were not co-linear. Furthermore, no 

interaction between GFR and ECFV could be detected. Serum iron levels and ERPF 

fell out of the model. Forced inclusion of possible additional variables, such as 

immunosuppressive regimen, smoking, sodium excretion and body mass index 

(BMI) did not improve the model or increase the adjusted r2• 

f3 SE p-value 

Sex -0.330 0.178 <0.001 

EPO -0.177 0.010 <0.03 

ECFV (% of BW) -0.418 0.027 <0.001 

GFR/1,73m2 0.474 0.006 <0.001 

RAAS Inhibitors -0.244 0.179 <0.005 

Proteinuria -0.171 0.271 <0.05 

Table 2 Multivariate analysis of the predictors of Hb in renal transplant recipient. 

Erythropoietin (EPO); extra cellular fluid volume (ECFV); glomerular filtration rate 

(GFR); renin angiotensin aldosterone system (RAAS). Adjusted r2 = 0.451. 

Excluded variables via backward regression model analysis: ERPF/1,73m2, Serum Iron, 

Ferritin, Transferrin, Folic Acid and Vitamin B12, Diuretics use and Cyclosporin dose. 
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Discussion 

This study demonstrates that a lower haemoglobin level in stable renal transplant 

recipients is not only determined by a worse renal function and blunted EPO 

production, but also by higher ECFV. 

Anaemia is common in renal transplant recipients and its importance has recently 

been underlined by its prognostic impact for mortality and graft loss6,10• Its 

pathogenesis is multifactorial3, and it has been pointed out that reduced kidney 

function is not the only explanation for anaemia in renal transplant recipients5• In 

our study we identified several differences between anaemic and non-anaemic 

subjects, with a preponderance of men, and with lower GFR, O/P ratio of EPO, and 

serum iron and folic acid in anaemic subjects, as well as higher ECFV and 

proteinuria, and use of RAAS blockade in the anaemic subjects. As the validity of 

this comparison could be affected by the cut-off used for definition of anaemia6, we 

also analysed for the determinants of Hb as a continuous variable. Thus, we could 

confirm the independent contributions of GFR, ECFV, EPO, RAAS blocking 

medication and proteinuria, in addition to the anticipated effect of sex. 

The effect of GFR was anticipated and in line with other studies on anaemia in 

renal transplantation and in native kidney disease. A blunted response of EPO to 

anaemia, due to malfunction of the EPO producing cells16 is probably a main 

mechanism underlying this association17,18• In our study EPO level in anaemic 

subjects was not significantly different from the EPO level in non-anaemic subjects, 

despite the lower haemoglobin level. This is in line with a blunted EPO response to 

anaemia, which was confirmed by the lower O/P ratio for EPO level19,20 in the 

anaemic subjects. It would be of interest to know whether EPO O/P ratio would be 

independently associated with Hb level, but we refrained from multivariate 
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analysis on this issue as EPO O/P ratio and Hb level are arithmetically associated, 

invalidating such an analysis. 

A higher ECFV was independently associated with a lower Hb, independent of 

GFR. No co-linearity of ECFV and GFR could be detected, supporting the 

independent contribution of a higher ECFV to a lower Hb. This was in line with 

our prior observation in patients with heart failure11 • In heart failure haemodilution 

has been demonstrated to be involved in the association between ECFV and 

anaemia21• Our data are the first to demonstrate an association between a higher 

ECFV and a lower Hb in renal transplant recipients, and moreover, in only mild 

anaemia. It should be noted that this association was found in the absence of 

clinical signs of fluid retention in these stable transplant recipients, and that, 

apparently, the difference in ECFV of approximately 2 liters can go unnoticed by 

clinical assessment. An association between ECFV and anaemia was reported 

previously in patients with severe chronic anaemia (haematocrit 9-16 %) in whom 

ECFV was increased by approximately 4 liters. It was associated with peripheral 

vasodilation, lower blood pressure and reduced renal blood flow (RBF) and 

activation of the sympathetic nervous system and the RAAS. The volume retention 

was attributed to the anaemia as such, as a compensatory response to maintain 

tissue oxygenation22,23• It should be pointed out that the anaemia in our study was 

much milder with a mean haematocrit of 37 % in the anaemic subjects, in whom 

ECFV was some 2 liters higher than in the non-anaemic subjects. Our study design 

unfortunately does not allow to dissect cause and consequence, so it cannot be 

derived from our data whether the anaemia contributed to the observed ECFV 

expansion. The other way round, ECFV expansion could have induced 

haemodilution and consequently a lower haemoglobin level. 
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The use of RAAS blocking medication is known to affect haemoglobin levels24,25• 

ACE inhibitors may even be used to treat polycythemia vera.26 Various 

mechanisms have been suggested, including prevention of the stimulatory effect of 

angiotensin II on the synthesis of EP027; increased renal plasma flow, reducing the 

hypoxic stimulus for EPO formation4,28• A direct effect on red blood stem cells has 

also been suggested 29• 

Proteinuria was also a determinant of a lower Hb. An adverse effect of proteinuria 

on Hb has been reported in nephrotic range proteinuria in native kidneys, 

attributed to urinary loss of EPO and transferrin30, but to the best of our knowledge 

this is the first time that proteinuria is identified as a determinant of Hb in renal 

transplant recipients. Proteinuria in our study was not in the nephrotic range and 

its effect on Hb was independent of ECFV. Theoretically, proteinuria might also 

have contributed to a lower Hb by inducing volume retention. As its predictive 

value was independent of ECFV an effect on ECFV cannot explain the association 

between proteinuria and anaemia in this population. We cannot exclude however 

that proteinuria may contribute to anaemia by inducing volume retention 

Our study has several limitations. First, it was a cross-sectional analysis and thus 

includes a variety of patients at various times after transplantation, and on 

unrestricted, non-standardized sodium intake. Furthermore, most patients had 

relatively mild anaemia, which may have influenced our results. No data on 

cardiac function in these patients were available. The effect of deteriorating cardiac 

function, a symptom often seen in renal transplant recipients23 which may 

influence volume status21, on anaemia in this population therefore could not be 

established. Finally, we have no information on plasma volume or red cell mass, so 

we were unable to infer that our findings are due to haemodilution. 
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Anaemia is a predictor of cardiovascular morbidity and mortality in renal 

patients31-33;34 and in recent studies anaemia had prognostic impact in renal 

transplant recipients as well, with an adverse effect on graft survival and 

mortality7-10,35• It has been pointed out that the mechanisms of anaemia in 

transplant recipients may partly correspond to those in native kidney disease, but 

transplant-specific mechanisms, such as effects of immune suppression may be 

involved as well3. Unravelling the underlying mechanisms may be relevant for 

intervention strategies. In spite of the association between anaemia and 

cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients 

the effect of correction of Hb by rHuEPO on cardiovascular endpoints has so far 

been disappointing. Correction of anaemia with rHuEPO did not decrease left 

ventricular hypertrophy36 and moreover, in two recent large studies37,38 

normalization of haemoglobin levels did not reduce cardiovascular end points in 

CKD patients. The discrepancy between observational data showing a predictive 

effect of anaemia for cardiovascular mortality, and the lack of therapeutic benefit of 

anaemia correction in controlled trials has been called the "anaemia paradox"39 in 

CKD. So far, data in transplant recipients are insufficient to support or reject such a 

paradox for transplant recipients8,35• Our data suggest that explicit consideration of 

volume status might be relevant in the work-up and management of anaemia in 

transplant recipients. Whereas most nephrologists would generally agree that 

proper control of volume status is relevant in the management of renal patients, be 

it in native or transplanted kidneys, in clinical practice intervention aimed at 

control of volume status is limited to the treatment of hypertension, and of 

clinically overt fluid overload, such as peripheral and pulmonary oedema. In this 

respect, it would be important to develop a reliable, convenient indicator of ECFV 

for use in clinical practice. 
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We conclude that ECFV is independently associated with anaemia in renal 

transplant recipients, and that this is independent of renal function. This extends 

prior observations in heart failure, and in primary severe anaemia to the renal 

transplant population and to relatively mild anaemia. Further studies should 

elucidate the mechanisms underlying this association, and its consequences for the 

management of anaemia and volume status in transplant recipients. 
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Summary 

A high sodium intake is associated with increased cardiovascular and renal 

morbidity, and higher mortality. This association is particularly prominent in 

overweight or obese subjects. Although elevation of blood pressure is generally 

considered an important intermediate mechanism, high sodium intake also exerts 

adverse effects independent of blood pressure. A rise in sodium intake initially 

elicits a positive sodium balance. Consequently, when the higher sodium intake is 

maintained, extra cellular fluid volume (ECFV) is increased. As a higher ECFV 

leads to a higher volume load for the heart, ECFV might be an intermediate factor 

in the adverse effects of excess sodium intake. ECFV can reliably be measured as 

the distribution volume (V d) of bromide, considered as a gold standard. However, 

this method requires bromide injection and timed blood sampling, which is 

considered impractical in clinical practice, and unfeasible for large scale 

epidemiological studies. Since no reliable alternatives are available, large scale data 

on ECFV are not available. Consequently, the role of ECFV in the adverse effects of 

excess sodium intake in largely unexplored. 

Interestingly, the V d of tracers used as gold standards for renal function 

assessment, such as inulin, iohexol and iothalamate, equals ECFV. Although these 

methods are laborious and expensive, nevertheless their use is relatively common 

in top-clinical nephrology settings as well as in clinical research. Validation of such 

renal function assessments for simultaneous assessment of ECFV would provide 

data on ECFV on a scale that is unique world-wide, without extra effort or costs, 

mostly obtained in renal patients, i.e. a population where disturbance of volume 

status is an important pathogenetic factor. 
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The studies in this thesis were devoted, first, to development and validation of 

ECFV measurement from the distribution volume of 1251-iothalamate (IOT), 

simultaneously with the renal function measurement by its urinary clearance that 

is performed routinely in our center. Additionally, after validation and calibration 

of the ECFV assessment, we used this method to study ECFV in relation to several 

risk factors for cardiovascular and renal disease, namely weight excess, sodium 

sensitivity of blood pressure, loss of renal mass, and cardiorenal anaemia. 

In Chapter 1 we present studies on the validation and calibration of the V d of IOT 

as a measure for ECFV. As noted above, IOT is the tracer routinely used for precise 

assessment of glomerular filtration rate (GFR) in our centre. ECFV assessed as the 

V d of IOT was in good accordance with the V d of bromide, i.e. the gold standard 

method for ECFV, and showed a fair reproducibility with day-to-day variations of 

8.6% and 13.1 %, respectively, during low and high sodium diet. Moreover, the 

method could reproducibly detect the change in ECFV elicited by a shift from low 

to high sodium intake over a clinically and physiologically relevant range, i.e. from 

a daily intake of 3 to 12 grams of sodium. Thus, simultaneous measurement of 

renal function and ECFV is possible, feasible and reliable, and this combined 

measurement could be used to evaluate ECFV in several relevant conditions. 

Simultaneous assessment of renal function and ECFV provides the possibility to 

express renal function indexed to ECFV, rather than to body surface area (BSA), 

which is current practice. Indexing of renal function to body dimensions is 

required to meaningfully compare renal function in different individuals, and BSA 

is usually used to this purpose. However, the validity of indexing to BSA has been 

questioned, as body composition can vary considerably between individuals 

despite a similar BSA. This for instance applies to obesity, and to the differences in 

body composition between men and women, as for a given BSA women have a 
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larger fat mass. In the second part of chapter 1 we examined whether indexing 

GFR to ECFV would provide benefits over indexing to BSA. In our population, that 

consisted of healthy subjects screened for kidney donation, the difference in renal 

function between men and women, as observed for GFR/BSA, disappeared when 

GFR was indexed to ECFV. Renal function indexed to ECFV was neither associated 

to BSA, length or body weight. This suggests that ECFV is the most appropriate 

indexing parameter. 

In chapter 2 we focused on weight excess, a risk factor for cardio-renal damage, in 

association with sodium status. In subjects with weight excess an elevated renal 

function has been observed, that is considered an early metabolic risk marker. 

Moreover, elevated GFR may be a pathogenetic factor in the long term renal 

damage associated with weight excess. To analyze these interrelationships, 

appropriate evaluation of renal function and its relation to BMI is required. In 

chapter 2A we found that a higher BMI is associated with a systematic error in 

creatinine clearance, one of the main methods for measurement of renal function in 

clinical practice, in healthy subjects. Whereas creatinine clearance provided a 

satisfactory assessment of renal function in our population, remarkably, 

overweight was associated with overestimation of true renal function by creatinine 

clearance. This was due to net tubular creatinine secretion in subjects with higher 

BMI. Whereas elevated true GFR has indeed been documented in obesity, our data 

show that an elevated creatinine clearance in obesity is partly explained by altered 

tubular creatinine handling. Our data suggest that a higher creatinine supply to the 

kidney, by either larger muscle mass, dietary intake or both, leads to net tubular 

creatinine secretion. So far, it is generally assumed that tubular creatinine secretion 

occurs only, or particularly in subjects with moderate to severe renal function 

impairment. Our data demonstrate a systematic error in healthy subjects as well, 
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indicating that creatinine clearance should be interpreted with care, in particular in 

subjects with weight excess. 

In chapter 2B we studied the impact of BMI on renal sodium handling and volume 

homeostasis in young healthy volunteers. A higher BMI was associated with a 

larger increase in ECFV when shifting from a low to a high sodium diet. As a 

consequence, during high sodium intake overweight subjects had a higher ECFV 

than lean subjects, whereas during low sodium diet ECFV was similar. These data 

suggest that BMI-associated differences in volume homeostasis could be involved 

in the interaction between high sodium intake, weight excess and long term 

cardiovascular morbidity and mortality. During high sodium intake, tubular 

sodium reabsorption as well as filtered load of sodium were higher in the 

overweight subjects than in the lean subjects, indicating that BMI modulated 

glomerulo-tubular balance during high sodium intake, possibly by its association 

with a higher filtration fraction. 

In studies on the adverse effects of high sodium intake on blood pressure it has 

long been noted that individual differences in the response to altered sodium 

intake, the so-called sodium-sensitivity, are large in normotensive as well as 

hypertensive subjects. Interestingly, sodium-sensitivity as such is associated with 

long term mortality, independent of blood pressure. Its underlying mechanisms 

are therefore of interest. We studied the possible role of intra-renal activity of the 

renin angiotensin aldosterone system (RAAS) with sodium sensitivity in healthy 

subjects. Our data provided support for an increased activity of the intra-renal 

RAAS during both low sodium and high sodium intake in sodium sensitive 

subjects as compared to sodium-resistant subjects. During ACE-inhibition these 

differences were annihilated. Interestingly, ECFV tended to be higher in sodium 
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sensitive subjects during either sodium intake. As our study was not quite 

powered to draw conclusions on between-group differences in ECFV, these data 

require confirmation in larger studies. 

The amount of functional renal tissue is assumed to be important in volume 

homeostasis, and reduction of renal mass, by renal disease or in animal models, 

has been shown to be associated with volume expansion. However, whether this 

relates to the reduction in renal mass and function, or to the presence of renal 

parenchymal abnormalities, has not been dissected. In chapter 4, therefore, we 

studied the effect of uninephrectomy in healthy kidney donors on ECFV and renal 

sodium handling. Remarkably, in these healthy subjects uninephrectomy resulted 

in a decrease in ECFV three months after donation, despite a substantial reduction 

in total GFR. Thus, reduction of renal mass and renal function is not invariably 

associated with ECFV expansion. In our healthy kidney donors a clear-cut adaptive 

response was present after donation, with a substantial increase in single-kidney 

GFR in the remaining kidney. Consequently, after donation filtered load of sodium 

was higher, as were tubular reabsorption rate of sodium, and fractional sodium 

excretion. We assume that an altered setpoint of glomerular and tubular sodium 

handling resulted in the observed decrease of ECFV. This might be due to different 

adaptative responses of filtration and reabsorption, to the observed reduction of 

filtration fraction, to the increased filtered load of bioactive substances such as 

amino-acids, or a combination of these. 

Finally, in chapter 5 we analysed the association between anaemia and ECFV in 

two different disease conditions. First, in chapter SA we describe a patient 

population with chronic heart failure, i.e. a condition characterized by primary 

fluid overload but with intrinsically normal kidneys. In this population anaemia 
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was not only related to impaired renal function and blunted EPO production, but 

remarkably a higher ECFV was an independent determinant of anaemia as well. 

Second, in chapter SB we analysed a population of stable renal transplant 

recipients. In this population a higher ECFV was an independent determinant of 

anaemia as well. These studies thus demonstrate a consistent association between 

volume status and anaemia that should be considered appropriately when 

studying the pathophysiology of anaemia. Our studies suggest that it might be 

fruitful to explore the effects of correction of volume overload as part of a 

therapeutic intervention regimen in cardiorenal anaemia. 

General Discussion 

The importance of assessment of volume status is undisputed in clinical medicine 

for many acute and chronic disease conditions. Yet, measurement of ECFV has not 

made its way into clinical practice, and moreover, it has an only modest place in 

clinical research. This is, among others, due to the fact the available methods are 

either inaccurate or considered too invasive for clinical routine. In the studies 

described in this these we demonstrate the feasibility to estimate ECFV from the 

data generated during the accurate measurement of renal function as the clearance 

of IOT. 

Obviously, we do not want to advocate large scale application of IOT 

measurements in any population where assessment of ECFV would be relevant. 

Rather, we wanted to enhance the yield of accurate renal function measurements 

that are done for various purposes, with an estimate of ECFV, thus creating a data 

resource that is not available so far anywhere in the world. Accurate renal function 

measurement is mostly done in specific populations with renal or cardiovascular 

161 



Summary and General Discussion 

disease. Since disturbances of volume homeostasis are of considerable 

pathophysiological relevance in these populations, simultaneous assessment of 

ECFV might be highly useful, not only for research purposes, but potentially also 

for clinical patient management. Indeed, if measurement of ECFV would be 

implemented in all instances where GFR is measured with specific tracers, this 

would provide a tremendous resource of data that might of great value to better 

address the role of altered volume homeostasis in renal disease, and its 

cardiovascular complications. In this paragraph we will discuss the feasibility, 

objectives and possible merits of ECFV measurement in renal settings. Moreover, 

we will discuss the novel insights on the role of altered regulation of renal sodium 

handling and ECFV in relation to risk markers of cardiovascular disease, that we 

obtained by analysing ECFV data from renal function measurements in several 

populations. 

Implementation of ECFV assessment in renal function measurement 

Assessment of renal function by specific tracers is laborious and therefore 

expensive. However, the accuracy and precision are far superior over creatinine­

based renal function assessments1,2• Therefore, in scientific and top-clinical 

nephrology settings, measurement of renal function by specific tracers is relatively 

common. In our centre, 800-1000 measurements are performed yearly, most in 

protocollized follow-up of transplant recipients, but also in patients with native 

kidney disease, or chronic heart failure, and finally for screening and follow-up of 

healthy kidney donors. Routinely measuring ECFV simultaneously with the renal 

function measurements would increase the yield of these measurements, and 

open-up a resource of data on ECFV world-wide. 
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Several specific tracers are available to accurate renal function measurement, such 

as inulin, iohexol, IOT and 51Cr EDT A 1 • Our studies focused on IOT as this tracer is 

used for renal function measurement in our centre. It is important to note that the 

kinetics and renal handling of other renal function tracers are not essentially 

different from IOT3• Accordingly, other renal function tracers could similarly be 

used to estimate ECFV. For some tracers clinical validation is available supporting 

their use for ECFV measurement, albeit not as extensive as pursued here for IQT4-9• 

A main feature of GFR assessments in many other centres is that renal function is 

calculated from the plasma-disappearance curve, whereas our constant infusion 

method relies on steady state plasma levels. Plasma-disappearance curve are also 

suitable for ECFV assessments, and do not require the algorithm that we used for 

extrarenal clearance. 

Which insights could we gain from measurement of ECFV simultaneously with 

renal function? As noted above, renal function is usually indexed to BSA to be able 

to compare renal function between individuals. However, the validity of indexing 

GFR to BSA has been questioned by several authors, pointing to possible 

confounding by obesity and male-female differences10,11 • An alternative would be 

indexing GFR to ECFV12• The latter is attractive since the ECFV is the body 

compartment from which the kidney clears the waste products9• The results from 

chapter one, showing that indexing to ECFV annihilates the alleged male-female 

differences in renal function, strongly suggest that indexing to ECFV has 

advantages over indexing to BSA. This is supported by findings from our other 

studies. In chapters 1, 2 and 3 the sodium induced changes in GFR paralleled those 

in ECFV. This observation suggests that in normal physiology sodium-induced 

changes in renal function are linked to those in ECFV. Therefore, indexing renal 

function for ECFV could not only prove to be important for between-individual 
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comparisons, but also for follow-up of individual subjects. Furthermore, in chapter 

2, we found that the association between BMI and GFR paralleled the association 

between BMI and ECFV. These findings suggest that the drawbacks of indexing to 

BSA in obese subjects do not apply to indexing to ECFV. However, as has been 

pointed out recently13, there is no gold standard as to the best way to index renal 

function, and the final proof for superiority of one practice over another will have 

to come from studies evaluating their predictive potential for long term renal 

function. 

When GFR is expressed per liter of ECFV, its unit reflects is the virtual volume of 

ECFV which is cleared per unit of time. By indexing GFR (ml·min-1 ) to ECFV (1) the 

volume expression drops out of the equation, and thus GFR/ECFV reflects the 

proportion of the ECFV cleared per unit of time. The other way around ECFV /GFR 

reflects the time needed to clear the complete ECFV. This way of considering renal 

function may help to appreciate renal function relative to the metabolic and 

homeostatic requirements of the body14• Our data in chapter 4 nicely illustrates this 

approach. Before uninephrectomy GFR/ECFV, i.e. the proportion of the ECFV 

cleared per hour was 36 %. After donation, as anticipated, GFR fell considerably, 

but due to a rise in GFR in the remaining kidney, post-donation GFR was not 50% 

but on the average 63% of its pre-donation value. ECFV decreased slightly. 

Consequently the proportion of the ECFV cleared per hour decreased to 24%-h-1 . 

The other way around ECFV/GFR increased from 2.8 to 4.3 hour. Thus, the 

remaining kidney needs approximately 53% more time to clear the complete ECFV; 

had there been no changes in single kidney GFR or ECFV, this time would have 

doubled. It is tempting to speculate that the combined changes of GFR and ECFV 

reflect a concerted adaptive response to uninephrectomy, but we have no means to 

substantiate this assumption from our current data. 
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ECFV assessment by specific tracers, including ours, requires injection and timed 

follow-up, which is impractical in clinical practice and in large scale 

epidemiological surveys. Our data strongly suggest that specific assessment of 

ECFV may provide important pathophysiological insights, for instance on blood­

pressure independent mechanisms underlying the combined effects of weight 

excess and sodium intake on long term cardiovascular outcome. For assessment of 

ECFV in clinical practice and for epidemiological surveys simple, cheap, and 

reliable markers for volume status are needed. From the physiology of sodium 

handling, it would be of interest to explore the potential of natriuretic peptides to 

this purpose. NT-proBNP is a stable natriuretic peptide that is widely used for 

diagnosis and prognostic evaluation of heart failure15 • Somewhat surprisingly, the 

contribution of volume overload, relative to the contribution of cardiac status as 

such, to the considerable elevation of NT-proBNP in cardiac patients has not been 

well-characterized. More subtle increases in NT-proBNP are associated with long 

term mortality in other populations, including the general population16-18• 

Preliminary data of our own group have shown that increased sodium intake leads 

to a rise in NT-proBNP in healthy subjects, in the order of magnitude as observed 

to be prognostic in general population-based cohorts. It is tempting to speculate 

that such subtle elevations on NT-proBNP reflect subclinical ECFV expansion. It 

would be highly interesting to explore this issue, in particular because volume 

expansion is accessible to intervention by dietary sodium restriction and/or 

diuretics. 

ECFV in relation to cardiorenal risk markers 

In chapter 2 and 3 we presented data on abnormalities in ECFV in relation to BMI 

and sodium-sensitivity of blood pressure. Weight excess was associated with a 

larger rise in ECFV due to high sodium intake, and consequently, a higher ECFV in 
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overweight subjects as compared to lean subjects during high, but not during low 

sodium intake. These differences in ECFV were not associated with differences in 

blood pressure. As this observation was made in healthy young subjects, 

apparently the alteration in volume homeostasis is an early feature of the metabolic 

risk profile associated with weight excess. Our data moreover demonstrate that the 

early changes in volume homeostasis in subjects with weight excess are not a 

consequence of possible sub-clinical hypertensive renal damage, or of insulin 

resistance but due to the weight excess as such. Our data strongly suggest that 

effects on volume homeostasis are involved in the combined effects of high sodium 

intake and weight excess on cardiovascular, and possibly, renal risk. Whereas this 

hypothesis requires further confirmation, it could have considerable clinical 

implications since, as noted above, volume excess is accessible to therapeutic 

intervention by dietary sodium restriction and/or diuretic therapy. 

In sodium sensitive healthy subjects we found evidence for increased activity of 

the intra-renal RAAS. Also, their ECFV tended to be higher than in sodium­

resistant subjects irrespective sodium intake, but this difference did not quite reach 

statistical significance. However, relative to the other study parameters, the study 

was not adequately powered to detect between-group differences in ECFV. Yet, a 

higher ECFV is clearly one of the effects that can be anticipated from the increased 

activity of the intra-renal RAAS that we observed in the sodium-sensitive subjects. 

Of note, a constitutively higher ECFV in sodium-sensitive subjects might also 

provide an explanation for the blood pressure-independent association between 

sodium-sensitivity and long term mortality19• So, the hypothesis that differences in 

ECFV are involved in differences in sodium-sensitivity in normotensive subjects is 

attractive, and needs exploration in further, larger studies. 
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Our data in healthy kidney donors allow to address the effect of reduction in renal 

mass on ECFV. Reduction of renal mass, and its corresponding reduction in renal 

function are generally assumed to be associated with adverse cardiovascular 

effects, not only due to the accumulation of uremic waste products, but also due to 

disturbed volume homeostasis and volume overload20• However, the available 

evidence was largely obtained in conditions where the reduction in renal mass was 

due to renal disease21-23, or, in case of animal models, very severe and associated 

with early renal parenchymal damage24,25 • So, it was unclear whether the 

association of reduction in renal mass and volume expansion was due to the 

reduction in renal mass as such, or to renal parenchymal damage, or a combination 

of the two. Our data in healthy kidney donors demonstrate that loss of renal mass 

and renal function does not invariably lead to a rise in ECFV, as actually ECFV 

decreased despite the substantial reduction in total GFR. This suggests that fluid 

overload in renal disease is related to the renal parenchymal abnormalities, and 

consequent alterations in renal sodium handling, rather than to nephron loss per 

se. Put otherwise: qualitative differences in the kidney are more important than 

quantitative differences. Apparently, in a healthy kidney the adaptive responses 

that aim to preserve GFR after contralateral nephrectomy, do not involve 

expansion of the ECFV. It would be logical to assume that a lower set-point for 

ECFV is a pathophyiologically favourable adaptation to the single kidney state, but 

for the moment we have no data to substantiate this assumption. 

Finally, our data in chapter 5 demonstrate how volume status can be closely 

interrelated with other manifestations of cardiorenal disease, namely anaemia. As 

ECFV was elevated in anaemia in heart failure as well as in stable renal transplant 

recipients, the association between ECFV and anaemia appears to be a robust 

finding. The relationship between ECFV and anaemia however is complicated. 
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Anaemia itself leads to lowering of oxygenation and thereby fluid retention can 

occur in order to increases cardiac output, as observed in severe anaemia26• 

However, vice versa, primary abnormalities of fluid regulation may lead to 

haemodilution, and thus mimic anaemia27• Third, anaemia and fluid excess may 

also have common pathophysiological pathways, such as a decrease in healthy 

renal mass28• Finally, it should be noted that blockade of the RAAS, ubiquitous in 

heart failure and increasingly common in renal transplant recipients, may well 

have influenced haemoglobin level in our studies, as RAAS-blockade is well­

established to be able to reduce haemoglobin levels, and even induce anaemia29-31 • 

It would be of considerable clinical relevance to further explore the 

interrelationship between volume expansion and anaemia in cardiorenal disease, 

as this might help the integrated management of the diverse components of 

cardiorenal damage. It would be important to establish whether the elevated ECFV 

is indeed associated with haemodilution, and even more importantly, whether 

control of volume excess can contribute to the management of cardiorenal 

anaemia. Studies addressing this issue will start shortly in our department. 

Taken together, our measurement of the ECFV simultaneous with renal function 

has provided a wealth of data on the regulation of ECFV in health and cardiorenal 

disease. However, as our data by definition are derived from renal function 

measurements that are performed only in specific populations, we do not provide 

a comprehensive overview of abnormalities in the regulation of ECFV. Yet, our 

approach allows to collect data on ECFV on a scale that is so far unique. Our 

current studies demonstrate the potential of the approach in analyses that were so 

far cross-sectional, but in future studies long term follow-up data should be 

obtained that will allow to determine the prognostic impact of changes in ECFV for 

cardiovascular and renal outcome, as well as the possible merits of indexing GFR 
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to ECFV over BSA. Measurement of ECFV might shed new light on long-standing 

issues of research in our group, such as the mechanisms underlying potentiation of 

the effects of RAAS-blockade by sodium restriction and/or diuretics32,33• Moreover, 

it will be useful in analysing the regulation and consequences of altered volume 

status in type I diabetes. In this condition volume overload is assumed to be 

involved in systemic and glomerular hypertension, and the pathogenesis of renal 

damage34,35• However, dietary sodium restriction is associated with adverse effects 

on renal haemodynamic profile36• The role of sodium restriction in the treatment of 

diabetes is therefore still unknown and a matter of debate37• 

We conclude that assessment of ECFV may be of great help to delineate the (pa tho) 

physiological effects of sodium. Sodium intake is a modifiable factor probably 

involved in a wide spectrum of pathology, ranging from cardiovascular risk in the 

general population to optimalization of treatment in specific situations. The role of 

ECFV as a factor mediating the (patho-) physiological effects of dietary sodium 

intake is so far unsatisfactory explored; the results presented in this thesis are a 

guide and start for further exploration of sodium status and ECFV in (pa tho) 

physiology. 
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Samenvatting 

Het eten van veel zout geeft een verhoogd risico op hart- en vaatziektes, en een 

hoger risico om te sterven. Deze gegevens komen naar voren uit grate studies die 

inwoners van verschillende landen (met verschillende eetgewoontes), maar ook 

verschillen tussen personen binnen een land bestudeerden. De relatie tussen het 

eten van veel zout en risico op hart- en vaatziektes is sterker in mensen met 

overgewicht. Het ontstaan van hoge bloeddruk kan belangrijk zijn als tussenstap, 

maar het verhoogde risico is ook aanwezig onafhankelijk van een verhoogde 

bloeddruk. 

Wat gebeurt er als iemand (veel) zout tot zich neemt? Ten eerste is het belangrijk 

om te weten dat de zouthuishouding en de waterhuishouding nauw samengaan. 

Zoutinname zorgt voor een subtiele verhoging van de zoutconcentratie wat een 

verhoging geeft van het ADH (anti-diuretisch hormoon), in andere woorden: het 

hormoon wat de productie van urine (diurese) tegengaat. Inname van zout gaat 

dus gepaard met vasthouden van water. Om deze reden verandert de 

concentratie van zout in het lichaam nauwelijks. Het zout, of liever gezegd de 

elektrolyt Na+, bevindt zich met name buiten de lichaamscellen (extra cellulair; 

dit is in de bloedbaan en in de ruimte tussen de cellen) . Na zoutinname stijgt de 

zout- en waterhoeveelheid, de concentratie blijft echter nagenoeg gelijk; er vindt 

dus een stijging plaats van het Extra Cellulair (vloeistof) Volume. 

Een verhoging van het ExtraCellulaire Volume (ECV) zorgt ervoor dat er 

eiwitten uit het hart (natriuretische peptides = natrium-uitscheidende eiwitten) 

uitgescheiden warden en dat het Renine-Angiotensine Systeem (enzymsysteem 

welke het zout vasthouden door de nier stimuleert) geremd wordt. Uiteindelijk 

past het lichaam zich op deze manier aan zodat de zoutinname en de 

zoutuitscheiding (door de nieren) weer aan elkaar gelijk zijn. Dit hele proces kost 
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echter tijd (2-3 dagen) en daarom is het uiteindelijke resultaat dat iemand die 

veel zout tot zich neemt, een verhoging krijgt van het ECV (=hoeveelheid water 

in de extracellulaire ruimte). 

Als we teruggaan naar de relatie tussen zoutinname en risico op hart- en 

vaatziektes, is de gedachte dat stijging van ECV hierin een belangrijke rol kan 

spelen. Immers, meer volume in de extracellulaire ruimte geeft meer druk op 

hart- en bloedvaten en dit zou op de lange termijn wel eens schadelijk kunnen 

zijn. Het meten van ECV is daarom belangrijk als je meer wilt weten over de 

relatie tussen zoutinname en hart- en vaatziektes. Echter, er is een probleem en 

dat is dat het meten van ECV niet eenvoudig is. Er zijn wel enkele methoden, 

maar deze zijn allemaal erg bewerkelijk, moeilijk uit te voeren en vaak slecht 

onderzocht. De 'gouden standaard' voor het meten van ECV is het meten van het 

Broom verdelingsvolume. In dit proefschrift echter doe ik een voorstel om ECV 

te meten tijdens een meting die al dagelijks wordt uitgevoerd in het UMCG: een 

nauwkeurige meting van de nierfunctie. 

Het nauwkeurig meten van de nierfunctie is ook niet eenvoudig. In het UMCG 

gebruiken we een radioactieve stof {125I-iothalamaat). Dit stofje wordt met een 

constante snelheid in de bloedbaan gespoten, net zolang totdat de uitscheiding 

via de nieren even snel gaat als het inspuiten via een infuus: op dat moment is er 

een evenwicht (steady state). Dit stofje iothalamaat heeft een eigenschap die lijkt 

op Na+, dit stofje blijft namelijk ook met name buiten de cellen en verdeelt zich 

vrij gelijkmatig over de extra-cellulaire ruimte. Als je dus weet hoeveel 

iothalamaat er in het lichaam gespoten is (van nature komt dit stofje niet voor in 

je lichaam) en je weet wat de concentratie is in de extracellulaire ruimte (= ook de 

bloedbaan), dan kun je uitrekenen hoe groat de Extracellulaire ruimte is. 
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Met de gedachte uit de vorige alinea hebben we in Hoofdstuk 1 het ECV, 

berekend aan de hand van het verdelingsvolume van iothalamaat, vergeleken 

met ECV gemeten met de gouden standaard: het verdelingsvolume van Broom. 

Beide waardes kwamen goed met elkaar overeen; dit leek zo te zijn voor 

verschillende nierfuncties, waarbij gezegd moet warden <lat er wel een correctie 

nodig is bij slechte nierfunctie, omdat dan iothalamaat niet alleen door de nieren 

wordt uitgescheiden, maar er ook een gedeelte via waarschijnlijk de darmen en 

galvorming verdwijnt. 

In het overige deel van hoofdstuk 1, gaan we verder in op normalisatie van de 

nierfunctie. Het is namelijk zo <lat de nierfunctie van een klein persoon lager kan 

zijn dan van een groat persoon (vergelijk een klein dun omaatje met een grate 

bodybuilder), maar <lit hoeft niet te betekenen <lat de nierfunctie ook slechter is. 

Een klein persoon heeft nou eenmaal een minder hoge nierfunctie nodig. Met 

deze gedachte wordt de nierfunctie altijd gecorrigeerd voor lichaamsoppervlak 

(Body Surface Area- BSA); welke niet gemeten wordt, maar berekend aan de 

hand van lengte en gewicht. Deze correctie aan de hand van lichaamsoppervlak 

krijgt veel kritiek, omdat enerzijds de bepaling met de formule onnauwkeurig is, 

maar ook omdat verschillen tussen dikke en dunne personen en bijvoorbeeld 

mannen en vrouwen niet goed tot uitdrukking komt. Een alternatief kan zijn: 

nierfunctie normaliseren voor ECV. Ten eerste is het zo dat een klein persoon een 

kleiner ECV zal hebben dan een groat persoon (onder normale omstandigheden), 

ten tweede is het ook logisch om de nierfunctie te normaliseren voor ECV als we 

kijken wat nierfunctie nou eigenlijk betekent. De nieren zuiveren het lichaam van 

afvalstoffen. De nieren gebruiken het Extra-cellulaire lichaamscomponent 

hiervoor. Het is dus niet zozeer <lat de nierfunctie hoger zou moeten zijn als het 

lichaamsoppervlak hoger is, maar de nierfunctie zou hoger moeten zijn als het 
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ECV hoger is. Omdat nierfunctie en ECV fysiologisch met elkaar verbonden zijn, 

zou het logisch zijn om de nierfunctie te normaliseren voor ECV. 

In Hoofdstuk 1 doen we dit ook bij mensen die zich hebben opgegeven om een 

nier af te staan (gezonde mensen dus). Het blijkt dat de nierfunctie 

(lichaamsoppervlak gecorrigeerd) tussen mannen en vrouwen verschillend is. 

Als we echter corrigeren aan de hand van ECV is de nierfunctie niet meer 

verschillend. Er is geen reden dat de door ons onderzochte vrouwen een 

slechtere nierfunctie zouden hebben dan mannen, daarom vinden wij dat onze 

resultaten een aanwijzing geven dat normalisatie voor ECV beter is dan 

normalisatie voor lichaamsoppervlak. 

In Hoofdstuk 2 gaan we verder in op de relatie tussen nierfunctie, ECV en 

overgewicht. In hoofdstuk 2A gaan we eerst in op een andere methode van het 

meten van nierfunctie: het verzamelen van 24-uurs urine en vervolgens het 

meten van de Kreatinine-klaring. Kreatinine is een afvalstof uit de spieren en 

wordt door de nieren uit het lichaam verwijderd. Hoewel het minder 

nauwkeurig wordt geacht dan metingen met radio-actieve stoffen, wordt deze 

meting zeer vaak uitgevoerd. Als we er achter komen, waarom deze meting 

minder nauwkeurig is, kunnen we hiervoor corrigeren en kan de meting wellicht 

nauwkeuriger warden. In hoofdstuk 2A meten we de hoeveelheid Kreatinine die 

niet alleen gefiltreerd wordt door de nier, maar daarbovenop door de tubulus 

warden uitgescheiden ( de tubulus is het buisje na de glomerulus (=filter van de 

nier), waar veel water, zout en andere stoffen juist terug de bloedbaan in gaan). 

Het is algemeen bekend dat deze tubulaire uitscheiding van Kreatinine met name 

voorkomt bij mensen met een slechte (filtrerende) functie van de nieren, maar wij 

laten zien dat het oak voorkomt bij gezonde mensen. Bij deze gezonde mensen 

lijkt deze extra uitscheiding van Kreatinine een relatie te hebben met mate van 
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overgewicht (bepaald door het berekenen van Body Mass Index (BMI)), oftewel 

hoe hoger de BMI, hoe meer de Kreatinine uitscheiding en hoe meer de 

Kreatinine-klaring de nierfunctie overschat. Het zou kunnen zijn dat bij mensen 

met overgewicht de tubulus actiever is ( door stofjes uit vetcellen), het zou ook 

kunnen zijn dat mensen met overgewicht meer spieren hebben (en dus meer 

Kreatinine als afvalstof) en meer Kreatinine via hun voeding binnenkrijgen en 

dat daardoor de nieren juist bij deze mensen meer Kreatinine uitscheiden. 

In Hoofdstuk 2B laten we zien (weer bij jonge gezonde mannen) dat het ECV van 

iemand met overgewicht meer stijgt dan het ECV van iemand zonder 

overgewicht als die persoon van een zoutbeperkt naar een zoutverrijkt dieet gaat. 

In de inleiding van dit hoofdstuk vertelden we dat de relatie tussen zoutinname 

en risico op hart- en vaatziektes sterker is bij mensen met overgewicht. Dat 

mensen met overgewicht na verhoging van de zoutinname meer stijgen in hun 

ECV zou hiervoor een verklaring kunnen zijn. De druk in hart- en bloedvaten 

stijgt daardoor misschien bij deze mensen wel meer. Het is ook zo dat de filtratie­

druk (gemeten als filtratie-fractie) in de nieren hiermee samenhangt. Of dit een 

oorzaak of gevolg is, of stoffen die vrijkomen uit vetweefsel hiermee 

samenhangen, of dat de zout-hantering door de nieren op een andere manier 

afhankelijk is van overgewicht is nog onbekend en zal verder onderzocht moeten 

warden. 

In Hoofdstuk 3 gaan we in op zoutgevoeligheid van bloeddruk. 

Zoutgevoeligheid van bloeddruk is de stijging in bloeddruk na het veranderen 

van een zoutbeperkt naar een zoutverrijkt dieet. Lange termijn studies laten zien 

dat deze zoutgevoeligheid ook een risicofactor is op het ontwikkelen van hart- en 

vaatziektes. In dit hoofdstuk laten we zien dat er bij gezonde jonge mannen een 
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relatie is tussen zoutgevoeligheid van de bloeddruk en reactie van de 

nierdoorstroming (gemeten als ERPF) op infusie van angiotensine IL De reactie 

van de nierdoorstroming op gemfundeerd angiotensine II ( en het vervolgens 

teniet te doen door ACE-remmers) is een maat voor de activiteit van het renine­

angiotensine aldosteron systeem (RAAS) in de nier. De activiteit van dit RAAS 

systeem in het nierweefsel heeft een matige overeenkomst met de activiteit in de 

bloedbaan; meten van de nieractiviteit is echter zeer lastig, maar kan op deze 

indirecte manier. Het RAAS heeft een belangrijke rol in de water- en 

zouthuishouding. Een grotere zoutgevoeligheid van bloeddruk lijkt echter niet 

samen te gaan met een grotere stijging van het ECV bij de overgang van 

zoutbeperkt naar zoutverrijkt dieet. Wel lijken de zoutgevoelige mensen 'overall' 

(zowel tijdens zoutbeperkt als zoutverrijkt dieet) een hoger ECV te hebben; 

waarbij <lit verschil wegvalt als het RAAS geremd wordt (door ACE-remmers). 

Oftewel, zoutgevoeligheid van bloeddruk lijkt samen te gaan met een verhoogde 

activiteit van het RAAS in de nier en een verhoogd ECV. Twee kenmerken die 

een rol spelen in de relatie tussen zoutgevoeligheid en verhoogd risico op hart­

en vaatziektes? 

In hoofdstuk 4 onderzoeken we wat er met het ECV gebeurt als gezonde mensen 

een nier afstaan. Na afstaan van een nier daalt de nierfunctie naar ongeveer 60%, 

oftewel de overgebleven nier gaat 20% harder werken. Het ECV daalt, wat in 

strijd is met de gedachte <lat een lagere nierfunctie (minder werkend nierweefsel) 

gepaard gaat met een verhoging in het ECV. Wat de reden is voor de daling in 

ECV weten we niet. Het zou kunnen zijn dat het lichaam direct na verwijdering 

van een nier zich moet aanpassen aan de nieuwe situatie en dat verhogen van het 

terughalen van natrium via de tubulus hierin de stap is die het langst duurt, wat 

samen kan gaan in verlies van natrium en daarmee met een verlaging van het 
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ECV. Het zou ook kunnen zijn <lat het setpunt tussen filtratie en terughalen via 

de tubulus veranderd is, met als resultaat verlaging van ECV. 

In hoofdstuk 5 leggen we een relatie tussen bloedarmoede (anemie, een verlaagd 

Hemoglobine gehalte) en een verhoogd ECV. Dit doen we in twee verschillende 

patientengroepen. Ten eerste (hoofdstuk SA) bij patienten met hartfalen en ten 

tweede (hoofdstuk 5B) bij patienten die een niertransplantaat hebben ontvangen. 

Opvallend is dat de gevonden relaties onafhankelijk zijn van de nierfunctie, de 

daarmee samenhangende EPO productie en <lat er geen tekenen bij lichamelijk 

onderzoek waren van overvulling. Als er onderzoek gedaan wordt naar 

bloedarmoede moet er dus ook rekening gehouden worden met het ECV. Een 

mogelijke relatie tussen het RAAS (en dus zout en volumehuishouding) en 

bloedarmoede is in dit licht een interessant punt om verder te onderzoeken. 

Concluderend doen we in dit proefschrift een voorstel om zoveel mogelijk tijdens 

nierfunctie-metingen ook het ECV te meten. Dit maakt studies met betrekking tot 

zoutinname, de zout- en waterhuishouding en het ontstaan van hart- en 

vaatziektes mogelijk. In <lit proefschrift maken we een begin met zulke studies, 

maar er zijn nog veel openliggende vragen en er zijn daardoor nog veel studies te 

verrichten. 
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U bent aanbeland bij de apotheose van dit proefschrift. Veel dank dat u zich zoveel 

pagina' s heeft weten door te worstelen dat u tot dit slotstuk heeft weten door te 

dringen. U heeft zich nu oak vertrouwd gemaakt met begrippen als extracellulair 

volume, iothalamaat, zoutbelasting, zoutgevoelige bloeddruk, fractionele zout 

excretie en volume-overschot. Vanaf heden kunnen we onder het genot van een 

drankje en een zoutje spreken of het de kredietcrisis, de globale opwarming of het 

zoutgehalte van het voedsel is wat de mensheid het meest bedreigd. 

Volledig in stijl met de werkwijze die mij de afgelopen jaren heeft gekenmerkt, 

schrijf ik dit enkele uren voor het verstrijken van de deadline die de drukker van 

dit proefschrift heeft gesteld. Onvoldoende tijd dus om uitvoerig te kunnen 

bedenken wie ik vergeet te noemen. Daarom, teneinde niemand te vergeten: 

bedankt iedereen die betrokken was bij de totstandkoming van dit proefschrift en 

vooral oak degenen die mij direct of indirect hebben ondersteund de afgelopen 

jaren. 

Toch wil ik ook enkele mensen, danwel groeperingen specifiek benoemen. Ik begin 

met de personen die zich vaak belangeloos hebben overgeleverd aan de door mij 

uitgevoerde experimenten: de proefpersonen. Zonder proefpersonen kunnen er 

nag zoveel briljante onderzoeken warden uitgedacht, maar dan komt de medische 

wetenschap geen stap verder. Jullie zijn de werkelijke motor van de medische 

vooruitgang, daarom: super bedankt jongens. Tevens veel dank aan patienten uit 

het UMCG en uit het Twenteborg te Almelo die mee wilden werken: zonder jullie 

was het werk uit dit proefschrift niet mogelijk geweest. 
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Ten tweede wil ik mijn collega' s van de nefrologie bedanken, waarbij ik -hopelijk 

zonder iemand te beledigen- ook de collega' s van de Prevend, de nefro-pathologie 

en nefro-farmacologie bedoel. Er wordt altijd veel gefoeterd over hoe zwaar we het 

wel niet hebben als onderzoekers, maar een mooi clubje hebben we toch wel bij de 

nefrologie. Ik zou willen zeggen dat er een uitstekend onderzoeksklimaat heerst, 

maar eigenlijk bedoel ik daarmee dat ik alleen maar fijne collega' s heb leren 

kennen de afgelopen jaren. Elke dag met veel plezier naar je werk gaan is 

belangrijk en dat heb ik in mijn onderzoekstijd gedaan! De meeste van mijn 

inmiddels ex-collega' s zijn uitgegroeid tot ware vrienden en vriendinnen en de 

barrels, congrestripjes waren dan ook fantastisch. Maar zo'n goed 

onderzoeksklimaat heeft ook nog een andere (meer door de promotoren 

gewaardeerde) voordelen: samenwerking, elkaar stimuleren en samen ideeen 

opdoen. Ik ben bang dat het boekje een keer zo dik gaat warden als ik alle 

momenten in herinnering zou gaan brengen waarbij een collega mij ondersteunde 

door een stukje te corrigeren, een meting voor me te doen, een telefoontje 

beantwoorden, een idee te toetsen en ga zo maar door. 

Enkele personen die ik wel specifiek wil noemen zijn: Menno, bedankt hoe jij me 

ooit hebt opgevangen en me hebt laten wennen en hebt ingewerkt bij de nefrologie. 

Titia, Femke en Mieneke: jullie wil ik bedanken als roommates, als collaborateurs 

voor verschillende studies, als klankbord voor frustraties, als bran van inspiratie 

en ga zo maar door. Toppunt was misschien wel het tripje naar Madrid, waarvan 

sommige anderen zich af hebben gevraagd hoe ik dat heb overleefd, maar met 

zulke topmeiden was dat geen probleem. Inge completeerde de topmeiden in 

Madrid: ook jij was zo'n topper. Arjan, Ferdau en Steef: jullie hebben misschien 

wel de meeste data gegenereerd die in dit proefschrift beschreven staat. Jullie zijn 

begonnen als student bij de nefrologie, waar ik ook een rol mocht spelen in jullie 
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begeleiding en het doet me veel plezier dat twee van jullie inmiddels ook 

werkzaam zijn bij de nefro en dat 3 uit 3 nog steeds tot de mogelijkheden behoort. 

Jan, je bent een geweldige gazer. Roommate, klankbord en bovendien de rommel 

opruimend die ik in Almelo heb achtergelaten. Super dat je bovenal ook nog mijn 

paranimf wilt zijn. Met jou kan ik zonder problemen alle moeilijke vragen 

doorpassen. 

De buren Rutger en Leendert: met jullie in de buurt was het nooit stil. Jullie 

stonden altijd klaar voor inhoudelijke vragen, maar zijn bovendien de mensen 

waardoor er nooit een dag voorbij gaat zonder te lachen. 

En dan uiteraard nog -met als enorm risico iemand te vergeten- alle andere 

collega' s waar alle bovengenoemde waarderingen ook voor gelden, maar waar ik 

in meer of mindere mate, voor langere of kortere periode ook mee in aanraking 

ben gekomen: Arnold (toch een mooi stuk samen), Peter, Goos, Jordan, Eric, 

Jacobien, Judith, Liffert, Martin, Andrea, Martine, Auke, Hiddo, Guiseppe (aka 

Peppi), Jelena, Mirjan, Wijnand, Eelco, Heleen, Sacha, Allah, Pramud, Kiran, Janna, 

Hilde, Elze, J acolien, Ester, Marije, Nynke: allemaal bedankt voor de mooie 

periode. 

Ten derde wil ik alle andere ziekenhuis medewerkers bedanken die mij in mijn 

werk hebben ondersteund. Een speciaal plekje in mijn hart hebben daarbij 

gekregen de 'nierfunctie-kamer dames' : Roelie, Marjan en Dirkiena en uiteraard de 

secretaresses: Winie en Rita. Jullie hebben me niet alleen bij van alles geholpen, 

jullie waren ook gewoon leuk gezelschap en daar ben ik jullie enorm dankbaar 

voor. De stafleden van de nefrologie wil ik bedanken voor de inbreng bij praatjes 

en referaten en uiteraard voor de inbreng bij sommige van mijn stukken. De 

stafleden en de onderzoekers van de nucleaire geneeskunde en cardiologie, wil ik 

bedanken voor de vruchtbare samenwerking. De mensen uit Almelo, met name 
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Danlnvoord 

Arend Jan Woittiez en Marja: jullie bedankt dat ik ook in Almelo studies heb 

kunnen opzetten en daarbij alle ondersteuning kreeg die ik nodig had. 

Professor Gans, Professor van Binsbergen en Professor Peters wil ik bedanken dat 

ze de moeite hebben willen nemen om mijn proefschrift te beoordelen. 

Gerjan Navis en Jaap Muntinga, promotor en co-promotor, jullie zijn voor mij van 

onschatbare waarde geweest. Gerjan, je hebt me tijdens mijn wetenschappelijke 

stage 'binnengehaald' en al vanaf die tijd gestimuleerd, gemotiveerd en met name 

ook van vele creatieve gedachtes voorzien. Hoe druk je het ook had, altijd maakte 

je tijd voor me. Ik zal me de late avondjes voor de ASN deadline, uiteindelijk met 

een nefro-biertje als beloning wel altijd blijven herinneren. Jaap, onze 

samenwerking was -laten we zeggen- wat onregelmatiger, maar met name in het 

laatste haf jaar waren onze bijeenkomsten zeer nuttig. Je hebt me keer op keer een 

goede spiegel voorgehouden en me laten zien dat er altijd meerdere invalshoeken 

zijn en soms ook meerdere waarheden. 

Om het bedanken van familie en vrienden kan ik niet heen. Heit en mem: bedankt 

voor al jullie ondersteuning die mij aan het studeren hebben gebracht: altijd kon en 

kan ik op jullie terugvallen, vooral dankzij jullie hoeven mijn keuzes niet op 

financiele grondslagen te berusten. Mijn vrienden van 'de pit' wil ik bedanken 

omdat jullie laten zien dat eeuwig jong blijven wel kan en blijkbaar is promotie­

onderzoek doen daarvoor een goed middel. Het is uiteraard wel verontrustend dat 

het edele klaverjas-spel vervangen dreigt te warden door Dalmuti en poker. Joost, 

jij bedankt dat je wilt optreden als paranimf, hopelijk kom jij ook binnen 

afzienbare tijd met een boekje op de proppen. Mijn 'Hoogeveen moaties' bedankt 

voor de afleiding, met name bij ons FC bezoek en onze Terschelling struukie duuk 
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ervaringen. Tot dit kopje horen ondertussen ook mijn nieuwe collega' s uit 

Deventer. Jullie hebben ervoor gezorgd dat ik zonder problemen heb kunnen 

inburgeren in het oosten des lands en me daar binnen no-time thuis heb weten te 

voelen, ondanks dat ik noodgedwongen van huis en haard gescheiden werd. 

En -lest best- Arwen: je bent niet alleen degene bij wie ik uit kan huilen, mijn hart 

kan luchten en mijn liefde kwijt kan, maar jij bent ook degene die mij bijna 

onvoorwaardelijke steun en liefde geeft, met wie ik enorm kan lachen, me uit kan 

leven, mezelf kan zijn en die me meeneemt naar verre oorden om alle onderzoeks­

sores te laten vergeten. Je bent bovendien ook nog degene die me enorm geholpen 

heeft me over de streep te trekken om ook de laatste loodjes te voltooien. Met jou is 

mijn toekomst vrolijk gekleurd, zonder jou kwam dit boekje er misschien wel 

nooit. . .  
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