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ABSTRACT
A major stage of radio interferometric data processing is calibration or the estimation of sys-
tematic errors in the data and the correction for such errors. A stochastic error (noise) model
is assumed, and in most cases, this underlying model is assumed to be Gaussian. However,
outliers in the data due to interference or due to errors in the sky model would have adverse
effects on processing based on a Gaussian noise model. Most of the shortcomings of cali-
bration such as the loss in flux or coherence, and the appearance of spurious sources, could
be attributed to the deviations of the underlying noise model. In this paper, we propose to
improve the robustness of calibration by using a noise model based on Student’s t-distribution.
Student’s t-noise is a special case of Gaussian noise when the variance is unknown. Unlike
Gaussian-noise-model-based calibration, traditional least-squares minimization would not di-
rectly extend to a case when we have a Student’s t-noise model. Therefore, we use a variant
of the expectation–maximization algorithm, called the expectation–conditional maximization
either algorithm, when we have a Student’s t-noise model and use the Levenberg–Marquardt
algorithm in the maximization step. We give simulation results to show the robustness of the
proposed calibration method as opposed to traditional Gaussian-noise-model-based calibra-
tion, especially in preserving the flux of weaker sources that are not included in the calibration
model.

Key words: instrumentation: interferometers – methods: numerical – methods: statistical –
techniques: interferometric.

1 IN T RO D U C T I O N

Radio interferometry gives an enhanced view of the sky, with in-
creased sensitivity and higher resolution. There is a trend towards
using phased arrays as the building blocks of radio telescopes
(LOFAR1 and SKA2) as opposed to the traditional dish-based inter-
ferometers. In order to reach the true potential of such telescopes,
calibration is essential. Calibration refers to the estimation of sys-
tematic errors introduced by the instrument (such as the beam shape
and receiver gain) and also by the propagation path (such as the iono-
sphere), and correction for such errors, before any imaging is done.
Conventionally, calibration is done by observing a known celestial
object (called the external calibrator), in addition to the part of the
sky being observed. This is improved by self-calibration (Cornwell
& Wilkinson 1981), which is essentially using the observed sky
itself for the calibration. Therefore, self-calibration entails consid-
eration of both the sky as well as the instrument as unknowns. By
iteratively refining the sky and the instrument model, the quality of

� E-mail: kazemi@astro.rug.nl
1 The Low Frequency Array.
2 The Square Kilometre Array.

the calibration is improved by orders of magnitude in comparison
to using an external calibrator.

From a signal processing perspective, calibration is essentially
the maximum likelihood (ML) estimation of the instrument and
sky parameters. An in-depth overview of existing calibration tech-
niques from an estimation perspective can be found in, e.g., Boon-
stra & van der Veen (2003), van der Veen, Leshem & Boonstra
(2004), van der Tol, Jeffs & van der Veen (2007) and Kazemi et al.
(2011). All such calibration techniques are based on a Gaussian
noise model, and the ML estimate is obtained by minimizing the
least-squares cost function using a non-linear optimization tech-
nique such as the Levenberg–Marquardt (LM; Levenberg 1944;
Marquardt 1963) algorithm. Despite the obvious advantages of self-
calibration, there are also some limitations. For instance, Cornwell
& Fomalont (1999) give a detailed overview of the practical prob-
lems in self-calibration, in particular due to errors in the initial sky
model. It is well known that the sources not included in the sky
model have lower flux (or loss of coherence), and Martı́-Vidal et al.
(2010) is a recent study on this topic. Moreover, under certain situ-
ations, fake or spurious sources could appear due to calibration as
studied by Martı́-Vidal & Marcaide (2008).

In this paper, we propose to improve the robustness of calibration
by assuming a Student’s t-noise model (Gosset 1908) instead of a
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Gaussian noise model. One of the earliest attempts in deviating from
a Gaussian-noise-model-based calibration can be found in Schwab
(1982), where instead of minimizing a least-squares cost function,
an l1 norm minimization was considered. Minimizing the l1 norm is
equivalent to having a noise model which has a Laplacian distribu-
tion (Aravkin, Friedlander & van Leeuwen 2012). The motivation
for Schwab (1982) to deviate from the Gaussian noise model was
the ever present outliers in the radio interferometric data.

In a typical radio interferometric observation, there is a multitude
of causes for outliers in the data.

(i) Radio frequency interference caused by man-made radio sig-
nals is a persistent cause of outliers in the data. However, data
affected by such interference are removed before any calibration is
performed by flagging (e.g. Offringa et al. 2010). But there might
be faint interference still present in the data, even after flagging.

(ii) The initial sky model used in self-calibration is almost always
different from the true sky that is observed. Such model errors also
create outliers in the data. This is especially significant when we
observe a part of the sky that has sources with complicated, extended
structure. Moreover, during calibration, only the brightest sources
are normally included in the sky model and the weaker sources act
together to create outliers.

(iii) During day-time observations, the Sun could act as a source
of interference, especially during high solar activity. In addition the
Galactic plane also affects the signals on short baselines.

(iv) An interferometer made of phased arrays will have sidelobes
that change with time and frequency. It is possible that a strong
celestial source, faraway from the part of the sky being observed,
will pass through such a sidelobe. This will also create outliers in
the data.

To summarize, model errors of the sky as well as the instrument
will create outliers in the data and in some situations calibration
based on a Gaussian noise model will fail to perform satisfacto-
rily. In this paper, we consider the specific problem of the effect
of unmodelled sources in the sky during calibration. We consider
‘robustness’ to be the preservation of the fluxes of the unmod-
elled sources. Therefore, our prime focus is to minimize the loss
of flux or coherence of unmodelled sources, and our previous work
(Yatawatta, Kazemi & Zaroubi 2012) has measured robustness in
terms of the quality of calibration.

Robust data modelling using Student’s t-distribution has been
applied in many diverse areas of research, and Lange, Little & Tylor
(1989), Bartkowiak (2007) and Aravkin et al. (2012) are few such
examples. However, the traditional least-squares minimization is
not directly applicable when we have a non-Gaussian noise model,
and we apply the expectation–maximization (EM; Dempster, Laird
& Rubin 1977) algorithm to convert calibration into an iteratively
reweighted least-squares minimization problem, as proposed by
Lange et al. (1989). In fact, we use an extension of the EM algorithm
called the expectation–conditional maximization either (ECME)
algorithm (Liu & Rubin 1995) to convert calibration to a tractable
minimization problem. However, we emphasize that we do not force
a non-Gaussian noise model on to the data. In case there are no
outliers and the noise is actually Gaussian, our algorithms would
work as traditional calibration does.

The rest of the paper is organized as follows. In Section 2, we give
an overview of radio interferometric calibration. We consider the
effect of unmodelled sources in the sky during calibration in Section
3. Next, in Section 4, we discuss the application of Student’s t-noise
model in calibration. We also present the weighted LM routine used
in calibration. In Section 5, we present simulation results to show

the superiority of the proposed calibration approach in minimizing
the loss in coherence and present conclusions in Section 6.

Notation. Lowercase bold letters refer to column vectors (e.g. y).
Uppercase bold letters refer to matrices (e.g. C). Unless otherwise
stated, all parameters are complex numbers. The matrix inverse,
transpose, Hermitian transpose and conjugation are referred to as
(.)−1, (.)T, (.)H and (.)�, respectively. The matrix Kronecker product
is given by ⊗. The statistical expectation operator is given as E{.}.
The vectorized representation of a matrix is given by vec(.). The ith
diagonal element of matrix A is given by Aii . The ith element of a
vector y is given by yi . The identity matrix is given by I. Estimated
parameters are denoted by a hat, (̂.). All logarithms are to the base e,
unless stated otherwise. The l2 norm is given by ‖.‖ and the infinity
norm is given by ‖.‖∞. A random variable X that has a distribution
P is denoted by X ∼ P .

2 DATA MO D EL

We give a brief overview of radio interferometry in this section. For
more information about radio interferometry, the reader is referred
to Thompson, Moran & Swenson (2001) and to Hamaker, Bregman
& Sault (1996) for the data model in particular. We consider the radio
frequency sky to be composed of discrete sources, faraway from the
Earth such that the approaching radiation from each one of them
appears to be plane waves. We decompose the contribution from
the ith source into two orthogonal polarizations ui = [uxi uyi]T.
The interferometric array consists of R receiving elements with
dual polarized feeds. At the pth station, this plane wave causes an
induced voltage, which is dependent on the beam attenuation as
well as the radio frequency receiver chain attenuation. The induced
voltages at the x and y polarization feeds ṽpi = [vxpi vypi]T due to
a source i are given as

ṽpi = Jpi ui . (1)

The 2 × 2 Jones matrix Jpi in equation (1) represents the effects of
the propagation medium, the beam shape and the receiver. If there
are K known sources (that are in the sky model) and K′ unknown
sources, the total signal will be a superposition of K + K′ such
signals as in equation (1).

Consider the correlation of signals at the pth receiver and the
qth receiver, as shown in Fig. 1, with proper signal delay. After
correlation, the correlated signal of the pth station and the qth station
(named as the visibilities), Vpq = E{vpvH

q }, is given by

Vpq =
K∑

i=1

JpiCpqiJ
H
qi +

K ′∑
i′=1

Jpi′Cpqi′J
H
qi′ + Npq . (2)

In equation (2), Jpi and Jqi are the Jones matrices describing errors
along the direction of source i, at stations p and q, respectively.
The 2 × 2 noise matrix is given as Npq . The contribution from the
ith source on the baseline pq is given by the 2 × 2 matrix Cpqi .
The noise matrix Npq is assumed to have elements with zero mean,
complex Gaussian entries with equal variance in real and imaginary
parts. Moreover, in equation (2), we have split the contribution
from the sky into two parts: K sources that are known to us and K′

sources that are unknown. Generally, the bright sources are always
known but there are infinitely many faint sources that are too weak
to be detected and too numerous to be included in the sky model.
Therefore, almost always K′ is much larger than K.

During calibration, we only estimate the Jones matrices Jpi for
p ∈ [1, R] and i ∈ [1, K]; in other words, we estimate the errors along
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Figure 1. A basic radio interferometer that correlates the signals received
from faraway celestial sources. The signals are corrupted by Earth’s atmo-
sphere as well as by the receiver beam pattern, and these corruptions are
represented by Jp and Jq .

the known bright sources. Due to our ignorance of the K′ unknown
sources, the effective noise during calibration becomes

N′
pq =

K ′∑
i′=1

Jpi′Cpqi′J
H
qi′ + Npq (3)

and our assumption regarding the noise being complex circular
Gaussian breaks down, depending on the properties of the signals
of the weak sources. The prime motivation of this paper is to address
this problem of the possible non-Gaussianity of the noise due to an
error in the sky model. A similar situation could arise even for cal-
ibration along one direction (or direction independent calibration),
when K = 1, if there is an error in the source model, for instance in
the shape of the source.

The vectorized form of equation (2), vpq = vec(Vpq ), can be
written as

vpq =
K∑

i=1

J�
qi ⊗ Jpivec(Cpqi) +

K ′∑
i′=1

J�
qi′ ⊗ Jpi′ vec(Cpqi′ ) + npq,

(4)

where npq = vec(Npq ). Depending on the time and frequency in-
terval within which calibration solutions are obtained, we can stack
up all cross-correlations within that interval as

d = [
real

(
vT

12

)
imag

(
vT

12

)
real

(
vT

13

)
. . . imag

(
vT

(R−1)R

)]T
, (5)

where d is a vector of size N × 1 of real data points. Thereafter, we
can rewrite the data model as

d =
K∑

i=1

si(θ ) +
K ′∑

i′=1

si′ + n, (6)

where θ is the real parameter vector (size M × 1) that is estimated
by calibration. The contribution of the ith known source on all data
points is given by si(θ ) (size N × 1) and the unknown contribution
from the i′th unknown source is given by si′ (size N × 1). The noise
vector based on a Gaussian noise model is given by n (size N × 1).
The parameters θ are the elements of Jpis, with real and imaginary
parts considered separately.

The ML estimate of θ under a zero mean, white Gaussian noise
is obtained by minimizing the least-squares cost

θ̂ = arg min

θ
‖d −

K∑
i=1

si(θ )‖2 (7)

as done in current calibration approaches (Boonstra & van der Veen
2003; van der Veen et al. 2004; van der Tol et al. 2007; Kazemi
et al. 2011). However, due to the unmodelled sources, the effective
noise is actually

n′ =
K ′∑

i′=1

si′ + n (8)

even when n is assumed to be Gaussian. Therefore, traditional
calibration based on a least-squares cost minimization would not
perform optimally. In order to improve this, we have to consider the
statistical properties of the effective noise n′, and we shall do that
in Section 3.

3 E F F E C T O F U N M O D E L L E D S O U R C E S IN
C A L I B R AT I O N

In this section, we study the effect of unmodelled sources on N′
pq

in equation (3) when Npq has elements with zero mean, complex
circular white Gaussian statistics. We only select one element from
the 2 × 2 matrix (say at 1st row and column) for simplicity. Let us
denote the baseline coordinates as u, v, w in wavelengths (we omit
the pq subscript for simplicity). We can rewrite equation (3) for just
one element as

zpq =
K ′∑

i′=1

gpqi′Ipqi′ exp (−j2π (uli′ + vmi′ + w(ni′ − 1))) + npq .

(9)

In equation (9), gpqi′ correspond to the corruptions along the di-
rection i′ (contributions from Jpi′ and Jqi′ ). The intensity of the
i′th source seen on the baseline pq is given by Ipqi′ . The direction
cosines of the i′th source are given by li′ , mi′ andni′ . The Gaussian
noise is given by npq ∼ CN (0, ρ2). We assume that gpqi′ , Ipqi′ ,
li′ , mi′ , ni′ and npq are statistically independent from each other.
Moreover, the sources are assumed to be uniformly distributed in a
field of view defined by −l ≤ li′ ≤ l and −m ≤ mi′ ≤ m, and that
(ni′ − 1) ≈ 0. The sources outside this area in the sky have almost
no contribution to the signal due to the fact that the values of |gpqi′ |
are very small, mainly due to attenuation by the beam shape.

With the above assumptions, we see that

E{zpq} =
K ′∑

i′=1

E{gpqi′ }E{Ipqi′ }sinc
(
2πul

)
sinc (2πvm) + E{npq}

(10)

which is almost zero if |u| > 1
2l

and |v| > 1
2m

. Therefore, we make
the following assumptions applicable to long baselines:

(i) the mean of the effective noise is almost equal to the mean of
noise, E{zpq} → E{npq} = 0,

(ii) the variance of effective noise is greater than the variance of
noise, E{|zpq|2} > E{|npq|2}.

Let us briefly consider the implications of equation (10) above.
First, the field of view is 2l × 2m in the sky. Now, consider the
longest baseline length or the maximum value of

√
u2 + v2 to be u.

Therefore, the image resolution will be about 1/u, and consider the
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field of view to be of width 2l ≈ P × 1/u. In other words, the field
of view is P image pixels when the pixel width is 1/u. Now, in order
for E{zpq} ≈ 0 in equation (10), we need |u| > 1

2l
or |u| > u/P

(and a similar expression can be derived for |v|). This means that for
baselines that are at least 1/P times the maximum baseline length,
we can assume E{zpq} ≈ 0.

To illustrate the above discussion, we give a numerical example
considering the LOFAR highband array at 150 MHz. The point
spread function at this frequency is about 6 arcsec and the field of
view is about 10◦ in diameter. Therefore, P ≈ 10 × 3600/6 = 6000.
The longest baselines is about 80 km and for all baselines that are
greater than 80/6 = 13 m, the assumptions made above more or
less hold.

To summarize the discussion in this section, we claim that

E

{
K ′∑

i′=1

si′

}
→ 0 (11)

in equation (8) and, therefore, E{n′} → E{n}. However, the covari-
ance of n′ is different than the covariance of n, and in general, the
effective noise is not necessarily Gaussian anymore.

3.1 SAGE algorithm with unmodelled sources

In our previous work (Kazemi et al. 2011), we have presented the
Space Alternating Generalized EM (SAGE; Fessler & Hero 1994)
algorithm as an efficient and accurate method to solve equation
(7), when the noise model is Gaussian. However, when there are
unmodelled sources, as we have seen in this section, the noise model
is not necessarily Gaussian.

The SAGE expectation step is finding the conditional mean of
the kth signal,

xk = sk(θ ) + n′ = sk(θ) +
K ′∑

i′=1

si′ + n, (12)

where xk is the hidden data. Using this, we can rewrite the observed
data d as

d = xk +
K∑

i=1,i �=k

si(θ ). (13)

The conditional mean of xk given d, is given as x̂k , where

x̂k = sk(θ ) +
⎛⎝d −

K∑
i=1,i �=k

si(θ ) −
K ′∑

i′=1

si′

⎞⎠ , (14)

where we still assume a Gaussian noise model n. Under the as-
sumption that

∑K ′
i′=1 si′ → 0, the conditional mean simplifies to

x̂k ≈ sk(θ ) +
⎛⎝d −

K∑
i=1,i �=k

si(θ )

⎞⎠ . (15)

The SAGE maximization step maximizes the likelihood of the con-
ditional mean x̂k under the noise n′. However, we cannot use a
least-squares cost function as n′ is not necessarily Gaussian any-
more, because of the unmodelled sources. In Section 4, we explore
an alternative noise model based on Student’s t-distribution (Gosset
1908) for the maximization of the likelihood.

4 RO BU S T C A L I B R AT I O N

First, we briefly describe the univariate Student’s t-distribution
(Lange et al. 1989; Bartkowiak 2007). Let X be a random variable
with a normal distribution N (ε, σ 2/γ ), where γ is also a random
variable. Then the conditional distribution of X is

p(x|ε, σ 2, γ ) = 1

(σ/
√

γ )
√

2π
exp

(
−1

2

(
x − ε

σ/
√

γ

)2
)

. (16)

We consider γ to have a gamma distribution, γ ∼ gamma( ν
2 , ν

2 ),
where ν is positive (also called the number of degrees of freedom).
The density function of γ can be given as

p(γ |ν) = 1

	
(

ν
2

) ( ν

2

) ν
2
γ

ν
2 −1 exp

(−νγ

2

)
. (17)

Then, the marginal distribution of X is

p(x; ε, σ 2, ν) = 	( ν+1
2 )

(πν)1/2	( ν
2 )σ

(
1 + 1

ν

(
x − ε

σ

)2
)− 1

2 (ν+1)

,

(18)

and this is the probability density function which defines the Stu-
dent’s t-distribution. In Fig. 2, we have shown the probability den-
sity functions for Gaussian distribution and Student’s t-distribution,
both with zero mean and unit variance. We see that for low val-
ues of the number of degrees of freedom ν, Student’s t-distribution
has a higher tail. The asymptotic limit of Student’s t-distribution
is Gaussian as ν → ∞, and for ν > 30, the two distributions are
indistinguishable, within the resolution of the data points used in
Fig. 2.

Reverting back to equation (8), we see that the increase in the
noise variance due to the unmodelled sources can be considered as
the effect of γ in equation (16). Therefore, we consider the noise
vector n′ to have independent, identically distributed entries, with
the distribution given by equation (18) with ε = 0 and σ = ρ = 1.
In the SAGE iterations outlined in Section 3.1, at the kth iteration
(15), we have x̂k as the data vector and sk(θ ) as the model that is
used to estimate the parameters θ (or a subset of the parameters).
Therefore, the estimation problem is to find the ML estimate of θ

(size M × 1), given the data y = x̂k (size N × 1) and the model

Figure 2. Probability density functions for standard normal distribution
and Student’s t-distribution, with ν = 2 and 30. At ν = 30, the Student’s
distribution is indistinguishable from the normal distribution.
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f (θ ) = sk(θ) (size N × 1) with noise n′. Hence, we can rewrite our
data model as

y = f (θ ) + n′, (19)

where the unknowns are θ and ν, the number of degrees of freedom
of noise n′. Then, the ith element of the vector y (denoted by yi) in
equation (6) will have a similar distribution as equation (18) with
σ = 1 and μi = f i(θ ), where f i(θ ) is the ith element of the vector
function f (θ ). The likelihood function becomes

l(θ, ν| y) =
N∏

i=1

	( ν+1
2 )

(πν)1/2	
(

ν
2

) (
1 +

(
yi − f i(θ)

)2

ν

)− 1
2 (ν+1)

(20)

and the log-likelihood function is

L(θ , ν| y) = N log 	

(
ν + 1

2

)
− N log 	

( ν

2

)
− N

2
log (πν)

− (ν + 1)

2

N∑
i=1

log

(
1 + ( yi − f i(θ ))2

ν

)
. (21)

Note that unlike for the Gaussian case, minimizing a least-squares
cost function (or maximizing the likelihood) will not give us the
ML estimate. In addition, we have an extra parameter, ν, which
is the number of degrees of freedom. Hence, we use the ECME
algorithm (Liu & Rubin 1995; Li, Wang & Chai 2006) to solve this
problem. The ECME algorithm is an extension of the EM algorithm
for t-distribution presented by Lange et al. (1989).

The auxiliary variables are the weights wi (N values) and a scalar
λ. All these are initialized to 1 at the beginning. The expectation
step in the ECME algorithm involves the conditional estimation of
hidden variables γ i (or the weights wi) as

wi ← E{γi | yi , θ , ν} = λ
ν + 1

ν + ( yi − f i(θ ))2
(22)

and the update of the scalar λ

λ ← 1

N

N∑
i=1

wi. (23)

The maximization step involves finding the value for ν that is a
solution for

�

(
ν + 1

2

)
− log

(
ν + 1

2

)
− �(ν/2) + log(ν/2)

+ 1

N

N∑
i=1

(log(wi) − wi) + 1 = 0, (24)

where �(x) = d
dx

log (	(x)) is the digamma function. Since we
know that beyond ν > 30 we almost get a Gaussian distribution,
and therefore, the search space for finding a solution for equation
(24) is kept within 2 ≤ ν ≤ 30 and the initial value for ν is chosen
to be 2.

Once wi is known, yi has a normal distribution with variance
determined by wi. Therefore, in the maximization step of the EM
algorithm, we minimize the weighted least-squares cost function:

l(θ |ν) =
N∑

i=1

wi( yi − f i(θ ))2. (25)

With this formulation at hand, we present the LM algorithm for
robust calibration in Algorithm 1, similar to the presentations in
Lourakis (2004) and Madsen, Nielsen & Tingleff (2004). The addi-
tional information needed in Algorithm 1 is the Jacobian of f (θ ),

i.e. J(θ) = ∂ f (θ )
∂θ

, that can be calculated in closed form using equa-
tions (2) and (4). The diagonal matrix with the weights

√
wi as its

diagonal entries is given by W.

Algorithm 1: Robust Levenberg–Marquardt (ECME)

Require: Data y, mapping f (θ ), Jacobian J(θ ), ν, initial value θ0

1: θ ← θ0; wi ← 1; λ ← 1
2: while l < max EM iterations do
3: k ← 0; η ← 2
4: J(θ ) ← WJ(θ )
5: A ← J(θ)T J(θ ); e ← W( y − f (θ )); g ← J(θ )T e
6: found ← (‖g‖∞ < ε1); μ ← τ max Aii

7: while (not found) and (k < max iterations)
8: k ← k + 1; Solve (A + μI)h = g
9: if ‖h‖ < ε2(‖θ‖ + ε2)

10: found ← true
11: else
12: θnew ← θ + h
13: ρ ← (‖e‖2 − ‖W( y − f (θnew))‖2)/(hT (μh + g))
14: if ρ > 0 then
15: θ ← θnew

16: J(θ) ← WJ(θ )
17: A ← J(θ )T J(θ ); e ← W( y − f (θ )); g ← J(θ )T e
18: found ← (‖g||∞ ≤ ε1)
19: μ ← μmax (1/3, 1 − (2ρ − 1)3); η ← 2
20: else
21: μ ← μη; η ← 2η

22: end if
23: end if
24: end while
25: Update weights wi ← λ ν+1

ν+( yi− f i (θ))2

26: Update λ ← 1
N

∑N
i=1 wi

27: Update ν using (24)
28: l ← l + 1
29: end while
30: return θ

5 SI MULATI ON R ESULTS

In this section, we provide results based on simulations to convince
the robustness of our proposed calibration approach. We simulate an
interferometric array with R = 47 stations, with the longest baseline
of about 30 km. We simulate an observation centred at the north
celestial pole, with a duration of 6 h at 150 MHz. The integration
time for each data sample is kept at 10 s. For the full duration of
the observation, there are 2160 data points. Each data point consists
of 1081 baselines and 8 real values corresponding to the 2 × 2
complex visibility matrix.

The sky is simulated to have 300 sources, uniformly distributed
over a field of view of 12◦ × 12◦. The intensities of the sources
are drawn using a power-law distribution, with the peak intensity
at 40 Jy. In Fig. 3, we show the histogram of the intensities of the
sources. Our intention is to compare the fluxes of the weak sources,
i.e. the sources with intensities less than or equal to 1 Jy, after
directional calibration is performed. In order to do that, we corrupt
the visibilities of the bright sources with directional errors that vary
slowly with time. We consider three scenarios here: we only corrupt
the signals of the sources that have intensities greater than (i) 1, (ii)
2 and (iii) 5 Jy. For the simulated sky model, there are 28, 11 and
7 sources that have fluxes greater than 1, 2 and 5 Jy, respectively.
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602 S. Kazemi and S. Yatawatta

Figure 3. Histogram of the fluxes of the 300 simulated sources. The peak
flux is 40 Jy.

Note that in each case, we do not corrupt the signals of the weak
sources as our only objective is to find the recovered flux after
directional calibration and subtraction of the bright sources from
the data, although in reality all sources will be corrupted by similar
directional errors. Finally, we add zero mean white Gaussian noise
to the simulated data, with the signal-to-noise ratio (SNR) defined
as

SNR
�= 10 log10

( ∑
p,q ‖Vpq‖2∑
p,q ‖Npq‖2

)
dB. (26)

In all simulations, we have kept the SNR at 5 dB.
In Fig. 4, we show some of the weak sources (with intensities

less than 1 Jy) over a 4◦ × 4◦ are of the field of view. In Fig. 5, we
have also added the bright sources with slowly varying directional

Figure 4. Simulated image of 4◦ × 4◦ of the sky, showing only weak
sources with intensities less than 1 Jy.

Figure 5. Simulated image of the sky where bright sources with fluxes
greater than 1 Jy have been corrupted with directional errors. Due to these
errors, there are artefacts throughout the image that make it difficult to study
the fainter background sources.

Figure 6. Image of the sky where the bright sources have been calibrated
and subtracted from the data to reveal the fainter background sources. The
traditional calibration based on a Gaussian noise model is applied.

errors. Note that in order to recover Fig. 4 from Fig. 5, directional
calibration is essential.

In Fig. 6, we show the image after directional calibration along
the bright sources and subtraction of their contribution from the
data, using traditional calibration based on a Gaussian noise model.
On the other hand, in Fig. 7, we show the image after directional
calibration and subtraction using a robust noise model. With respect
to the subtraction of the bright sources from the data, both normal
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Figure 7. Image of the sky where the bright sources have been calibrated
and subtracted from the data to reveal the fainter background sources. The
robust calibration proposed in this paper is applied.

calibration and robust calibration show equal performance as seen
from Figs 6 and 7.

We perform Monte Carlo simulations with different directional
gain and additive noise realizations for each scenario (i), (ii) and (iii)
as outlined previously. For each realization, we image the data after
subtraction of the bright sources and compare the flux recovered
for the weak sources before and after directional calibration. The
directional calibration is performed for every 10 time samples (every
100 s duration). Therefore, the number of data points used for each
calibration (N) is 10 × 1081 × 8 = 86 480 and the number of real
parameters estimated are 47 × 8 × 28 = 10 528, 47 × 8 × 11 = 4136
and 47 × 8 × 7 = 2632, respectively, for scenarios (i), (ii) and (iii).
For each scenario (i), (ii) and (iii), we perform 100 Monte Carlo
simulations.

Our performance metric is the ratio between the recovered peak
flux of the weak sources and the original flux of each source. We
calculate the average ratio (recovered flux/original flux) over all
Monte Carlo simulations. In Figs 8–10, we show the results obtained
for scenarios (i), (ii) and (iii), respectively.

We observe two major characteristics in Figs 8–10. First, we
see that as we calibrate over an increasing number of directions
(and subtract an increasing number of sources), the recovered flux
is reduced. Secondly, in all scenarios, robust calibration recovers
more flux compared to normal calibration. To illustrate this point,
we also plot in Fig. 11, the ratio between the recovered flux using
robust calibration and the recovered flux using normal calibration.
As we see from Fig. 11, we almost always get a value greater than
1 for this ratio, indicating that we recover more flux using robust
calibration.

We summarize our findings in Table 1. We see that at worst case,
the performance of normal calibration gives a flux reduction of
about 20 per cent compared to robust calibration.

Up to now, we have only considered the sky to consist of only
point sources. In reality, there is diffuse structure in the sky. This
diffuse structure is seldom incorporated into the sky model dur-
ing calibration either because it is too faint or because of the

Figure 8. Ratio between the recovered flux and the original flux of each of
the weak sources, when bright sources (>1 Jy) are subtracted.

Figure 9. Ratio between the recovered flux and the original flux of each of
the weak sources, when bright sources (>2 Jy) are subtracted.

Figure 10. Ratio between the recovered flux and the original flux of each
of the weak sources, when bright sources (>5 Jy) are subtracted.

complexity of modelling it accurately. We have also done simula-
tions where there is faint diffuse structure in the sky and only the
bright foreground sources are calibrated and subtracted. We have
chosen scenario (i) in the previous simulation except that we have
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Figure 11. Ratio between the recovered flux using robust calibration and the
recovered flux using normal calibration. Almost always, robust calibration
recovers more flux compared with normal calibration. The different colours
indicate different scenarios where the number of bright sources subtracted
is varied.

Table 1. Comparison of the reduction of flux of the weak background
sources with normal and robust calibration.

No. of sources Lowest flux of the Average reduction of the flux of weak
calibrated and subtracted sources background sources (per cent)
subtracted (Jy)

Normal calibration Robust calibration

28 1 28.7 8.2
11 2 12.3 3.2
7 5 7.9 3.1

Figure 12. The average residual image of the diffuse structure after sub-
tracting the bright sources by normal calibration. The colour scale is in Jy
per PSF.

replaced the sources below 1 Jy with Gaussian sources with peak
intensities below 1 Jy and with random shapes and orientations.

In Fig. 12, we have shown the residual image of a 6◦ × 6◦ area in
the sky after removing all sources brighter than 1 Jy. The residual

Figure 13. The average residual image of the diffuse structure after sub-
tracting the bright sources by robust calibration. The colour scale is in Jy
per PSF and is the same as in Fig. 12.

image is obtained by averaging 100 Monte Carlo simulations. The
equivalent image for robust calibration is given in Fig. 13.

As seen from Figs 12 and 13, there is more flux in the diffuse
structure after robust calibration. This is clearly seen in the bottom
right-hand corner of both figures, where Fig. 13 has more positive
flux than in Fig. 12.

6 C O N C L U S I O N S

We have presented the use of Student’s t-distribution in radio inter-
ferometric calibration. Compared with traditional calibration that
has an underlying Gaussian noise model, robust calibration using
Student’s t-distribution can handle situations where there are model
errors or outliers in the data. Moreover, by automatically selecting
the number of degrees of freedom ν during calibration, we have the
flexibility of choosing the appropriate distribution even when no
outliers are present and the noise is perfectly Gaussian. For the spe-
cific case considered in this paper, i.e. the loss of coherency or flux
of unmodelled sources, we have given simulation results that show
the significantly improved flux preservation with robust calibration.
Future work would focus on adopting this for pipeline processing
of massive data sets from new and upcoming radio telescopes.
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