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SCHRGDER, H., E, GIACOBINI, R. G. STRUBLE, P. G. M. LUITEN, E. A. VAN DER ZEE, K. ZILLES AND A. D. STROS- 
BERG. Muscarinic cholinoceptive neurons in the fronfal cortex in Alzheimer’s disease. BRAIN RES BULL 27(5) 631-636, 
1991.-The cellular distribution of muscarinic acetylcboline receptor protein in the frontal cortex of Alzheimer (AD) patients, 
age-matched and middle-aged controls was assessed quantitatively by means of immunohistochemistry using the monoclonal anti- 
body M35. As shown previously in biopsy cortices, mainly layer II/III and V pyramidal neurons were immunolabeled. Neither 
distribution nor numbers of labeled cells displayed significant differences between the groups investigated. This is in accordance 
with the results of ligand binding studies that mostly failed to reveal different binding characteristics in AD compared to controls. 
Muscarinic and nicotinic receptor proteins have been shown to be colocalized in many cholinoceptive pyramidal neurons. Since 
nicotinic receptors-in contrast to muscarinic receptor proteins-are severely reduced in AD, this indicates a selective impairment 
of nicotinic receptor expression and not a significant death of cholinoceptive neurons per se. 

Muscarinic acetylcholine receptor 
~unohist~he~s~ M35 

Alzheimer’s disease Cerebral cortex Human brain 

ALZHEIMER’S DISEASE (AD) (1) is characterized neuroehem- 
ically by a pronounced cortical cholinergic dysfunction (5,14). 
At the presynaptic level, the reduction of cholineacetyltrans- 
ferase (ChAT) activity indicates the impairment of acetylcholine 
(ACh) synthesis in the cholinergic basal forebrain projection 
system (3, 6, 14) [cf. (13, 24, 42)]. As to the receptor sites, 
binding studies have shown the concentration of nicotinic ACh 
receptors (nAChRs) in the frontal cortex to be markedly reduced 
(12, 14, 15, 26, W) as compared to age-matched controls. 
Findings on muscarinic receptors (mAChRs) are equivocal de- 
scribing increased, reduced or-in the majority of studies-un- 
changed numbers of binding sites [cf. (14)f. Receptor 
auto~dio~aphy has shown the preferential labeling of the su- 
perficial cortical layers for muscarinic binding sites (9,48) to be 
no longer detectable in AD (18). 

No information, however, is available so far about the cellu- 
lar distribution of rnAChRs in AD. Recently, immunocytochem- 
ical techniques have enabled the visualization of cholinergic 
receptors at the cellular level (23, 32-34, 40). Using a mono- 
clonal antibody, M35 (2, 23, 34), directed against the mAChR, 
we here report on the qualitative and quantitative evaluation of 

immunoreactive (ir) neurons in the frontal cortex of AD patients 
as compared to age-matched and middle-aged controls. 

METHOD 

Selection of Cases 

In the present study, the frontal cortices of three middle-aged 
controls [55 Lir.5 years, two females, one male, postmortem de- 
lay (range) (PM): 5-22 h], three age-matched controls (7326 
years, two males, one female, PM: 3-8 h) and six AD patients 
(7425, four females, two males, PM: 6-24 h) were studied. As 
far as known, the subjects selected for this study were not 

treated with centrally active drugs or drugs interfering with 
cholinergic receptors, nor did the control subjects show evidence 
of dementia on chart review. 

All brains had been subjected to neuropathological examina- 
tion. For control brains, the diagnosis of a neurological disease 
was ruled out. All AD cases met the clinical and neuropatholog- 
ical working criteria for the definite diagnosis of AD (16). There 
were clinical reports of dementia combined with large numbers 
of senile plaques and neurofibrillary tangles. In the control 
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group, senile plaques and neurofibrillary tangles were seen oc- RESlJLTS 

casionally but in no case were enough for the nemopathological 
diagnosis of AD [cf. (16)]. 

Qualitative Results 

Tissue Preparation 

Cortical tissue was obtained from the brain bank of the 
Southern Illinois University Center for Alzheimer’s Disease and 
Related Disorders. Upon autopsy, tissue was fixed in 10% buff- 
ered formalin. For the present study, samples of the frontal cor- 
tex (area 10 according to Brodmann) were dissected and rinsed 
for at least 12-15 h in 0.1 M phosphate buffer. pH 7.4, con- 
taining 0.15 M NaCl (PBS) at 4°C. 

Immunoperoxidase Procedure 

As described previously for biopsy specimens (34), mainly 
pyramidal perikarya in layers II/III and V and their apical den- 
drites were labeled. This becomes obvious in camera lucida 
drawings of the immunostained neurons (Fig. 1). It can be rec- 
ognized that there are no major differences as to the distribution 
pattern of labeled neurons between middle-aged controls, age- 
matched controls and AD cases. It is apparent that the density 
of labeled neurons in the cortices of aged controls (Fig. 1B) is 
somewhat lower than that of middle-aged controls (Fig. 1Af and 
AD cases (Fig. IC). At higher magnification, the histochemical 
findings are shown paradigmatically in micrographs of the su- 
perficial cortical layers of all three groups (Pig. 2A-C). Again, 
the arrangement of immunolabeled perikarya is comparable be- 
tween the different groups. The density ofimmunoreactive neu- 
rons appears somewhat less in age-matched controls (Fig. 2B) 
as compared to the other groups (Fig. 2A,C). 

Quantitative Results 

From all specimens, 50-pm thick cortical vibratome sections 
were prepared and treated for visualization of ir sites as de- 
scribed previously (34) with some modifications. Briefly, sec- 
tions were preincubated in PBS containing 20% normal goat 
serum (NGS) for 1 h at room temperature (RT). Subsequently, 
the sections were rinsed in PBS (2 x 10 min) and then incubated 
with the primary ~tiseNm, the mon~lonal mAChR antibody 
M35 (48-72 h, 4°C). Production and characterization of the an- 
tibody have been described in detail elsewhere (2, 23, 34, 40). 
The antibody was used in a working dilution of I:1000 in PBS, 
containing 1% NGS. After primary antibody incubation, sections 
were washed in PBS (2 X 10 mm). A biotinylated anti-mouse 
IgM (Amersham) was used as secondary antibody (1 h, RT). 
After another wash in PBS (2 X 10 min), the samples were incu- 
bated in a streptavidin-peroxidase complex (Amersham; 150, 1 
h, RT) followed by a wash in PBS. Visualization of the immu- 
noprecipitate was obtained by immersion of the sections in a so- 
lution containing 5 mg di~inobenzidine (DAB, Sigma) per 10 
ml PBS and 130 t&10.3% hydrogen peroxide (Merck) per 10 ml 
PBS (10 min. RT). The reaction was stopped by transfe~ing the 
specimens into PBS. The sections were mounted onto glass 
slides using Permount (Fisher Scientific) as mounting medium. 
For control purposes, sections otherwise treated as described 
above were incubated omitting 1) the primary antibody, 2) the 
biotinylated anti-mouse IgM antibody, or 3) were exclusively 
incubated with the streptavidin-peroxidase complex to exclude 
unspecific adherence of the detection systems to the sections. All 
controls revealed negative results. From each sample, cresylvio- 
let-stained sections (Nissl) were prepared. Photomicrographs were 
taken using an Olympus Vanox photomicroscope. 

The results of the quantitative evaluation are shown in 
Fig. 3. For the middle-aged controls, 4673 I 1364 labeled neu- 
rons/mm” were counted (mean 2 s.e.m,), for the age-matched 
controls, 2393 + 499, and for the AD brains, 5070 ZL 1008. The 
differences between the three groups were not statistically sig- 
nificant, F(2) = 1.6765, p>O.O5. A t-test comparing age-matched 
controls and AD patients did not reveal statistically significant 
differences, F(9) = 1.3541, p>O.O5. 

Densities of neurons, as revealed by counting Nissl-stained 
neurons, were not significantly different between all three groups 
[p>O.O5; mean r s.e.m (middle-aged controls: 6526 it 566; age- 
matched controls: 5973 t 731; AD cases: 6723 rt: 845) F(2) = 
0.0271. 

DISCUSSION 

No significant differences were detectable in the number of 
cortical mAChR-ir and of Nissl-stained neurons between the 
cortices of AD patients, age-matched and middle-aged controls. 
On the cellular level, this finding indicates a comparable extent 
of mAChR-protein expression in all three groups, consonant 
with the results of muscarinic receptor binding studies. The ma- 
jority of these did not reveal any differences in receptor density 
in AD patients as compared to age-matched controls using radio- 
labeled quinudidylbenzilate (QNB)- or N-methylscopolamine 
(NMS) as ligands (15, 18, 20, 29, 37). There have been, how- 
ever, some reports on a slight increase (10.26) or decrease (22, 
28, 47) of musc~nic binding sites in the frontal cortex of AD 
patients. Binding studies disc~minating between the Ml and M2 
mAChR subtypes, in part, have shown a tendency for M2 re- 
ceptors to be reduced in AD (3,22), while others reported un- 
changed M2-binding sites (31,39). The presently used antibody 
does not allow for a discrimination of the Ml or M2 mAChR. 
Recently, the production of subtype-specific antibodies has been 
reported (19). These will be useful tools to study the differential 
expression of subtype-specific receptor proteins. 

Quantitative evaluation 

Immunohist~hemic~ and Nissl-stained samples of each pa- 
tient were examined using an Olympus BH2 light microscope 
equipped with a drawing tube (magnification 1.25 X ). Camera 
lucida drawings were prepared of a cortical strip of 250 pm 
width, extending from the pial surface to the border with the 
white matter, documenting ir neurons or histologically stained 
neurons respectively (40 x objective). In the latter case, only 
neurons with a visible nucleolus were counted (7). Numbers of 
neurons per strip were assessed and the height of the cortex was 

determined for each sample (7). One-way analyses of variance 
(ANOVAs) were performed to compare statistically the means 
of &he three groups (middle-aged controls, age-matched controls 
and AD cases) with respect to i~unoi~led and Nissl-stained 
neurons. Results were considered statistically signi~c~t if p 
values were less than 0.05. 

Using receptor autoradiography [(3H)-QNB], the laminar la- 
beling pattern with highest density of silver grains in the super- 
ficial layers disappeared in AD (18). In our material, AD cortices 
did not differ in the distribution pattern of ir neurons as com- 
pared to controls (cf. Figs. 1, 2). Altered binding patterns in 
AD brains may be due to receptor changes at the synaptic level. 
Studies on the ul~as~ctum1 dis~bution of AChR proteins in 
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FIG. I. Camera Iucida drawings of the middle-aged (A) and age-matched control cases 
(B) and of the AD patients (C) studied depicting the distribution of M35-immunoreac- 
tive neurons in the frontal cortex (A 10). Protocol numbers (first row), age and sex 
(second row) are given for each column. Width of cortical strip, 250 pm. Note the 
apparently lower density of labeled neurons in the age-matched control group (B). 

AD and control brains are presently under way in our lab- 
oratory. 

The postmortem stability of mAC!hR has repeatedly been 
studied: in the rat brain, QNB binding was reported not to 
change up to 72 h ~stmo~em at a storage tem~ra~re of 4°C 
(38). At 2YC, a 25% decrease of binding was observed after 48 
h and 47% after 72 h. NMS binding decreases by 23% after 24 
h at 4°C (43). In the human brain, QNB binding was reduced 
by 10% 70 h postmortem (27). No major differences in the im- 
munohistochemical picture could be observed comparing biopsy 
specimens of temporal and occipital cortices (34) with the pres- 
ently studied autopsy cortices. In the light of these findings and 
the PMs of our patients, it appears unlikely that autolysis may 
have been a major factor influencing the presently obtained 
results. 

Rinne (30) showed the binding of tritiated QNB in the hu- 
man frontal cortex to decrease by 7% per decade. Applied to 
our patients, one would expect a decrease of app~xima~ly 
12%. Numbers of ir neurons showed a decrease of about 49% 
in age-matched vs. middle-aged controls. I~un~yt~he~s~ 

and ligand binding techniques, however, reveal partly different 
aspects of receptor expression. While the former visualizes indi- 
vidual receptor-producing neurons, the latter reflects the recep- 
tor affinity for the applied ligand. Therefore, one would have to 
take into account the cellular mAChR density. U~o~ately, no 
data are available on this topic. It is, however, known that the 
ratio of nicotinic vs. muscarinic binding sites is approximately 
1:2-4 [cf. (21)]. Using immunohistochemical methods, we found 
a ratio of nAChR- vs. mAChR-ir cortical neurons of about 1.7:1 
(Schrtider, unpublished observation), pointing at a relatively 
higher density of mAChR sites, since this ratio is the contrary 
of that calculated for the binding sites. The relatively small 
number of muscarinergic neurons then could well bear the 88% 
muscarinic binding sites predicted to be left in aged as compared 
to middle-aged subjects [cf. (30)]. Additional information on this 
issue might be obtained by microspectrofluorimetric measure- 
ments of single immunolabeled neurons, 

I~~ofluorescent double-la~~rng in the human cerebral 
cortex shows a colonization of mAChR and nAChR in at least 
30% of cholinoceptive neurons, the majority of these being py- 
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FIG. 2. Photo~~rographs of representative control cases and AD patients showing the distribution of M35-immunoreactive neurons in the superficial 
layers (II/III) of the frontal cortex (A IO). Calibration bar 100 p,m. (A) Middle-aged control. (B) Age-matched control. (Ci AD case. Note that thr 
normal distribution pattern is present in all three specimens 

ramidal cells (33). In AD, the number of cortical nAChR-ir 
neurons is only 33% of that of age-matched controls (35). This 
is not due to a neuron loss, since no significant differences in 
the density of Nissl-stained neurons were detected, which is in 
keeping with morphometric studies on the frontal cortex [cf. 
(8,36)1. 

Biochemical findings show a decrease in AD patients of 
nACbR binding sites ranging from 44 to 77% (14, 15, 26, 45). 
These findings raise the question of functional sequels of selec- 
tive nAChR impairment on the cellular level and of the selective 
vulnerability of nAChR in AD. 

As to the first point, it appears likely that, in AD, relufively 
more of the remaining cholinergic input into pyramidal neurons 

p’“.05 ------T 
/ p’“.05 I 

l 

1 
0 

l 

FIG. 3. Quantitative results of neuronal counting showing individual and 
mean numbers of M35-i~uno~active cortical neurons per mm3 for the 
three different groups studied. There are no significant differences be- 
tween the three groups @>0.05). 

is mediated by mAChR. In terms of cell pharmacology. the 
propagation of ACh-elicited signals would then be predominantly 
achieved by cyclic adenosine monophosphate (CAMP)- or gua- 
nosine monophosphate (cGMP)-dependent and/or phosphoinosi- 
tol-related processes [cf. (17,2 l)]. To our knowledge, however, 
no data are available on the functional properties of neurons fol- 
lowing the loss of one type of its receptors. 

As to the second issue, the loss of nicotinic binding sites in 
AD might be due to a long-term dow~gulation of receptors 
following presynaptic cholinergic degeneration. At the time be- 
ing, it is not understood why mAChR are not affected in a simi- 
lar way. 

Animal studies trying to model some of the neuropathology 
associated with AD by lesions of the basal nucleus have revealed 
partly equivocal results. While the activity of ChAT (4,25) and 
acetylcholinester~ (AChE) (1 I) was, as expected, reduced, 
nicotinic binding was unaltered (4,41), and mAChR binding 
sites were either unchanged (4,41) or decreased ( 11). 

With regard to possible treatment strategies of AD, the present 
findings might point to mAChR protein as a possible target of 
pharmacologically active compounds. The stimulation of mAChRs 
by specific agonists might be a possibility to increase cholinergic 
input into cortical neurons. 

In conclusion, at the cholinoceptor site, AD appears to be 
characterized by the persistence of mAChR in pyramidal neu- 
rons and a selective loss of nAChR. To evaluate pharmacologi- 
cal intervention strategies, it would be desirable to create an 
animal model mimicking this situation. Toxins selectively de- 
stroying different types of cholinergic receptors might be a use- 
ful tool to this end. 
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