7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Visual data mining and analysis of software repositories
Voinea, Lucian; Telea, Alexandru

Published in:
Default journal

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Voinea, L., & Telea, A. (2007). Visual data mining and analysis of software repositories. Default journal.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://www.rug.nl/research/portal/en/publications/visual-data-mining-and-analysis-of-software-repositories(15012568-ef9e-48de-9fa6-32be4ea7e3c4).html

Available online at www.sciencedirect.com

L ' : : COMPUTERS
X S Direct
be cienceDirec S GRAPHICS

g -
ELSEVIER Computers & Graphics 31 (2007) 410-428

www.elsevier.com/locate/cag

Visual Analytics
Visual data mining and analysis of software repositories

Lucian Voinea, Alexandru Telea™

Department of Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

In this article we describe an ongoing effort to integrate information visualization techniques into the process of configuration
management for software systems. Our focus is to help software engineers manage the evolution of large and complex software systems
by offering them effective and efficient ways to query and assess system properties using visual techniques. To this end, we combine
several techniques from different domains, as follows. First, we construct an infrastructure that allows generic querying and data mining
of different types of software repositories such as CVS and Subversion. Using this infrastructure, we construct several models of the
software source code evolution at different levels of detail, ranging from project and package up to function and code line. Second, we
describe a set of views that allow examining the code evolution models at different levels of detail and from different perspectives. We
detail three views: the file view shows changes at line level across many versions of a single, or a few, files. The project view shows changes
at file level across entire software projects. The decomposition view shows changes at subsystem level across entire projects. We illustrate
how the proposed techniques, which we implemented in a fully operational toolset, have been used to answer non-trivial questions on
several real-world, industry-size software projects. Our work is at the crossroads of applied software engineering (SE) and information

visualization, as our toolset aims to tightly integrate the methods promoted by the InfoVis field into the SE practice.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Data mining; Software evolution; Software visualization; Software engineering; Maintenance

1. Introduction

Software configuration management (SCM) systems are
an essential ingredient of effectively managing large-scale
software development projects. Due to the growing
complexity and size of industry projects, tools that
automate, help and/or enforce a specific development,
testing and deployment process, have become a “must
have” [1].

An SCM system maintains a history of changes done in
the structure and contents of the managed project. This
serves primarily the very precise goal of navigating to and
retrieving a specific version in the project evolution.
However, SCM systems and the information they maintain
enable also a wealth of possibilities that fall outside the
above goal. The intrinsically maintained system evolution
information is probably the best starting point for

*Corresponding author. Tel.: + 3140247 5008; fax: + 3140246 8508.
E-mail addresses: 1.voinea@tue.nl (L. Voinea), alext@win.tue.nl
(A. Telea).

0097-8493/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2007.01.031

empirically understanding the software development pro-
cess and structure. An important reason for this is that
SCM systems are mainly used to store source code, which
is widely recognized as the ‘“main asset of the software
engineering (SE) economy” [2]. Whereas documents and
strategies easily become out-of-sync with the real system,
source code is one of the best sources of information on the
actual changes a system underwent during its evolution.
One of the main areas that can benefit from this
information is the software maintenance of large projects.
Industry surveys show that, in the last decade, maintenance
and evolution exceeded 90% of the total software
development costs [3], a problem referred to as the legacy
crisis [4]. It is, therefore, of paramount importance to bring
these costs down. This challenge is addressed on two
fronts, as follows. The preventive approach tries to improve
the overall quality of a system upfront, at design time.
Many tools and techniques exist to assess and improve the
design-time quality attributes [5,6]. However, the sheer
dynamics of the software construction process, its high
variability, and the quick change of requirements and

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2007.01.031
mailto:alext@win.tue.nl
mailto:alext@win.tue.nl

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428 411

specifications make such an approach ecither cost-ineffec-
tive or even inapplicable in many cases. Increasingly
popular software development methodologies, such as
extreme programming and agile development [7], explicitly
acknowledge the high dynamics of software and thus fit the
preventive approach to a very limited extent only. The
corrective approach aims to facilitate the maintenance
phase itself, and is supported by program and process
understanding and fault localization tools [8—10]. In most
projects, however, appropriate documentation often lacks
or it is “out of sync” with the implementation. In such
cases, the code evolution information maintained in an
SCM system (assuming such a system is used) is the one
and only up-to-date, definitive reference material available.
Exploiting this information in depth can greatly help the
maintainers to understand and manage the evolving
project.

In this paper, we propose an approach to support the
corrective maintenance of software systems based on visual
assessment of software evolution information contained in
SCM systems. Central to our approach is the tight
integration of software visualization in the traditional SE
pipeline as a means to get insight of the system evolution
and to guide both the analysis and the corrective
maintenance tasks. In this paper we mainly concentrate
on the visual analysis component of the SE pipeline and
show how software evolution visualization can be used to
perform non-trivial assessments of software systems that
are relevant during the maintenance phase. We target
quantitative, query-like questions such as “which are the
files containing a given keyword?”’, data mining and reverse
engineering-like questions such as “which is the
decomposition of a given code base in strongly cohesive
subsystems?”’, and also task-specific questions, such as
“what is the migration effort for changing the middleware
of a component-based system?” For all these question
types, we advocate and propose a visual approach
with three elements: the questions are posed visually, the
answers are output in a visual form, and the visual
metaphors used help formulating refined and new
questions. We show in detail how we validated our
approach by implementing it in a toolset that seamlessly
and scalably combines data extraction with data mining
and visualization. Our toolset integrates previous work
[11-15] on visualizing software evolution and also extends
it with a number of new directions which are discussed in
this paper.

This paper is structured as follows. In Section 2, we
present the role and place of visual analysis in the SE
process and outline its relation with data mining. In
Section 3 we overview existing efforts in analyzing the
evolution information present in SCM systems. Section 4
gives a formal description of the software evolution
data that we explore using visual means. Section 5 presents
the visual techniques and methods we propose for
the assessment of evolution. In Section 6 we illustrate the
use of our toolset to perform a number of relevant

assessments on several industry-size software projects.
Section 7 reflects on the open issues and possible ways to
address them.

2. Process overview

Fig. 1 illustrates the traditional SE pipeline. The figure is
structured along two axes: phases of the SE process (y) and
types of activities involved (x). The upper part shows the
“traditional”” SE development pipeline with its requirement
gathering, design, and implementation phases. If the
software and/or the SE process evolve with no problems,
this is the usual process that takes place. The analysis phase
(Fig. 1 middle) is typically triggered by the occurrence of
such problems, e.g. software architectures that are too
inflexible to accommodate requirement changes, repeated
bugs, long time to next release, and high development
costs. Analysis starts with gathering information from the
SCM system and structuring it in a multi-scale model of the
software evolution that ranges from code lines to functions,
classes, files and system packages. Next, two types of
activities take place, which attempt to answer several
questions about the software at hand. Data mining
activities target mostly quantitative questions, e.g. “how
many bug reports are filed in a given period?” using various
software analysis and reverse engineering techniques (see
Section 3), and provide focused answers. Software visua-
lization activities, the main focus of this paper, are able to
target also qualitative questions, e.g. ‘“‘is the software
architecture clean?”’, by showing the correlations, distribu-
tions, and relationships present in complex data sets. The
combination of concrete, usually numerical, answers from
the data mining and insight provided by the visualization
activities have two types of effects. First, decisions are
taken on which actions to perform to solve the original
problems. In this paper, we focus on corrective main-
tenance actions such as refactoring, redesign, bug-fixing
and iterative development. Second, the analysis results can
trigger asking new questions (more specific but also totally
different ones). The visual analysis loop repeats until a
decision is taken on which action to execute.

The above model implies no hard border, but a natural
overlap, between data mining and visualization, the
quantitative versus qualitative nature of the targeted
questions, and the precise demarcation between answers
and insight. Yet, data mining is far more often used in
practice in SE than software visualization. We believe that
this is not due to fundamental limitations of the software
visualization usefulness, but rather to weaknesses in
visualization (tool and technique) scalability, simplicity of
use, explicit addressing of focused questions, and integra-
tion in an accepted process and tool chain. In this paper we
mainly concentrate on the visual analysis loop and address
these claims by showing how visualization can be used to
perform nontrivial assessments of software systems that are
relevant during the maintenance phase, if the above

412 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

4 Project phases .

SCM £
)

development | ! r
phase 3 [Requirements ,| Design

time | :
EJ

Software Evolution
Multiscale Data Model

Questions

[Quantitative] [Qualitative]

analysis < ! N

phase : i Visual ! :

\ analysis |

: Data Software \ ;'

; Mining Visualization 5 it 1

3 E’ i Results v ! i

g : - P]

& ; ; Answers i InS|ght_] | !

Now— — DI S— ' refactoring,

maintenance 4 development,

phase 3) redesign... !
‘ Actions

[o -

'-; """""" g T R -

data mining software visualization
Types of activities

Fig. 1. Software engineering process for corrective system maintenance.

limitations are overcome. Examples of non-trivial and
specific questions we target with our approach are:

e What are the structure and the development context of a
specific file in a project?

e What is the migration effort for changing the middle-
ware of a component-based system?

e What is the importance of a major change in the source
code ?

e How do debugging induced changes propagate to other
parts of a system?

In the remainder of this paper, we show how we validated
our approach by implementing it in a toolset that
seamlessly and scalably combines data extraction with
data mining and visualization.

3. Previous work

As explained in Section 2, the analysis phase of the SE
process involves data mining and software visualization
tools. For this to work in practice, analysis must be
coupled with concrete SCM tools such as CVS [16] and
Subversion [17], which provide basic management func-
tions, e.g. software check-in, check-out, and branching,

and advanced management functions, e.g. bug manage-
ment, regression testing, and release scheduling. Data
mining tools provide data analysis functions, e.g. computa-
tion of search queries, software metrics, pattern detection,
and system decomposition, all familiar to reverse engineers
(e.g. [18-21]). Visualization tools provide various views
that let users gain insight in a system or answer targeted
questions. These activities can (and should) take place at
different scales of software representation, e.g. lines of
code, functions, classes, files and packages. Software
engineers must often quickly and easily change the level
of detail at which they work. For example, a developer who
edits a function (i.e. works at line level) needs to check
what other functions or files are affected (i.e. work at
function/file level) or verify if the system architecture is
violated or not (i.e. work at component/package level).

All in all, an ideal tool that supports the analysis process
in Fig. 1 should address several requirements:

e management:. check-in, check-out, bug, branch, and
release management functions;

e multiscale: able to query/visualize software at multiple
levels of detail (lines, functions, packages);

e scalability: handle repositories of thousands of files,
hundreds of versions, millions of lines of code;

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428 413

e data mining and analysis: offer data mining and analysis
functions, e.g. queries and pattern detection;

e visualization: offer visualizations that effectively target
several specific questions;

e integration: the offered services should be tightly
integrated in a coherent, easy-to-use tool.

Many tools exist that target software repositories. Table 1
shows several popular SCM and software visualization
tools and outlines their capabilities in terms of the
requirements mentioned above.

Data mining tools focus on extracting relevant facts from
the evolution data stored in SCM systems. As SCM
systems such as CVS or Subversion focus on basic, “raw”
data management, higher-level information is usually
inferred by the mining tools from the raw information. In
this direction, Fischer et al. propose a method to extend the
raw evolution data from SCM tools with information
about file merge points [19], Gall [25] and German [20]
propose transaction recovery methods based on fixed time
windows. Zimmermann and Weigerber extend this work
with sliding time windows and information acquired from
commit e-mails [34]. Ball [18] proposes a new metric for
class cohesion based on the SCM extracted probability of
classes being modified together. Relations between
classes based on change similarities have been extracted
also by Bieman et al. [35] and Gall et al. [25]. Relations
between finer grained blocks, e.g. functions, are extracted
by Zimmermann et al. [21,24] and Ying et al. [36]. Lopez-
Fernandez et al. [26] apply general social network
analysis methods on SCM data to characterize the

development process of large projects and find inter-project
similarities.

Data visualization tools take a different path, by making
fewer assumptions about the data than mining tools. The
idea is to let the user discover patterns and trends rather
than coding pattern models to be searched for in the
mining process. SeeSoft [8] is a line based code visualiza-
tion tool that uses color to show the code fragments
corresponding to a given modification request. Augur [28]
combines in a single image information about artifacts and
activities of a software project at a given moment. Xia [32]
uses treemap layouts to show software structure, colored
by evolution metrics, e.g. time and author of last commit
and number of changes. Such tools are successful in
revealing the structure of software systems and uncovering
change dependencies at single moments in time. However,
they do not show code attribute and structural changes
made during an entire project. Global overviews allow
discovering that problems in a specific part of the code
appear after another part was changed. Global overviews
also help finding files having tightly coupled implementa-
tions. Such files can be easily spotted in a global context as
they most likely have a similar evolution. In contrast,
lengthy manual cross-file analyses are needed to achieve the
same result without an evolution overview. As a first step
towards global evolution views, UNIX’s gdiff and its
Windows version WinDiff show code differences (inser-
tions, deletions, and modifications) between two versions
of a file. More recent tools try to generalize this to
evolution overviews of real-life projects that have thou-
sands of files, each with hundreds of versions. Collberg

Table 1

CVS tools activities and approach overview

Tool Management activities Analysis activities

Name Basic management Data analysis Advanced management Visualization Data mining Multiscale

libevs X File

WinCVS X File

javacvs X File

Bonsai [22] X File

Eclipse CVS plugin X File
NetBeans.javacvs [23] X File

Release history database [19] x X File

Diff X Line

WinDiff X X Line

eRose [24] X X X Line, function, file
QCR [25] X X File

Social network analysis [206] X X File

MOOSE [27] X X File, class

SeeSoft [10] X X X Fine, file

Augur [28] X X X File

Gevol [29] X X Class
CodeCrawler [30] X X File,class
Evolution spectograph [31] X X File

Xia [32] X X File, class, package
SoftChange [33] X X X X X File

CVSscan [11] X X X Line

CVSgrab [13] X X X X X File, directory, subsystem

414 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

et al. [29] visualize software structure and mechanism
evolution as a sequence of graphs. Yet, their approach does
not seem to scale well on large systems. Lanza [30]
visualizes object-oriented software evolution at class level.
Closely related, Wu et al. [31] visualize the evolution of
entire projects at file level and visually emphasize the
evolution moments. One of the farthest-reaching attempts
to unify all SCM activities in one coherent environment
was proposed by German with SoftChange [33]. Their
initial goal was to create a framework to compare Open
Source projects. Not only CVS was considered as data
source, but also project mailing lists and bug report
databases. SoftChange concentrates mainly on basic
management and data analysis and provides only simple
chart-like visualizations. We have also previously proposed
methods for software evolution visualization at different
granularity levels: CVSscan [11] for assessing the evolution
of a small number of source code files at line level and
CVSgrab [13] for project-wide evolution investigations at
file level.

A less detailed aspect of SCM data mining and
visualization is the data extraction itself. Many researches
target CVS repositories, e.g. [11,13,19,24-26,33,36]. Yet,
there exists no standard application interface (API) for
CVS data extraction. Many CVS repositories are available
over the Internet, so such an API should support remote
repository querying and retrieval. A second problem is that
CVS output is meant for human, not machine reading.
Many actual repositories generate ambiguous or non-
standard formatted output. Several libraries provide an
API to CVS, e.g. the Java package javacvs and the Perl
module 1libcvs. However, javacvs is undocumented,
hence of limited use, whereas 1ibcvs is incomplete, i.e.
does not support remote repositories. The Eclipse environ-
ment implements a CVS client, but does not expose its API.
The Bonsai project [22] offers a toolset to populate a
database with data from CVS repositories. However, these
tools are more a web access package than an API and are
little documented. The NetBeans.javacvs package [23]
offers one of the most mature APIs to CVS. It allegedly
offers a full CVS client functionality and comes with good
documentation.

Concluding our review, it appears that basic manage-
ment and data analysis activities seem to be supported by
two different groups of tools (Table 1). Also, the data
mining and visualization activities (the left and right halves
of the pipeline in Fig. 1) have little or no overlap in the
same tool. All in all, there is still no tool for SCM
repository visual analysis that complies to a sufficient
extent with all requirements listed at the beginning of this
section. We believe this is one of the main reasons for
which software evolution visualization tools have not yet
been widely accepted by the SE community.

In the remainder of this paper, we shall describe our
approach towards an integrated framework, or toolset, for
visual analysis and data mining of SCM repositories. We
believe that our proposal, which combines and extends our

previous CVSscan [11] and CVSgrab [13] tools and
techniques, scores better than most existing tools in this
area. We describe our approach next (Sections 4 and 5),
detail its extensions as compared to previous work [11,13]
and present the validation done with several scenarios
(Section 6).

4. Evolution data model

In this section, we detail the data model that describes
our software evolution data. This model is created from
actual SCM repositories using repository query APIs and
data mining tools (Section 3).

The central element of a SCM system is a repository R
which stores the evolution of a set of NF files:

R={Fili=1,...,NF}.

In a repository, each file F; is stored as a set of NV;
versions:

Fi={Vyli=1,...,NV;}.

Each version is a tuple with several attributes. The most
typical ones are: the unique version id, the author who
committed it, the commit time, a log message, and its
contents (e.g. source code or binary content):

Vi = (id, author, time, message, content).

To simplify notation, we shall drop the file index i in the
following when we refer to a single file. The id, author, time
and message are unstructured attributes. The content is
modeled as a set of entities:

content = {e¢;li=1,..., NE}.

Most SCM repositories model content (and its change)
as a set of text lines, given that they mostly store source
code files. However, the entities e; can have granularity
levels above text lines, e.g. scopes, functions, classes,
namespaces, files or even entire directories. We make no
assumptions whatsoever on how the versions are internally
stored in the SCM repositories. Concretely, we have
instantiated the above data model in our toolset on CVS
[16] and Subversion [17] repositories as well as memory
management profiling log files [37]. Other applications are
easy to envisage.

To visualize evolution, we need a way to measure change.
We say two versions V; and V; of the same file differ if any
element of their tuples differs from the corresponding
element. Finding differences in the id, author, time, and
message attributes is trivial. For the content, we must
compare the content(V';) and content(V;) of two versions V;
and V;. We make two important decisions when comparing
content:

e we compare only consecutive versions, i.e. [i —j| = 1;
e we compare content at the same granularity level, or
scale.

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

The first choice can seem restrictive. However, in practice
changes in the source code stored in repositories are easiest
to follow and understand incrementally, i.e. when we
compare V; with V. Moreover, repositories store such
incremental changes explicitly and exactly, so we can have
direct access to them. Comparing two arbitrary files is
more complex and prone to errors. In CVS, for example,
changes are seen from the perspective of a di ff-like tool
that reports the inserted and deleted lines in V;.; with
respect to V;. All entities not deleted or inserted in V| are
defined as constant (not modified). Entities reported as
both deleted and inserted in a version are defined as
modified (edited). Let us denote by e; the jth entity of a
version V;, e.g. the jth line in the file V;. Using diff, we
can find which entities e;1; in V1 match constant (or
modified) entities e; in V;. Given such an entity e;, we call
the complete set of matching occurrences in all versions, i.e.
the transitive closure of the di £ £-based match relation, the
evolution E(e;) of the entity e;;. This concept can be applied
at any scale, as long as we have a di £f operator for entity
types on that scale. In Section 6, we shall illustrate the
above concepts at the line, component, and file granularity
levels. We next detail the techniques used to map the data
model described in this section on visual elements.

5. Visualization model

We now describe the visualization model we use to
present the evolution data model described in the previous
section. By a visualization model, we mean the set of
invariants of the mapping from abstract data to visual
objects. Our visualization model (Fig. 2) is quite similar
with the classical ‘““visualization pipeline” [38]. Its three
main elements are the layout, mapping, and user interaction.
It is well known in scientific and information visualization
that the effectiveness of a visualization application is
strongly influenced by decisions taken in the design of this
mapping [38,39]. We detail here the design decisions,
invariants, and implementation of these elements and

h

h

415

explain them in the light of the requirement set presented
in Section 2.

5.1. Layout

Layout assigns a geometric position, dimension and
shape to every entity to be visualized. We choose upfront
for a 2D layout. Our need to display many attributes
together may advocate a 3D layout. Yet, we had problems
in the past with getting 3D visualizations accepted by
software engineers [10]. A 2D layout delivers a simple and
fast user interface, no occlusion and viewpoint choice
problems, and a result perceived as simple by software
engineers. In particular, we opted for a simple 2D
orthogonal layout that maps time or version number to
the x-axis and entities (lines, files, etc) to the y-axis (Fig. 2).
Finally, entries are shaped as rectangles colored by the
mapping operation (see Section 5.2). Within this model,
several choices exist:

e selection: which entities from the complete repository
should we visualize?

e x-sampling: how to sample the horizontal (time) axis?

e y-layout: how to order entities e; (for the same i
different j) on the vertical axis?

e sizes: how to size the “rows” and “columns” of the
layout?

Selection allows us to control both what subset of the entire
repository we see, and also at which scale. We have
designed several so-called wviews, each using a different
selection and serving a different purpose: the code view
(Section 5.4), the file view (Section 5.3), the project view
(Section 5.5) and the decomposition view (Section 5.6).
The horizontal axis can be time or version sampled. Time
sampling yields vertical version stripes (V; in Fig. 2) with
different widths depending on their exact commit times.
This layout is good for project-wide overviews as it

rendering

content content 4
evolution :
layout mapping
data model ,y—>
{eq} e | eij
€ij+1| Ci+j+1

Vi time

application
scenarios

—— w0 om0

END USER |¢

select
scenario

final image

observe,
get insight

Fig. 2. Generic visualization model for software evolution.

416 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

separates frequent-change periods (high activity) from
stable ones (low activity). However, too quick changes
may result in subpixel resolutions. The project view
(Section 5.5) can be set to use this layout. Version sampling
uses equal widths for all version stripes. This is more
effective for entities that have many common change
moments, e.g. lines belonging to the same file [11]. The file
view (Section 5.3), uses this strategy by default.

The vertical axis shows entities e;; in the same version V;.
Two degrees of freedom exist here: first, we can choose in
which order to lay out the entities e;; for a version. Second,
we can stack the entities one above each other or use
vertical empty space between entities. Both choices are
detailed in Sections 5.3 and 5.6.

5.2. Mapping

Mapping specifies how entity attributes (e.g. author,
date, type) map to an entity’s color, shading, and texture.
As for the layouts, concrete mappings are highly task-
dependent and are discussed in Section 6. Yet, we have
found several design decisions which were generally
applicable to all our visualizations, as follows.

e Categorical attributes, e.g. authors, file types, or search
keywords are best shown using a fixed set of around 20
perceptually different colors. If more exist (e.g. in a
project with 40 authors), colors are cycled. Using
different color sets for different attributes performed
best even when only a single attribute was shown at a
time. Categorical sets with less than 4...6 values can
also be effectively mapped to carefully chosen simple
texture patterns if the zoom level is above 20 pixels per
entity in both dimensions [15]. Texture and color allow
showing two independent attributes simultaneously.

e Ordinal attributes, e.g. file size or age, bug criticality, or
change amount, are best shown using continuous
colormaps. We tried several colormaps: rainbow,
saturation (gray-to-some-color), and three-color (e.g.
blue—white-red). Interestingly, the rainbow colormap
was the quickest to learn and accept by most software
engineers and also by non-expert (e.g. student) users.

e Shading is not used to show attributes but structure. We
use shaded parabolic [40] and plateau cushions [41] to
show entities on different scales: files in project views
(horizontal cushions in Figs. 5, 8, 13, and 15), file
versions in file views (vertical stripe-like cushions in
Figs. 3 and 10), and even whole subsystems in the
decomposition view (Fig. 14).

e Antialiasing is essential for overview visualizations.
These can easily contain thousands of entities (e.g. files
in a project or lines in a file), so more than one entity per
pixel must be shown on the vertical axis. For memory
allocation logs [37], the horizontal (time) axis also can
have thousands of entries. We address this by rendering
several entries per pixel line or column with an opacity
controlled by the amount of fractional pixel coverage of

every entry. An example of antialiasing is given in
Section 6.5.

We next present the several types of views used by our
multiscale software evolution visualizations.

5.3. File view

In the file view, the entities are lines of code of the same
file. For the vertical layout, we tried two approaches. The
first one, called file-based layout, simply stacks code lines
atop of each other as they come in the file (Fig. 3 top). This
layout offers a “classical”” view on file structure and size
evolution similar to [8]. The second approach, called entity-
based layout (Fig. 3 bottom), works as follows. First, we
identify all evolution sets E(e;) using the transitive closure
of the line d1iff operator. These are the sets of lines ¢; in
all file versions V; where all lines in a set are found identical
by the diff operator. Next, we lay out these line sets atop
of each other so that the order of lines in every file version
V;is preserved. For a version V;, this layout inserts empty
spaces where entities have been deleted in a previous
version V; (j<i) or will be inserted in a future version V'
(k>1). As its name says, the entity-based layout assigns the
same vertical position to all entities found identical by the
diff operator, so it emphasizes where in time and in file
major code deletions and insertions have taken place.

Fig. 3 visualizes a file evolution through 65 versions.
Color shows line status: green is constant, yellow modified,
red modified by deletion, and light blue modified by
insertion, respectively. In the line-based layout (bottom),
gray shows inserted and deleted lines. The file-based layout
(top) clearly shows the file size evolution. We note the
stabilization phase occurring in the last third of the project.
Here, the file size decreases slightly due to code cleanup,
followed by a relatively stable evolution due to testing and
debugging. Yellow fragments show edited code during the
debugging phase. Different color schemes are possible, as
described later by the use case in Section 6.1.

5.4. Code view

The code view offers the finest level of detail or scale in
our toolset, i.e. a detailed text look at the actual source
code corresponding to the mouse position in the file view.
Vertical brushing over a version in the file view scrolls
through the program code at a specific moment. Hor-
izontal brushing in the entity-based layout (Fig. 3 bottom)
goes through a given line’s evolution in time. The code view
is similar to a text editor with two enhancements. First, it
indicates the author of each line by colored bars along the
vertical borders (Fig. 4a). The second enhancement regards
what to display when the user brushes over an empty space
in the entity-based layout (light gray areas in Fig. 3
bottom). This space corresponds to code that was deleted
in a previous version or will be inserted in a future version.
Freezing the code view would create a sensation of

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428 417

versions

local entity position

[—]
— entity

constant enity

stabilization phases

versions

inserted } del_e?ed
entities { entities
global entity position
|
Fig. 3. File view with file-based (top) and entity-based layouts (bottom).
a mouse b

position

evolution
VIgw first last
version lifetime lifetime ~ version

l , of line 1 of line 2

¥
if ($ind >= 0} {

@-é close (EX) ;
}

v
(Sznase, fversion) = split N\s/,

if (/tbareid &
printt(¢Badldy # Wov that we're definitely sure
retuen(l] : £ to bave resid's in it, unexpanc
) L £ being checked in.

¥ Iguore version mismatches (EFC spanmi Bix_up_file($filensme) if jefg::l
it (¢hasteg) {
retuen (0);

i B

if ($pos == =1} {
unless ($found_rcsid} { €—
printf (3Nold, 3filenam

return(l);

author color

Fig. 4. (a) Two-layered code view correlated with a version-uniform sampling entity layout, (b) code view, layer B. Line 1 is deleted before line 2 appears,

i.e. they do not coexist.

scrolling disruption, as the mouse moves but the text does
not change.

We solve this problem by the following enhancement.
We use two text layers to display the code around the
brushed entity position both from the version under the
mouse and from versions in which this position refers to a
non-empty space (Fig. 4a). While first layer (A) freezes
when the user brushes over an empty region in the file view,
the second layer (B) pops-up and scrolls through the code
that has been deleted, or will be later inserted, at the mouse
location. This creates a smooth feeling of scrolling
continuity during browsing. This preserves the context of
the selected version (layer A) and gives also a detailed, text-
level peak, at the code evolution (layer B). The three
motions (mouse, layer A scroll, layer B scroll) are shown by
the captions 1, 2, and 3 in Fig. 4b.

We must now consider how to assess the code evolution
shown in layer B. The problem is that, as the user

scrolls through empty space in the file view, layer B
consecutively displays code lines (deleted in past or inserted
in future) that may not belong to a single (past or future)
version. To correlate this code with the file view, we display
the entities’ lifetimes as dark background areas in layer B
(Fig. 4b).

5.5. Project view

The project view shows a higher level perspective on the
evolution of an entire system. The entities are file versions.
The project view uses an entity-based layout—the evolu-
tion of each file is a distinct horizontal strip in this view,
rendered with a cylindrical shaded cushion. Fig. 5 shows
this for a small project. Sorting the files on the y-axis
provides different types of insight. For example, the files in
Fig. 5 are sorted on creation time and colored by author id.
We quickly see a so-called “punctuated evolution”

418 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

File versions (time)

] Punctuated evolution [

¥ Files (sorted on creation time)

Fig. 5. Project view: Files are sorted on creation time and colored by
author IDs.

moment, when several files have been introduced at the
same time in the project. Virtually in all cases, such files
contain related functionality. We can also sort files by
evolutionary coupling with a given target file. Evolutionary
coupling measures the similarity of two files’ commit
moments, as detailed in [14]. Similar files change together,
so most probably contain highly related code or signal code
drift and refactoring events. In terms of rendering, we can
explicitly emphasize the individual entities (i.e. file versions)
by drawing them as separate shaded cushions (Fig. 8).
The project view is illustrated in use cases in Sections 6.3
and 6.4.

5.6. Decomposition view

The decomposition view offers an even more simplified,
compact, view than the project view. The role of this view is
to let users visualize the strongly cohesive, loosely coupled
components of a software system evolution. Since this view
is easier to explain with a concrete use scenario, we
postpone its description until Section 6.4.

5.7. User interaction

User interaction is essential to our toolset. We sketch
here the set of interaction techniques we provided using the
perspective proposed by Shneiderman [42]. Real tool
snapshots illustrating these techniques are shown in Figs.
7 and 8.

The file, project and decomposition views offer overviews
of software evolution, all as 2D images. To get detailed
insight, zoom and pan facilities are provided. Zooming
brings details-on-demand—text annotations are shown only
below a specific zoom level, whereas above another level
antialiasing is enabled (see e.g. Fig. 13 later in this paper).
We offer preset zoom levels: global overview (fit all code to
window size) and one entity-per-pixel-line level. To support

a

Version uniform
|

Version uniform
| l” sampling
C

Ill\\
2000

1™ Time uniform

T T
2001' sampling

Fig. 6. Horizontal metric bars: (a) version size; (b) version author; (c)
activity density.

the file evolution analysis from the perspective of a given
version, we offer a filtering mechanism that removes all
lines that are inserted after, or lines that are deleted before
that version. Filtering enables assessing a version, selected
by clicking on it, by showing its lines that are not useful
and will be eventually deleted and the lines that have been
inserted into it since the project start. This is demonstrated
by the use case in Section 6.2. Hence, filtering provides a
version-centric visualization of code evolution. Our tool
gives the possibility to extract and select only a desired time
interval by using two sliders (Fig. 7 top) similar to the page
margin selectors in word processors. This mechanism
proved to be useful in projects with a long lifetime (e.g.
over 50 versions) which have distinct evolution phases that
should be analyzed separately. The distinct phases were
identified using a project view (Fig. 8), after which detailed
file views were opened and the period of interest was
selected using the version sliders described above. Note the
resemblance in design the file and project view (Figs. 7 and
8). This is not by chance but a conscious design decision
which tries to minimize the cognitive change the user has to
undergo when changing views in our visualization toolkit.
Interestingly enough, we noticed that this change occurs
even when the differences of the two views are functionally
minimal, i.e. they “work the same way”’ but happen to use
different GUI toolkits in their implementation. Conse-
quently, to minimize this difference which was experienced
by our users as a serious hinder in using the toolkit, we had
to re-implement the file view using the same type of toolkit
as the project view—a laborious but highly necessary
endeavor.

All views enable correlating information about the
software evolution with overall statistic information, by
means of metric bars (Fig. 6). These show statistical
information about all entities sharing the same x or y
coordinate, e.g. the lifetime of a code line, amount of
project-wide changes at a moment, author of a commit,
etc. The bi-level code view (Fig. 7, captions 2 and 3)
gives details-on-demand on the fragments of interest by
simply brushing the file evolution area. Moreover, the
project view shows detailed information about the brushed
file version in the form of user commit comments (Fig. 8,
caption 2).

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428 419

Left interval selector I

Evolution overview

Right interval selector

File Settings

Version centric filter

Dlsplay| Englnes| Blocm‘
Pn?sets

-

Fitto window

Fitta ling

Version di

Lines

TTT T T T T T I T T T T T T T T T T T TTTITT

Zoom controls
Revision
)]

Block blending
03

Mouse position

Font height
17
Fonit width
L
Font difference
1

4

i

AN et

§pos = index (§line, "\§\FreeBSD");
last if ($pos >= 0);

¥

if ($pos == -1 {

§ind = index(§path, §line):

¥

close (EX) ;
)
if (§pos == 1) {

|
printf (§Nold, §filename); printf (§Nold, $filename):
return(l); returnil) :
b)
M1ﬂ = (index([$line, "\§\FreeBSD: \3§"} >= 0 $bareid = (index(§line, 3 ADER
A index ($line, "\$$HEAD >= 1
Code view, main layer I Code view, second layer

Fig. 7. File view.

6. Use cases and validation

The main audience of our software evolution visualiza-
tions is the software maintenance community. Maintainers
work outside the primary development context of a project,
usually long after the end of the initial development. In
order to validate our proposed techniques, we organized
several informal user studies and experiments based on the
methodology proposed in [43]. We assessed the visualiza-
tion insight by analyzing the experiences of

e developers and architects familiar with (i.e. involved in
the production of) a given system;

e developers who investigate completely new code, but are
familiar with similar systems;

e developers who investigate a completely new code and
are unfamiliar with similar systems.

In all cases, only our visualization toolset (plus a typical
text editor) were used. No documentation and/or expert
coaching on the examined system were provided. We
present below the outcome of several such experiments,
selected from a larger set of studies that we have performed
in the past two years. Each experiment illustrates a

different type of scenario and uses different features of
our toolset.

6.1. Use case: assessment of file structure and development
context

An experienced C developer was asked to analyze a file
containing the socket implementation of the X Transport
Service Layer in the Linux FreeBSD distribution. The file had
approximately 2900 lines and spanned across 60 versions. The
user was not familiar with the software, nor was he told what
the software was. We provided a file view (Section 5.3) and a
code view (Section 5.4) able to highlight C grammar and
preprocessor constructs, e.g. #define, #ifndef, etc. The
user received around 30min of training with our toolset. A
domain expert acted as a silent observer and recorded both
user actions and findings (marked in italics in the text below).
At the end, the domain expert subjectively graded the
acquired insight on five categories: Complexity, Depth,
Quality, Creativity, and Relevance. Each category was graded
from 1 (i.e. minimum/weak) to 5 (i.e. maximum/strong).

The user started his analysis in the line-based layout (e.g.
Fig. 3 bottom) and searched first for comments: This is the
copyright header, pretty standard. It says this is the

420 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

Zoom controls

[PosgnOL Hew
Free Des

&tk '

m preset

D

——]

ls
Clow Update Inko
Cercel Update corderts
- Display modes

C—

Second iound of relsvence courtng
chare: Fedomance andiemorrs

NGO

File position axis

N

/\
| / N\

[Versicn: 1.40 [pushor lamce wmnm

| Detailed commit information I |

Project evolution view |

Pan controls I

Fig. 8. File view.

CHTITTTIEIE

#ifdef _r%uw_rm
#ifndef _POSIX THREAD_SAFE_]
#if defined[AIXV3) || defins
#define FPOSIX THREAD SAFE)
#endif
#endif
#endif
#if defined(sun) || defined
$ifdef _POSIX_THREAD_SAFE_Fl

#endif v

#if defined{IPv6) && defined

if faddrlist '= NULL) {
1if (gtremp(host,addr

“TRANS (

|
etUNIXAccept

Fig. 9. Case study—analysis of a C code file.

implementation of the X Transport protocol. .. It seems they
explain in this comments the implementation procedure. ..
Next, he switched his attention to the compiler directives: 4
lot of compiler directives. Complex code, supposed to be
portable on many platforms. Oh, even Windows. Next, he
started to evaluate the inserted and deleted code blocks:

This file was clearly not written from scratch, most of its
contents has been in there since the first version. Must be
legacy code. .. I see major additions done in the beginning of
the project that have been removed soon after that... They
tried to alter some function calls for Posix thread safe
Sfunctions. . . (see Fig. 9a top bottom) I see big additions also

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428 421

towards the end of the project. .. A high nesting level, could
be something complex. .. It looks like IPv6 support code. 1
wonder who did that?

The user switched then to the author color encoding: It
seems the purple user, Tsi, did that (Fig. 9b top bottom). But a
large part of his code was replaced in the final version by...
Daniel, who committed a lot in the final version... And
everything seems to be IPv6 support. The green user, Eich. ..
well, he mainly prints error messages. Finally, our user
switched on line status color encoding and zoomed in:
Indeed, most work was done at the end Still, I see some major
changes in the beginning throughout the file... Ah, they
changed the memory manager. They stepped to one specific to
the X environment. All memory management calls are now
preceded by x (Fig. 9c top bottom). .. And they threw away the
TRANS macro.

The user spent the rest of the study assessing the changes
and the authors that committed them. After 15 min, the user
did not have a very clear image of the file’s evolution, but he
concluded easily that the file represented a piece of legacy
code adapted by mainly two users to support the IPv6
network protocol. He also pointed out a major modification:
the change of the memory manager. The subjective grading
estimating the visualization insight is given in Table 2.

Although informal, this study shows that the line-based file
and code views support a quick assessment of the important
activities and line-level artifacts produced during develop-
ment, even for users that had not taken part in any way in
developing the examined code. The file view scored very well
in the categories Complexity, Quality and Relevance. The
Depth and Creativity categories scored only medium. An
explanation for this could be the relatively short examination
time (30min) that did not allow the user to consolidate the
discovered knowledge and make more advanced correlations.
The study subject valued most the compact overview (the file
view) coupled with easy access to source code (the code view).
These enabled the user to easily spot issues at a high level and
then get detailed line-level information. Concluding, the file
and code views can be useful to new developers in a team who
need to understand a given development context, thereby
reducing the time (and costs) required for knowledge transfer.

6.2. Use case: assessment of framework migration effort in
component-based systems

Component-based SE is regarded as a promising
approach towards reducing the software development time

Table 2
Insight grading for analysis of a C code file

Category Grade
Complexity 5
Depth 3
Quality 5
Creativity 3
Relevance 5

and costs. However, as the number of component models
increases, a new challenge arises: how to discriminate
among models that satisfy the same set of requirements so
that the best suited one is selected as development base for
a given system? Using the evaluation methodology
proposed in [44], one can reach the conclusion that e.g.
the Koala [45], and PECOS [46] component models offer
similar benefits regarding testability, resource utilization,
and availability. In such a case, the selection of the best
suited model can be further refined e.g. with information
on which model fits better with the software development
strategy that will be used during the project’s lifecycle.

When component frameworks are not yet mature, new
framework versions are often incompatible with previous
ones. In such cases, existing components need to be re-
architected in order to be supported by the new framework.
The effort in this step may be so high that migrating to a
totally different, more mature, component framework or
staying with the old framework may be better alternatives.
A good estimation of the transition cost of framework
change is therefore of great importance.

We show here how the file view can be used to make such
estimations, based on history recordings for components
that have been already re-architected to comply with new
framework versions.

Fig. 10 shows two file views for the evolution of a
ROBOCOP [47] component along 17 versions. The
transition from version 16 to 17 corresponds to the
component migration from ROBOCOP 1.0 to ROBOCOP
2.0. In Fig. 10, a file-based layout is used together with a
version filter (see [11,12]) to depict the amount of code
from one version that can be found in other versions. Only
code that can be tracked to the selected version is displayed
for each version. Hence, the selected version appears to
have always the largest line count, as lines that have been
previously deleted or inserted afterwards are not displayed.
Color shows change: light gray are unchanged lines and
black (dark) shows changed lines. From this image, one
can infer that a lot of code had to be changed when passing
from component version 16 to version 17, as many lines are
black. Also, only about 70% of the component code from
version 16 is found in version 17, as the vertical length of
version 17 is less than three quarters the length of version
16 in Fig. 10 left. Similarly, Fig. 10 right shows that about
40% new code had to be written for version 17 over what
was preserved from version 16. Overall, about 50% of the
component code in version 17 differs from the one in
version 16. This signals a quite high effort to adapt
components to cope with changes in the Robocop frame-
work. These findings were validated by the Robocop
development team after this experiment was completed.

Concluding, the effort required to migrate a component
based system from ROBOCOP 1.0 to ROBOCOP 2.0 is
quite large. If a migration step has to be taken anyway, one
should review alternative component frameworks and
consider migration to one of them provided they offer
higher benefits for a comparable effort. This type of

422 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

File-based layout

¥ Code lines version 16

Versions (time)

J

version 17

Fig. 10. Component migration from Robocop 1.0 to Robocop 2.0. Left: changes from the perspective of version 16. Right: changes from the perspective
of version 17. Code that cannot be tracked to the selected version is not displayed.

assessment can be used by project managers to quickly
assess the transition efforts for a component framework,
provided that previous transition examples exist, whether
from the same or another project.

6.3. Use case: assessment of major changes in a project

During the lifetime of a project, major changes may
occur. These involve changing a large amount of code and
files due to specific circumstances. The occurrence patterns
of such changes can disclose the circumstances that led to
their appearance and their relevance on the system
architecture and/or quality.

We used the project view (Section 5.5) to asses the major
changes in the VTK project [48]. VTK is a complex C+ +
graphics library of hundreds of classes in over 2743 files,
including the contribution of more then 40 authors over a
12 year period. In the project view, every file is shown as a
horizontal strip, and every version as a vertical one. On the
y-axis, files are sorted alphabetically based on their full
path and thus are implicitly grouped on folders. A rainbow
colormap encodes for each file version the normalized
amount of change. Blue shows no change and red shows
the maximal change throughout the project (Fig. 11).
Antialiasing is used to improve the visual appearance.

Looking for red (maximal change) patterns in the result,
we find three interesting evolution patterns. Pattern A, an
elongated horizontal segment, denotes a major size change
(hundreds of lines) affecting a small number of files in the
same directory for every version over a very long period.
Zooming in, we discovered that this anomaly is caused by
binary files which have been automatically checked in the
CVS repository. CVS can only handle text line changes, so
binary files are seen to be completely new every time they
change. In general, configuration managers consider as
good practice not including binary code in a repository.
Pattern B denotes a major size change affecting a large
number of files in the same directory during about 15% of

(i

v Project files

Fig. 11. Major change patterns in the VTK toolkit.

the project lifetime. This type of pattern indicates typically
an architecture change localized to a given subsystem. For
the VTK project, this pattern matches the period when a
new API was released for the imaging subsystem. Pattern B
indicates thus critical development events for a system’s
architecture or quality. Finally, pattern C, shaped as a thin
ling vertical strip, shows a major size change affecting 75%
of all project files, but only at a specific time moment. This
type of pattern usually signals cosmetic activities (e.g.
indentation) that do not change the system architecture or
functionality in any way. These patterns often correspond
to official releases of a project. For VTK, pattern C marks
the change of the copyright notice that is included in most
source code files. Indeed, its log comment signals the
official release-3-2-branch-point. The findings
have been checked and validated by an expert developer
with over eight years VTK experience.

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

We have found the major change patterns shown in Fig.
11 in all large software projects. Finding them is important
for several types of users. By identifying type A patterns of
type A, configuration managers can spot archive bloaters,
e.g. automatically generated and accidentally committed
binary files, and remove them from the make process. Type
B patterns are highly relevant for architects and project
managers. They denote critical periods in the development
of the project. This insight can be used by architects during
reverse engineering to understand the design decisions of a
project when documentation is not available. They are also
important for managers who must ensure that full
regression tests are successfully ran after each such
moment. Also, project managers can use these moments
as starting point for estimating change propagation costs
and calculating the effort needed to complete a specific
development or maintenance task. Finally, type C patterns
can be used to identify the number of policy or copyright-
related-changing releases of a project.

6.4. Use case: assessment of propagation of debugging-
induced changes

Large software systems change often e.g. because of
adding new functionality or due to debugging. Change
propagation is very important when assessing the effort
needed to modify a specific part of a system. It gives an
indication of the total change integration costs, including
changes that might be needed in other parts of the system,
in order to preserve consistency. To reduce this collateral
change cost, software architects try to organize systems as
loosely coupled entities, minimizing the risk of changes to
propagate across entities. Hence, the patterns of change
propagation in a system can help assessing its architectural
quality.

We used our project (Section 5.5) and decomposition
(Section 5.6) views to assess the propagation of changes

423

induced by debugging activities in the Firefox project, part
of the Open Source project Mozilla. Firefox has 659 files
contributed by 108 authors over more than 4 years. It
contains fixes for 4497 bugs from the total bug count
reported.

We used our toolset to load the Firefox evolution data
from the Mozilla CVS server. Separately, we used the
Bugzilla web interface of the Mozilla project to load the list
of fixed bugs. We started from the assumption that changes
induced by bug fixes propagate to files that have been
reportedly modified at the same time with the files which
were debugged. Hence, we started our inquiry by identify-
ing files versions containing bug fixes. Fig. 12 shows a
project view containing the 659 files of the Firefox browser
sorted vertically in alphabetical order. The locations of
debugging activities are marked by fixed size red icons. Due
to the window size, it is possible that such icons overlap. To
convey the actual icon density, we render semitransparent
disks centered at the debugging event locations. The
blended overlap of these disks yields areas of higher color
intensity in regions of high debugging density. This
technique is similar to the graph splatting promoted by
Van Liere et al. [49] for visualizing complex graphs.

After identifying the files containing bug fixes, we
pursued our inquiry by filtering these candidates to a
smaller, more interesting set. We looked for a subsystem
with a high debugging activity in the recent history, as this
could be a change-prone subsystem also in the near future.
Fig. 12 highlights such an area. As files are implicitly
grouped on folders, the highlighted area shows a (group of)
folder(s) with recent intense debugging activity. We
identified the specific files by zooming in until file names
became visible (Fig. 13) and discovered that all files in the
high debugging activity area are in the /component/
places folder.

We interactively marked the files in this folder with
yellow (Fig. 13b). Next, we continued our analysis by

recent history present

—r— >
= - - time
— e @
= — —_— =
1 o1 B L g
[= - = -
. NS

Intense debugging
activity area

v files

Fig. 12. Bug fix locations in the Firefox project.

424 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

.hnahlbrwaerbmpﬂnm plecesicontenticantextng
Jmazilahrowser components/placesicontenticanirolier js
Jmozilabre xml

Jmozilabrowsericomponent

ontroller s
lacesicontent/menu.xml

knnalmmwmmmwmbmmmcs -8

mesbieusuorgspe s P e

" malammwsammmsppmskmmmsmm 0is - -

Jmozilabrowsericomponentsiplacesicontentiplaces Fopup.xul
nts/places/content/toolbar xml
Jmozilabrowsericon t ontentitres xml

Jmozilabrowser felpers.s

Jmazilakrowserfcom

Fig. 13. Zoom-in in a high-debugging activity area in the Firefox project.

AClusters selected decomposition selected decomposition
’ 7
decomposition decomposition level decomposition view decomposition level
view (isodepth) (isorelevance)

project view

0 (clusters are

shown as gray

cushions)

Fig. 14. Firefox system decomposition: isodepth partition (top); isorelevance partition (bottom).

identifying how changes in these files propagate to other
files in the project. For this, we clustered all files in Firefox
based on the so-called evolutionary coupling. As explained
previously, two files evolve similarly if they have similar
commit moments. This technique is described in detail in
[14]. The clustering produces a tree of increasingly larger
file clusters. Leaf clusters contain files which evolve very
similarly and top clusters contain clusters of less similarly
evolving files. The cluster tree is visualized by the
decomposition view shown in Fig. 14 (top). The entities in
this view are the clusters. The layout of this view is as
follows. The x-axis maps the decomposition level. This is
the only view of our toolset where the x-axis does not map

the time. The y-axis maps the decomposition itself by
drawing all clusters (groups of files) for the current
decomposition level (x-axis) as stacked rectangle entities,
scaled vertically to show the cluster size, i.e. number of files
in a cluster. The clusters are drawn as shaded cushions and
colored based on their cohesion, or coupling strength using
a blue—white—red colormap (blue = strong cohesion, red-
weak cohesion). Once a decomposition level is chosen (by
clicking on a column in the decomposition view), its file
clusters are drawn over the files in the project view as
Iuminance plateau cushions. These cushions are visible in
the project view in Fig. 14 as horizontal gray bands, the
area between two dark gray bands being a cluster.

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

a b

425

Cc

cluster of similarly
evolving files
containing

only yellow files

if
Illlllll[l.;

r'

B -———

g A dulls .

Fig. 15. Occurrences of files from /component/places in the clustered project view.

We used the decomposition view to choose an appro-
priate system decomposition level to look at as a
compromise between the number of clusters, cluster size
and cluster relevance. We considered two clustering
methods: isodepth and isorelevance [15]. In the isodepth
method, a decomposition level contains clusters with the
same depth in the cluster tree (Fig. 14 upper left). However,
this tends to produce a few large clusters and many tiny
clusters on the same level. In the isorelevance method, a
level contains clusters having relatively equal cohesion
(Fig. 14 upper right). In line with previous findings [15], the
iso-relevance method proved the best (easiest to under-
stand) decomposition: At every level, this decomposition
provides file clusters that are equally likely to be modified
together (Fig. 14 bottom).

The last step of our investigation was to find clusters
containing files from the high debugging activity folder /
component/places (i.e. yellow files in Fig. 13b)
and to discover what other files these clusters contain, i.e.
what other files have a similar evolution. For this, we
zoomed in the project view and we looked at each
cluster individually. Clusters containing notable occur-
rences of /component/places (i.e. yellow) files are
shown in Fig. 15. The largest cluster (Fig. 15a) contains
only files in the /component/places folder (yellow files).
Consequently, debugging activities in this group of files
seem to be contained in the folder. The second largest
cluster (Fig. 15b) contains mainly yellow files and
only three files belonging to other system parts (gray
files). This means it is possible that changes induced by
debug activities in the yellow files could propagate to these
three files. Fig. 15¢ shows an example of the remaining
notable occurrences of yellow files in the project view. The
clusters contain just a few yellow files, without marks of
debugging activity, and no files from other folders
(gray files).

We concluded that the debugging-induced changes in the
/component /places folder are mainly contained in the
folder and do not propagate to other system parts (other
folders). Although the folder is still subject to intense
debugging activity in recent history (Fig. 12 right), it is
likely the effort will be confined to changes inside the
folder. This insight can help project managers to make a
more precise estimation of the resource planning and is an
indication of a weakly coupled (i.e. good quality)
architecture of the Firefox system. In general, this type of
assessment is mainly useful for project and product
managers. Project managers can use it to predict hidden
costs that are not directly associated with specific system
functionality but result from integration and synchroniza-
tion activities. Product managers can use this to assess the
quality of third-party systems before using them in a
specific product.

6.5. Use case: assessment of the behavior of a dynamic
memory allocator

We conclude our use cases series with a different kind of
example. We visualize the dynamic behavior of a memory
allocator. Entities, saved in a log file by an allocator
profiler [37], are now (de)allocated heap blocks instead of
code as in the previous examples. Entity attributes are the
ID of the process which (de)allocated it, its memory start
and end address, allocation and deallocation time, and bin
number. The allocator slices the heap into 10 memory
portions or bins. Each bin b; holds only blocks within a
given size range [rf;,, r\,.] to limit fragmentation. Our
visualization targets software engineers interested in
optimizing a given memory allocator, e.g. reduce fragmen-
tation or decrease allocation time.

For each bin, we visualize the memory data using a view
similar to the project view (Fig. 16). The x axis maps time,

426 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

3

memory

critical

fragmentation

array
allocation

it

A=

e

LS E

memory

s B

0 IME— T,

occupancy

time

Fig. 16. Visualization of the evolution of dynamic memory allocations.

the y axis maps the memory. Blocks are drawn using
shaded plateau cushions, in this case colored by process
ID. Memory fragmentation maps to the coverage of
display space by memory blocks. We quickly see that there
is much higher fragmentation in the upper than in the
lower memory range. This points to a suboptimal allocator
behavior. Also, we find horizontal “gaps” in the visualiza-
tion (see Fig. 16 top). These denote critical fragmentation
events which should be intercepted by the allocator. Thin
vertical contiguous strips denote typical array alloca-
tions—many memory entities of the same size and
consecutive locations allocated at the same time. As we
can see in Fig. 16, such array allocations can dramatically
increase fragmentation as they block large portions of the
memory. We also see an expected phenomenon, namely
that the lifetime of a block is totally uncorrelated with the
moment when the block was allocated. Early allocated
blocks can last very long, such as the ones in the lower part
of Fig. 16, but so can lately allocated blocks too. A
horizontal metric bar displays the total memory occupancy
using a blue-to-red colormap. We notice that critical fill-in
levels (warmer colors in the bar) correspond to points when
arrays get allocated. Also, we notice that the profiled
scenario ends up with about the same (low) level of
memory occupancy as it started—the occupancy metric bar
shows the same blue color at beginning at end. However,
the memory is clearly more fragmented at the process end
than at the beginning—blocks on the vertical axis are much
less compact at the end moment than at the start moment
of the monitored time interval.

A final point to notice is antialiasing. Providing this
feature was absolutely essential for this application. In
Fig. 16, there are 7770 (de) allocations drawn for a period
of a few seconds, so the needed time (x)-axis resolution is

high above the screen pixel resolution. Antialiasing, as
sketched in Section 5.2, is essential here for correctly
rendering the high-frequency (de)allocation events which
take place in a short time interval.

Overall, the visualization presented here uses exactly the
same techniques (and visualization software) as the soft-
ware code evolution cases described previously, but targets
another problem and data mode. This proves that our
visualization evolution framework is generic enough to
handle and provide insight in a large set of application
areas having different data models and target questions.

7. Discussion

We have presented an integrated set of techniques and
tools for visually assessing the evolution of source code in
large software projects. Reflecting back on the require-
ments stated at the beginning of Section 2, we note the
following. Our toolset provides the standard basic manage-
ment tools of SCM systems via its integrated CVS client.
We let users query and visualize software at several scales:
source code in a single file (code view), source code in all
versions of a file (file view), files in a whole project (project
view), and a hierarchy of similarly-evolving subsystems
over a whole project evolution (decomposition view). Our
tool was easily scalable to handle huge projects of
thousands of files, hundreds of releases, and tens of
developers (e.g. VTK, ArgoUML, PostgresSQL, X Win-
dows, and Mozilla). So far, we did not provide classical
data-mining type of analysis tools (except the evolution-
based clustering), but rather focused on the visual ana-
lysis itself. We offered a rich set of fully customizable
views for different tasks. All views share a few basic
design principles: 2D dense pixel orthogonal layouts for

L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428 427

organizing software entities, colors and textures for
attributes, and shaded cushions for structure. We usually
do not parse the files’ contents so our approach can handle
any types of files in a repository. Finally, our toolset is
integrated with a full-fledged CVS and a Subversion client,
so it enables software engineers directly bring the power of
visualization into their typical engineering activities, with-
out having to incur the burden of cross-system switching.

Designing highly polished, but simple, user interfaces
and responsive visualizations which react quickly even
when large data amounts are loaded was absolutely
essential for the tool to get accepted by various users,
including engineers from small and large IT companies.
Finally, we mention that we designed several less usual
views, not presented here, e.g. the version-centric view with
interpolated layout [12] or the isometric decomposition
view [15]. However, as these views turned out to be
significantly less understood by our users, we considered
removing them from the actual tool distribution. This is in
line with our strive to provide a toolkit based on a minimal
set of features which is easy to learn and use, thus highly
probable to adopt on a larger scale, outside the research
environment itself and into the industrial engineering
practice.

8. Conclusion

We have presented an integrated set of tools and
techniques for the visual assessment of the evolution of
large-scale software systems. The main characteristic of our
system is, probably, its simplicity. Even though we can
address a number of complex use cases, which few other
(visual) analysis tools for software systems can handle, we
do this by combining a few techniques: 2D layouts of
software entities at several scales extracted from SCM
repositories whose axes can be sorted to reflect various
decompositions, dense pixel renderings encoding data
attributes via customizable colormaps and texture patterns,
shaded cushions to show up to three levels of system
structuring, and ubiquitous user interaction and visual
feedback such as brushing, cursors, and correlated views.
To produce all visualizations shown here (or similar ones)
one needs only to start the toolset, type in the location of a
repository, and wait for the screen to be populated with
visual information about the downloaded data. Most
subsequent manipulations, such as sorting entities, chan-
ging color attributes, getting details on demand and so on,
are reachable via just a few mouse clicks.

The main contribution of this paper is the presentation
of a cohesive framework that is able to target visualizations
of the evolution of a wide range of software artifacts (code,
project structure, behavior) via a simple set of elements and
design rules: 2D orthogonal layouts, dense pixel displays,
color-mapped attributes, and shaded cushions. We general-
ize here our previous work and findings on software
evolution visualization [11,13-15] to novel application
areas and data types how our ’'minimal’ framework

can effectively target a wide set of applications and
questions. We illustrate our findings with several case
studies of a wider experimental set performed over a period
of over two years with our toolset. Given these results, we
believe that our visualization framework can also target
more, different types of evolutionary datasets in software
engineering and even beyond the borders of this applica-
tion domain.

All work presented here was implemented with our
toolset which is available for download at: http://
www.win.tue.nl/~lvoinea/VCN.html.

We are currently working to extend and refine our set of
methods and techniques for visual code evolution investi-
gation in two main directions. First, we work to refine the
data model to incorporate several higher-level abstractions
(e.g. classes, methods, namespaces). Second, we are actively
researching novel ways to display the existing information
in more compact, more suggestive ways. We plan to
actively conduct more user tests to assess the concrete value
of such visualizations, the ultimate proof of our proposed
techniques.

References

[1] Burrows C, Wesley 1. Ovum evaluates: configuration management.
Burlington, MA, USA: Ovum Inc.; 1999.

[2] Stroustrup B. The C+ + Programming Language. 3rd ed. Reading,
MA: Addison-Wesley Professional; 2004.

[3] Erlikh L. Leveraging legacy system dollars for e-business. In: (IEEE)
IT Pro; May-June, 2000. p. 17-23.

[4] Seacord RC, Plakosh D, Lewis GA. Modernizing legacy systems:
software technologies, engineering process, and business practices.
SEI Series in Software Engineering. Reading, MA: Addison-Wesley;
2003.

[5] Eiglsperger M, Kaufmann M, Siebenhaller MA. Topology-shape-
metrics approach for the automatic layout of UML class diagrams.
In: Proceedings of the ACM SoftViz ’03. NY, USA: ACM Press;
2003. p. 189-98.

[6] Gutwenger C, Junger M, Klein K, Kupke J, Leipert S, Mutzel P. A
new approach for visualizing UML class diagrams. In: Proceedings of
ACM SoftViz '03. NY, USA: ACM Press; 2003. p. 179-88.

[7] Beck K, Andres C. Extreme programming explained: embrace
change. 2nd ed. Reading, MA: Addison-Wesley; 2000.

[8] Eick SG, Steffen JL, Sumner EE. Seesoft—A tool for visualizing line

oriented software statistics. In: IEEE Transactions on Software

Engineering, Vol. 18, No. 11, Washington, DC, USA: IEEE Press;

1992. p. 957-68.

Jones JA, Harrold MJ, Stasko J. Visualization of test information to

assist fault localization. In: Proceedings of ICSE ’02. NY, USA:

ACM Press; 2002. p. 467-77.

Telea A, Maccari A, Riva C. An Open toolkit for prototyping reverse

engineering visualization. In: Proceedings of IEEE VisSym ’02,

The Eurographics Association, Aire-la-Ville, Switzerland, 2002.

p. 241-51.

Voinea L, Telea A, van Wijk JJ. CVSscan: Visualization of code

evolution. In: Proceedings of the ACM Symposium on software

Visualization (SoftVis’05). NY, USA: ACM Press; 2005. p. 47-56.

Voinea L, Telea A, Chaudron M. Version centric visualization of

code evolution. In: Proceedings of the IEEE Eurographics Sympo-

sium on Visualization (EuroVis’05). Washington, DC: IEEE Com-

puter Society Press; 2005. p. 223-30.

Voinea L, Telea A. CVSgrab: Mining the history of large software

projects. In: Proceedings of the IEEE Eurographics Symposium on

[9

[10

[11

[12

[13

http://www.win.tue.nl/~lvoinea/VCN.html
http://www.win.tue.nl/~lvoinea/VCN.html
http://www.win.tue.nl/~lvoinea/VCN.html

428 L. Voinea, A. Telea | Computers & Graphics 31 (2007) 410-428

Visualization (EuroVis’06). Washington, DC: IEEE Computer
Society Press; 2006. p. 187-94.

[14] Voinea L, Telea A. An open framework for CVS repository querying,
analysis and visualization. In: Proceedings of Intl Workshop on
Mining Software Repositories (MSR’06). New York: ACM Press;
2006. p. 33-9.

[15] Voinea L, Telea A. Multiscale and multivariate visualizations of
software Evolution. In: Proceedings of ACM Symposium on
Software Visualization (SoftVis’06). New York: ACM Press; 2006.
p. 115-24.

[16] CVS online: (http://www.nongnu.org/cvs/).

[17] Subversion online: (http://subversion.tigris.org/).

[18] Ball T, Kim J-M, Porter AA, Siy HP. If your version control system

could talk .. ICSE 97 Workshop on Process Modelling and Empirical

Studies of Software Engineering, May 1997, available online at:

(http://research.microsoft.com/~tball/papers/icse97-decay.pdf).

Fischer M, Pinzger M, Gall H. Populating a release history database

from version control and bug tracking systems. In: Proceedings of

ICSM’03. Silver Spring, MD: IEEE Press; 2003. p. 23-32.

[20] German D, Mockus A. Automating the measurement of open source
projects. Presented at ICSE 03 Workshop on Open Source Software
Engineering (OOSE’03), Portland, Oregon, USA, 2003. available
online at: (http://www.research.avayalabs.com/user/audris/papers/
00se03.pdf).

[21] Zimmermann T, Diehl S, Zeller A. How history justifies system
architecture (or not). In: Proceedings of IWPSE’03. Washington DC,
USA: IEEE Computer Society press; 2003. p. 73-83.

[22] Bonsai online: (http://www.mozilla.org/projects/bonsai/).

[23] NetBeans.javacvs online: (http://javacvs.netbeans.org/).

[24] Zimmermann T, Weigerber P, Diehl S, Zeller A. Mining version
histories to guide software changes. In: Proceedings of ICSE’04.
Silver Spring, MD: IEEE Press; 2004. p. 429-45.

[25] Gall H, Jazayeri M, Krajewski J. CVS release history data for
detecting logical couplings. In: Proceedings of IWPSE 2003.
Washington DC, USA: IEEE Computer Society Press; 2003.
p. 13-23.

[26] Lopez-Fernandez L, Robles G, Gonzalez-Barahona JM. Applying
Social Network Analysis to the Information in CVS Repositories,
International Workshop on Mining Software Repositories (MSR’04),
Edinburgh, Scotland, UK, 2004, online at: (http://opensource.mit.
edu/papers/llopez-sna-short.pdf).

[27] Ducasse S, Lanza M, Tichelaar S. Moose: an extensible language-

independent environment for reengineering object-oriented systems,

Proceedings of the second International Symposium on Constructing

Software Engineering Tools (CoSET *00), June 2000, online.

Froehlich J, Dourish P. Unifying artifacts and activities in a visual

tool for distributed software development teams. In: Proceedings of

ICSE ’04. Washington DC, USA: IEEE Computer Society Press;

2004. p. 387-96.

[29] Collberg C, Kobourov S, Nagra J, Pitts J, Wampler K. A system for

graph-based visualization of the evolution of Software. In:

Proceedings of ACM SoftVis ’03. NY, USA: ACM Press; 2003.

p. 77-86.

Lanza M. The evolution matix: Recovering software evolution using

software visualization techniques. In: Proceedings of the Interna-

tional workshop on principles of software evolution, 2001. NY, USA:

ACM Press; 2001. p. 37-42.

[31] Wu J, Spitzer CW, Hassan AE, Holt RC. Evolution spectrographs:
visualizing punctuated change in software evolution. In: Proceedings of
the seventh International Workshop on Principles of Software Evolution
(IWPSE’04). Silver Spring, MD: IEEE Press; 2004. p. 57—66.

[19

[28

[30

[32] Wu X. Visualization of version control information. Master’s thesis,
University of Victoria, Canada, 2003.

[33] German D, Hindle A, Jordan N. Visualizing the evolution of

software using SoftChange, In: Proceedings of the 16th Internation

Conference on Software Engineering and Knowledge Engineering

(SEKE 2004). p. 336-41.

Zimmermann T, Weigerber P. Preprocessing CVS data for fine-

grained analysis, International workshop on mining software

repositories (MSR), Edinburgh, May 2004. (http://www.st.cs.
unisb.de/papers/msr2004/msr2004.pdf).

Bieman JM, Andrews AA, Yang HJ. Understanding change-

proneness in OO software through visualization. In: Proceedings of

the International Workshop on Program Comprehension IWPC’03).

Silver Spring, MD: IEEE Press; 2003. p. 44-53.

Ying ATT, Murphy GC, Ng R, Chu-Carroll MC. Predicting source

code changes by mining revision history. In: IEEE Transactions on

Software Engineering, vol. 30(9), Washington, DC, USA: IEEE

Computer Society Press; 2004. p. 574-86.

[37] Del Rosso C. Dynamic memory management for software product
family architectures in embedded real-time systems. In: Proceedings
WICSA’05. Silver Spring, MD: IEEE Press; 2005.

[38] Card SK, Mackinlay JD, Shneiderman B. Readings in information
visualization: using vision to think. San Francisco: Morgan
Kaufmann; 1999.

[39] Spence R. Information visualization. New York: ACM Press; 2001.

[40] van Wijk JJ, van de Wetering H. Cushion Treemaps: visualization of
hierarchical information. In: Proceedings of IEEE InfoVis. Washington;
DC: IEEE Computer Society Press; 1999. p. 73-8.

[41] Lommerse G, Nossin F, Voinea SL, Telea A. The visual code

navigator: an interactive toolset for source code investigation. In:

Proceedings of IEEE InfoVis’05. Washington DC, USA: IEEE

Computer Society Press; 2005. p. 24-31.

Shneidermann B. The eyes have it: A task by data type taxonomy for

information visualization. In: Proceedings of IEEE Symp on Visual

Languages (VL ’96). Washington DC, USA: IEEE Computer Society

Press; 1996. p. 336-43.

[43] North C. Toward measuring visualization insight. Computer

Graphics and Applications, vol. 3(26), Silver Spring, MD: IEEE

Press; 2006, p. 6-9.

Moller A, Akerholm M, Fredriksson J, Nolin M. Evaluation of

component technologies with respect to industrial requirements. In:

Proceedings of EUROMICRO’04. Washington DC, USA: IEEE

Computer Society Press; 2004. p. 56-63.

[45] van Ommering R, van der Linden F, Kramer J, Magee J. The koala

component model for consumer electronics, In: IEEE Transactions

on Computers, vol. 33(3). Washington, DC, USA: IEEE Computer

Society Press; 2000. p. 78-85.

Winter M, Genssler T, Christoph A, Nierstrasz O, Ducasse S, Wuyts R,

Arvalo G, Mller P, Stich C, Schnhage B. Components for Embedded

Software—The Pecos Approach, Second International Workshop on

Composition Languages, ECOOP’02, 2002. (http://www.iam.unibe.ch/

~scg/Archive/pecos/public_documents/Wint02a.pdf).

[47] ITEA, ROBOCOP: Robust Open Component Based Software
Architecture for Configurable Devices Project—Framework concepts.
Public Document V1.0, May 2002, (http://www.hitech-projects.
com/euprojects/robocop/).

[48] VTK online: (http://www.kitware.com/).

[49] van Liere R, de Leeuw W. GraphSplatting: visualizing graphs as
continuous fields. In: IEEE transactions on visualization and
computer graphics, vol. 2(9), IEEE Educational Activities Depart-
ment, 2003. p. 206—12.

[34

[35

136

[42

[44

[46

http://www.nongnu.org/cvs/
http://subversion.tigris.org/
http://research.microsoft.com/~tball/papers/icse97-decay.pdf
http://research.microsoft.com/~tball/papers/icse97-decay.pdf
http://www.research.avayalabs.com/user/audris/papers/oose03.pdf
http://www.research.avayalabs.com/user/audris/papers/oose03.pdf
http://www.mozilla.org/projects/bonsai/
http://javacvs.netbeans.org/
http://opensource.mit.edu/papers/llopez-sna-short.pdf
http://opensource.mit.edu/papers/llopez-sna-short.pdf
http://www.st.cs.unisb.de/papers/msr2004/msr2004.pdf
http://www.st.cs.unisb.de/papers/msr2004/msr2004.pdf
http://www.iam.unibe.ch/~scg/Archive/pecos/public_documents/Wint02a.pdf
http://www.iam.unibe.ch/~scg/Archive/pecos/public_documents/Wint02a.pdf
http://www.hitech-projects.com/euprojects/robocop/
http://www.hitech-projects.com/euprojects/robocop/
http://www.kitware.com/

	Visual data mining and analysis of software repositories
	Introduction
	Process overview
	Previous work
	Evolution data model
	Visualization model
	Layout
	Mapping
	File view
	Code view
	Project view
	Decomposition view
	User interaction

	Use cases and validation
	Use case: assessment of file structure and development context
	Use case: assessment of framework migration effort in component-based systems
	Use case: assessment of major changes in a project
	Use case: assessment of propagation of debugging-induced changes
	Use case: assessment of the behavior of a dynamic memory allocator

	Discussion
	Conclusion
	References

