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Abstract

Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic
trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently,
approximation methods such as the RAxML rapid bootstrap (RBS) and the Shimodaira–Hasegawa-like approximate
likelihood ratio test have been introduced to speed up the bootstrap. Here, we suggest an ultrafast bootstrap approx-
imation approach (UFBoot) to compute the support of phylogenetic groups in maximum likelihood (ML) based trees. To
achieve this, we combine the resampling estimated log-likelihood method with a simple but effective collection scheme of
candidate trees. We also propose a stopping rule that assesses the convergence of branch support values to automatically
determine when to stop collecting candidate trees. UFBoot achieves a median speed up of 3.1 (range: 0.66–33.3) to 10.2
(range: 1.32–41.4) compared with RAxML RBS for real DNA and amino acid alignments, respectively. Moreover, our
extensive simulations show that UFBoot is robust against moderate model violations and the support values obtained
appear to be relatively unbiased compared with the conservative standard bootstrap. This provides a more direct
interpretation of the bootstrap support. We offer an efficient and easy-to-use software (available at http://www.cibiv.
at/software/iqtree) to perform the UFBoot analysis with ML tree inference.

Key words: phylogenetic inference, nonparametric bootstrap, tree reconstruction, maximum likelihood.

Introduction
Since the groundbreaking work of Felsenstein (1985),
nonparametric bootstrapping (Efron 1979) has become one
of the widely used tools to estimate the phylogenetic support
of certain clades or splits in an inferred phylogenetic tree.
Here, the sequence alignment sites are sampled with replace-
ment resulting in a number of pseudoreplicates. For every
replicate, one applies a method of interest such as maximum
likelihood (ML; Felsenstein 1981) to reconstruct a bootstrap
tree. One then either constructs a consensus tree from
the bootstrap trees or places the support values onto the
reconstructed ML tree.

Because of the enormous computation time required for
the standard bootstrap (SBS) with ML, several approaches
have been published to approximate SBS. Resampling esti-
mated log-likelihoods (RELL; Kishino et al. 1990; Hasegawa
and Kishino 1994) was the first attempt to avoid a full ML
inference per bootstrap replicate; it reuses the log-likelihood
scores calculated for individual sites in the original alignment,
given the tree. RELL was used to infer local bootstrap prob-
abilities (LBP; Adachi and Hasegawa 1996) of every internal
branch of the ML tree by comparing the three nearest neigh-
bor interchange (NNI) tree topologies around the branch
of interest. The approximate likelihood-ratio test (aLRT;

Anisimova and Gascuel 2006) and its nonparametric variant
(SH-aLRT; Guindon et al. 2010) differ slightly from the
method used to calculate LBP by employing the SH test
(Shimodaira and Hasegawa 1999) on these three NNI trees.
Although RELL and SH-aLRT are very fast, it is currently
unclear how they perform if the four subtrees incident to
that branch are not fixed. The RAxML rapid bootstrap
(RBS; Stamatakis 2006; Stamatakis et al. 2008) is a recent
method to resemble SBS while performing 8–20 times
faster on large data sets.

It has been shown that the SBS probabilities typically un-
derestimate the true probabilities of a clade to be correct
(Felsenstein and Kishino 1993; Hillis and Bull 1993). SBS is
therefore biased but conservative. Efron et al. (1996) proposed
a method to correct for this bias which, however, requires
considerably more computation. Other methods include
quartet puzzling (Strimmer and von Haeseler 1996; Schmidt
et al. 2002) and Bayesian Markov chain Monte Carlo (MCMC)
analysis (Yang and Rannala 1997; Huelsenbeck and Ronquist
2001). Bayesian MCMC methods, however, tend to overesti-
mate the true probabilities in case of model misspecification
or polytomies (Suzuki et al. 2002; Douady et al. 2003; Lewis
et al. 2005; Anisimova et al. 2011). Both quartet puzzling and
Bayesian MCMC methods are very time consuming for large
data sets.

� The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited. Open Access
1188 Mol. Biol. Evol. 30(5):1188–1195 doi:10.1093/molbev/mst024 Advance Access publication February 15, 2013

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/30/5/1188/997508 by U
niversity Library user on 14 Septem

ber 2020

http://www.cibiv.at/software/iqtree
http://www.cibiv.at/software/iqtree


New Approaches

Here, we present an ultrafast bootstrap approach (UFBoot) as
an alternative to the other nonparametric bootstrap
approaches. To this end, we utilize the RELL concept with
an efficient way of sampling plausible trees using the impor-
tant quartet puzzling (IQP) with NNI (IQPNNI) algorithm
(Vinh and von Haeseler 2004; Minh et al. 2005). In short,
IQPNNI samples the local maxima and their neighborhoods
in the tree space defined by the NNI operations. Because the
number of trees encountered during the IQPNNI search
might be excessively large, we adaptively estimate a
log-likelihood threshold ‘min such that we only investigate
the trees with the RELL bootstrapping if their log-likelihoods
are higher than ‘min. Taken together, UFBoot first generates a
number of bootstrap alignments (typically 1,000) and initial-
izes the corresponding bootstrap trees as null. UFBoot then
performs the IQPNNI tree sampling on the original alignment.
Whenever a new tree T whose log-likelihood exceeds ‘min is
found, UFBoot quickly computes the RELL score of T for each
bootstrap alignment. If T has a higher RELL score than that of
the current bootstrap tree, UFBoot updates the current boot-
strap tree as T for the corresponding bootstrap alignment.
That way, UFBoot gradually rectifies the set of bootstrap trees.
UFBoot stops collecting candidate trees when the correlation
coefficient cF of the split occurrence frequencies computed
from the first half of the analysis and from the full analysis is
larger than 0.99 (more details in Materials and Methods).
Finally, UFBoot computes a consensus tree from the set of
bootstrap trees and also maps the split support values onto
the ML tree reconstructed during the IQPNNI sampling.

We provide an implementation of the whole framework
in the IQ-TREE package (Nguyen L-T, Minh BQ, Schmidt HA,
von Haeseler A, in preparation). In the following, we compare
the performance of UFBoot against other bootstrap
approaches in terms of accuracy (Hillis and Bull 1993) and
computational time.

Results

Accuracy

We used simulated data (table 1; Materials and Methods) to
compare four different methods (SBS with RAxML, RBS with
RAxML, SH-aLRT with PhyML, and UFBoot) with respect to
their accuracy defined in Hillis and Bull (1993). To this end,
we plot the number of true splits (i.e., splits that occur in the
true trees) having support of x% divided by the number of all

splits with support of x% (eq. 2; fig. 1). This ratio gives the
estimated probability of a split to be true. Curves above the
dashed diagonal line indicate that the inferred support values
underestimate this probability, and thus the corresponding
method exhibits a conservative behavior. In contrast, curves
below the diagonal indicate that the method overestimates
the true probabilities. Methods that generate curves around
the diagonal are almost unbiased.

Figure 1 summarizes the results for the Yule–Harding and
PANDIT-based simulations (see Materials and Methods for
more details). Note that the curves look similar for the seven
simulation settings (table 1) and are thus not shown. SBS
(blue curves) is the most conservative approach by substan-
tially underestimating the probabilities of splits being correct
for both Yule–Harding and PANDIT-based simulations.
For example, a split with SBS support of 80% has indeed a
probability of 0.95 to be correct. This biased but conservative
behavior of SBS corroborates previous studies (Hillis and Bull
1993; Anisimova et al. 2011), which led to the widely accepted
interpretation of “trusting” splits with SBS supports �80%.
RBS (fig. 1, yellow curves) performs very similarly to SBS but
with a tendency of being less conservative.

SH-aLRT (fig. 1, black curves) is generally as conservative as
SBS and RBS in the Yule–Harding simulations but becomes
apparently less conservative in the PANDIT-based simula-
tions. Moreover, low SH-aLRT split supports (�50%) are
not informative with respect to the true probabilities. For
example, splits with SH-aLRT support of 20% are as correct
as those with support of 50%.

UFBoot (fig. 1, red curves) appears to be almost unbiased
compared with the other methods for both simulations
(i.e., the split support values obtained closely reflect the prob-
abilities of the split being correct). UFBoot is unbiased for
support values higher than 70%. On the other side,
UFBoot support values smaller than 70% slightly overesti-
mate the true probability. Such unbiased behavior simplifies
the interpretation of support values reported by UFBoot.
For example, a split with support of 95% will have a proba-
bility of 0.95 to be correct.

Moreover, we assessed the impact of model misspecifica-
tion on the accuracies by repeating the analysis on the sim-
ulated DNA alignments using the simpler JC + � model
(Jukes and Cantor 1969; Yang 1994) and the simplest JC
model (Jukes and Cantor 1969) for phylogenetic inference.
Note that we could not repeat the same analysis with RBS and
SBS, because RAxML supports only the GTR + � model
(Lanave et al. 1984; Yang 1994). Alternatively, we performed
SBS with 100 replicates using IQ-TREE. Figure 2 shows that
model violations have almost no influence on SBS estimates
with IQ-TREE (green curves) in PANDIT-based simulations
(Yule–Harding data not shown). Similarly, the accuracies
of SH-aLRT and UFBoot do not change under moderate
model violations (JC + �). However, the split support values
are inflated under severe model violations (JC). This agrees
with previous studies showing that accounting for the rate
heterogeneity among sites is more important than varying
substitution rates (Sullivan and Swofford 2001; Nguyen et al.
2012).

Table 1. Simulation Settings.

True Tree Data
Type

No.
Sequences

No.
Sites

No.
Alignments

Yule–Harding DNA 100 500 200
200 1,000 200
500 1,000 200

Protein 100 300 200
200 500 200

PANDIT DNA 4–403 24–6,891 6,222
Protein 4–545 12–2,297 6,182
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Computational Time

For more than 96% of the Yule–Harding and PANDIT-based
simulations the UFBoot stopping rule (see Materials and
Methods) suggested to stop after 100 IQPNNI iterations.
The remaining runs finished after at most 800 iterations.
Thus, Qmax ¼ 1,000 is a conservative upper bound for the
number of iterations to achieve high accuracy.

A more detailed picture emerges from the real PANDIT
data. We compared the computational times of RBS and
UFBoot on 308 large (�100 sequences) DNA- and AA-
PANDIT alignments. For a fair comparison of computing
times, we apply the bootstopping criterion (-N autoMRE)
(Pattengale et al. 2010) in the RBS search to automatically
determine the number of bootstrap replicates required. For
eight AA-PANDIT alignments (PF01261, PF00149, PF01546,
PF01547, PF01636, PF00496, PF00501, and PF07690) RAxML
did not finish after more than 1 week of computation, the
runs were then stopped by our computing system. These
alignments were excluded from our analysis, leaving us with

300 alignments. The bootstopping criterion of RBS yielded an
average of 528 bootstrap replicates. The number of bootstrap
replicates varied between 250 and 1,000 (the default upper
limit in RAxML), where 5 alignments needed 250 replicates
and 1 alignment hit the upper limit.

Our UFBoot stopping rule suggested on average 453
IQPNNI iterations for all alignments. We observed that for
80 (27%) alignments 100 iterations sufficed to obtain stable
bootstrap estimates and for 69 (23%) alignments we hit the
maximum of 1,000 iterations, indicating that the resulting
split supports from these runs did not meet our convergence
criterion. Among these 69 alignments 49, 15, and 5 align-
ments achieved a correlation coefficient cF of at least 0.95,
between 0.9 and 0.95, and less than 0.9, respectively. However,
the five alignments with cF < 0:9 comprise very divergent
sequences and possibly nonalignable sequences. The percent-
ages of alignment sites with low alignment confidence
(Whelan et al. 2006) are ranging between 32% and 52%.
Therefore, the nonconvergence in such cases is not surprising.

FIG. 2. Impact of moderate (JC + �) and severe model violations (JC) on the accuracies of SBS, SH-aLRT, and UFBoot in the PANDIT-based simulations.

FIG. 1. Accuracies of SBS, RBS with RAxML, SH-aLRT with PhyML, and UFBoot approximation from the Yule–Harding (left panel) and the
PANDIT-based simulations (right panel).
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Finally, we computed the distribution of the ratio between
the computational times of RBS and UFBoot for the 300
alignments (fig. 3). UFBoot was always faster than RBS
except for 10 DNA alignments. The 69 alignments where
UFBoot did not converge (discussed earlier) also caused the
slowest UFBoot runs. UFBoot runs 3.1 times (median, range:
0.66–33.3) and 10.2 (median, range: 1.32–41.4) times faster
than RBS for DNA and AA alignments, respectively. More
impressive is the total computing time for the full PANDIT
data analysis: UFBoot required 797 CPU core hours (1.1
month) on a computer cluster equipped with 2.2-GHz
CPUs, whereas RBS needed 4,293 CPU hours (�6 months).

Discussion
We have suggested a very fast bootstrap approximation,
namely UFBoot, and compared the performance with a col-
lection of widely used methods. Although SBS and RBS esti-
mates of clade support are conservative (see also Hillis and
Bull 1993; Anisimova et al. 2011), the clade support estimated
by UFBoot appears less biased according to our large-scale
simulations. This leads to a different and easy-to-understand
interpretation of the support values. For example, a support
of at least 95% should be used if one wants to control the
false-positive rate of 5%. The fact that UFBoot is a hybrid of
parametric sampling of the tree space and the nonparametric
bootstrap sampling of the alignment may be one explanation
for reduction of the bias of the bootstrap probabilities.
Parametric methods (aLRT, Bayesian MCMC) are unbiased
if the true substitution model is known (Anisimova et al.
2011). UFBoot inherits this property as shown in our simula-
tions. Moreover, UFBoot partly overcomes model misspecifi-
cations by applying the nonparametric RELL correction
(Anisimova et al. 2011). However, we have to acknowledge
that a thorough theoretical explanation for our observation
is missing.

The interpretation of support values as unbiased has been
used in Bayesian inference. However, Bayesian inference has
been known to be sensitive even against mild model viola-
tions (Suzuki et al. 2002; Anisimova et al. 2011). In contrast,
UFBoot appears robust against moderate model violations
during phylogenetic inference (fig. 2). However, caution is
advised under severe model violations (i.e., wrongly assumed
rate homogeneity among sites) then UFBoot (also SH-aLRT)
tends to infer unduly high support values. Here, methods to
detect model violations (Goldman 1993; Weiss and von
Haeseler 2003; Nguyen et al. 2011) should be applied before
the UFBoot analysis (or any other analysis). At present it is not
clear, if the number of IQPNNI iterations necessary to achieve
bootstrap support convergence may be helpful to detect such
artifacts.

Apart from oversimplified substitution models, other types
of model violations such as polytomies and heterotachy
(i.e., varying substitution rates among different tree branches
and alignment sites) (Lopez et al. 2002) are known to
cause systematic bias in the ML and Bayesian methods
(Kolaczkowski and Thornton 2004; Lewis et al. 2005). For
example, polytomies often lead to a tree space with a lot of
local optima. This may hamper the underlying IQPNNI algo-
rithm in exploring the tree space (Whelan and Money 2010;
Money and Whelan 2012), which might in turn inflate
UFBoot support values. It is necessary to investigate these
and other factors (e.g., by looking at the support of conflicting
splits) to understand further the mechanism of bias correc-
tion in UFBoot and under which conditions the correction
might fail. Currently, these are still unclear to us. However, a
more thorough analysis is beyond the scope of this study.
Nevertheless, as our methodology works on any set of
input candidate trees, it might be worthwhile to exploit
UFBoot with other tree sampling strategies such as the ge-
netic algorithm (Zwickl 2006) or the Bayesian MCMC
(Drummond et al. 2012; Ronquist et al. 2012). We provide
such an option in our implementation.

SH-aLRT behaves very differently between the Yule–
Harding and PANDIT-based simulations (fig. 1), implying
that there is no easy rule of thumb how to interpret
SH-aLRT support values. This may be due to the fact that
SH-aLRT computes the support value for every branch by
only comparing the tree log-likelihood with the log-
likelihoods of the two alternative NNI trees around the
branch of interest (Adachi and Hasegawa 1996). That way,
SH-aLRT ignores all other trees that may show higher
log-likelihoods than the two NNI trees, which may result in
an overconfidence of SH-aLRT support values. Nevertheless,
SH-aLRT, being a very quick branch test method, is useful
for extremely large data sets. In our implementation,
we offer an option to report both SH-aLRT and UFBoot
support values per branch so that users can directly compare
them.

Our built-in UFBoot stopping rule provides an intuitive
statistic cF, the correlation coefficient of the split support
values inferred from the first half of the analysis and from
the full analysis. cF values close to 1.0 imply that an ex-
tended tree search will not substantially change the

FIG. 3. Distributions of run-time ratios (log2-scale) between RBS and
UFBoot for 300 DNA and AA PANDIT alignments. The percentages of
alignments where UFBoot runs slower (left from the dashed line) or
faster (right from the dashed line) than RBS are shown.
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resulting support values and we can therefore stop. Similar
ideas have been employed in the bootstopping criterion
(Pattengale et al. 2010). The fact that the UFBoot stopping
rule suggested only 100 iterations for most simulated data
are not surprising because the tree space for simulated data
typically contains only a few local maxima and is therefore
easy to sample. The situation is different for real data
where our convergence criterion was not always met. But
these cases were also characterized by low phylogenetic
information (Money and Whelan 2012). This reinforces
the observation that one should assess the phylogenetic
signals in the data with, for example, the likelihood mapping
(Strimmer and von Haeseler 1997) and saturation plots
(Van de Peer et al. 2002; Xia et al. 2003) before carrying
out an expensive bootstrap analysis. If the data appear to be
appropriate for phylogenetic reconstruction, then UFBoot is
a time-saving option compared with the other bootstrap
inference tool.

Conclusion
We have presented the UFBoot approximation approach that
1) outperforms the RAxML RBS in terms of the computa-
tional time, 2) achieves almost unbiased support values like
Bayesian methods, and 3) is relatively robust against moder-
ate model violations. We provide an implementation of
UFBoot within the IQ-TREE software package available from
http://www.cibiv.at/software/iqtree. IQ-TREE is a substantially
improved reimplementation of the IQPNNI algorithm
with additional features (Nguyen L-T, Minh BQ, Schmidt
HA, von Haeseler A, in preparation). IQ-TREE allows users
to reconstruct the ML tree (with support values), the boot-
strap trees, and the consensus tree by UFBoot within one
single run. Users can also perform UFBoot from a user-defined
set of trees sampled by other methods (e.g., genetic algorithm
or MCMC sampling).

Materials and Methods

ML Principle

Let A denote a multiple sequence alignment with n se-
quences and m sites (columns), where sites in A are grouped
into k site-patterns D1, . . . , Dk of identical sites. Hence,
we represent A by a vector of site-pattern frequencies
ðd1 , . . . , dkÞ, where di is the number of sites having
site-pattern Di (di > 0 and

Pk
i¼1 di ¼ m).

Under the assumption of independence of the sites,
the log-likelihood ‘ of a tree T (with branch lengths) given
A is computed by:

‘ T jAð Þ ¼
Xk

i¼1

di � ‘ðT jDiÞ,

where ‘ðT jDiÞ is the log-likelihood of T at site-pattern Di.
Under the ML principle, the objective is to identify

the most likely tree TML ¼ argmaxT ‘ðT jAÞ. Note that
the computation of ‘ is implicitly based on a predefined
substitution model, which we omit in this notation for the
sake of simplicity.

RELL Method Revisited

A bootstrap sample A� of A is simply a resampled frequency
vector A� ¼ ðd�1 , . . . , d�kÞ, where d�i is the frequency of Di

in A� (d�i � 0 and
Pk

i¼1 d�i ¼ m). To compute ‘ðT jA�Þ for a
given tree T under the SBS, one has to re-estimate the branch
lengths and model parameters based on A�. To save compu-
tation, RELL (Kishino et al. 1990) approximates ‘ðT jA�Þ by
using ‘ðT jDiÞ (i.e., keeping branch lengths and model pa-
rameters fixed). Hence, the log-likelihood scores of individual
sites remain the same, implying that calculating

‘̂ T jA�ð Þ ¼
Xk

i¼1

d�i � ‘ T jDið Þ ð1Þ

for many bootstrap alignments on a fixed tree will be com-
putationally inexpensive. In addition, one can quickly select
an approximate ML tree for A� from a collection C of candi-
date trees by computing T�ML ¼ argmaxT2C ‘̂ðT jA

�Þ if
‘ T jAð Þ is known for all T 2 C.

RELL was used to infer the LBP (Adachi and Hasegawa
1996) for every internal branch of a fixed tree T as follows:
For each internal branch one computes ‘ TNNI1 jAð Þ and
‘ TNNI2 jAð Þ of the two NNI trees around this branch. Next,
one generates B bootstrap alignments A�1 ,A�2 , . . . , A�B and
computes the three corresponding RELL scores
‘̂ T jA�i
� �

, ‘̂ TNNI1 jA
�
i

� �
, ‘̂ TNNI2 jA

�
i

� �
for each A�i according

to equation (1). The local support of the branch in ques-
tion is the percentage of A�i where ‘̂ T jA�i

� �
>

maxf‘̂ TNNI1 jA
�
i

� �
, ‘̂ TNNI2 jA

�
i

� �
g: In other words, the LBP

method considers the set C of exactly three candidate trees
and may overlook other “good” tree topologies (Adachi and
Hasegawa 1996, p. 49). For that reason, we pursue another
approach described in the following sections.

Tree Proposal

The applicability of RELL crucially depends on the collection
of candidate trees. The naive way of evaluating all tree topol-
ogies of n taxa (Waddell et al. 2002) only works for small n.
Here, we exploit a strategy of sampling trees using the
IQPNNI algorithm (Vinh and von Haeseler 2004; Minh et al.
2005). In principle, IQPNNI does a sampling of local max-
ima in the tree space defined by the NNI operations (fig. 4).
To this end, IQPNNI iteratively moves through the tree
space in which the IQP operations help to escape local
optimal regions and subsequently NNI moves toward the
local optima within regions (T1, T2, and T3 in fig. 4).
To escape local optima the IQP step randomly deletes a frac-
tion pdel of the leaves of the tree and re-inserts the leaves
using the quartet puzzling method (Strimmer and von
Haeseler 1996).

The IQPNNI algorithm (fig. 4) works as follows. IQPNNI
starts with the BIONJ (Gascuel 1997) tree T0 and moves to T1

via a series of NNIs. Here T1 represents a local maximum of
the tree space. This completes the first IQPNNI iteration.
In the second IQPNNI iteration, IQPNNI applies the IQP
operation to propose T02 from T1 and subsequently moves
to T2 (via NNI), which locates another local maximum.
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As ‘ T2 jAð Þ < ‘ðT1 jAÞ, we keep T1 as the current
best tree. In the third iteration, T03 is generated from T1

and then T3 reflects another local optimum. Now, as
‘ T3 jAð Þ > ‘ðT1 jAÞ, T3 becomes the new ML tree as it
has a higher likelihood. In other words, the IQPNNI algorithm
allows us to escape the local optimum T1. Because this search
is carried out for many iterations, IQPNNI samples many local
optima and thus provides a rough picture of the tree space.

As a by-product IQPNNI also samples the trees that are a
few NNIs away from local optima. To get a collection C of
candidate trees, we collect all distinct trees encountered
during the IQPNNI search.

Restricting the Number of Candidate Trees

As we might encounter millions of distinct trees during
the IQPNNI search and as we are interested in plausible
trees (i.e., those in the vicinity of local optima), we introduce
the parameter � to consider only trees in C exceeding a
certain log-likelihood threshold. In other words, based on �
we empirically determine a log-likelihood threshold ‘min

during the search such that a tree T will only be investigated
with the RELL bootstrapping if ‘ T jAð Þ � ‘min. This works as
follows: Let Q be the total number of IQPNNI iterations and
q the current iteration. On average, we aim to collect �Q trees
per iteration. Hence, we expect �

Q � q trees after q iterations.
If j C j < �

Q � q after the qth iteration, we have collected
fewer trees than we aimed for, so we set ‘min ¼ �1 to
accept all subsequent trees. If however jC j � �

Q � q, then
the expected number of trees after Q iterations might
exceed �. To avoid this, we set ‘min equal to the log-likelihood

of the �
Q � q
h i

-th best tree in C. In the subsequent iteration

q+1, a tree T is assigned to C only if it is not yet in C and

if ‘ T jAð Þ � ‘min. At the end of iteration q+1, we update
‘min as shown earlier. ‘min will decrease or increase depending
on the number of trees added to C during iteration q+1. We
therefore adaptively adjust ‘min based on the number of trees
encountered during the search. Note that because we do not
remove any trees from C, the size of C might slightly exceed �
at the end.

UFBoot Approximation

The UFBoot works as follows:

1) Initialization step: Initialize the collection of trees C:¼;
and the log-likelihood cutoff ‘min :¼ �1. Generate
B (typically 1,000 or 10,000) bootstrap alignments
A�1 , A�2 , . . . , A�B . For each A�b initialize the bootstrap
tree T�b :¼ ; and ‘̂ T�b jA

�
b

� �
:¼ �1.

2) Exploration step: Perform the IQPNNI search with A
(fig. 4). Every time a new tree T =2 C with ‘ T jAð Þ �

‘min is encountered during the search:
a) Compute the approximate log-likelihood ‘̂ðT jA�bÞ

for each bootstrap replicate A�b using RELL (eq. 1).
If ‘̂ T jA�b
� �

> ‘̂ðT�b jA
�
bÞ, update T�b :¼ T.

b) Update C :¼ C[fTg.
Re-estimate ‘min as explained upon finishing an IQPNNI
iteration.

3) Summarization step: Construct a consensus tree from
the bootstrap trees fT�1 , T�2 , . . . , T�Bg or map the support
values onto the ML tree reconstruced by the IQPNNI
search.

The exploration step is the main step that simulta-
neously explores the tree space and updates the bootstrap
trees. The computation of ‘̂ðT jA�bÞ represents the only
additional computation compared to the original IQPNNI
algorithm and has a time-complexity of Oð j C jkBÞ, where
k is the number of site-patterns in the input alignment.
We implement the collection of distinct trees C as a hash
table for computational efficiency, implying that we com-
pute the approximate likelihoods for trees encountered
during the search exactly once. Moreover, if the probability
of revisiting a tree during the search is small (which often
happens for large data), one can safely omit storing
the trees in C, and thus substantially reducing the
memory consumption. We provide both options in our
implementation.

UFBoot Stopping Rule

In principle, the more IQPNNI iterations (Q) are carried out
during the exploration step, the more candidate trees (C) are
considered and the better UFBoot performs. However, Q
should not be too large since our goal is to provide an
UFBoot approximation method. Q should also not be unre-
alistically small because we want to achieve high accuracy.
Thus, we introduce a so-called “UFBoot stopping rule” that
automatically assesses the convergence of the split support
values and stops collecting candidate trees once convergence
is achieved.

To this end, we start with Q :¼ 100 and � :¼ n � Q, where
n is the number of sequences. That means, � is no more
an independent parameter and we collect on average n
trees per IQPNNI-iteration. This is motivated by the fact
that each IQPNNI iteration generates O nð Þ trees, and we
will therefore consider a constant factor (<1) of the
number of trees encountered. During the exploration step,
once Q

2 iterations have been completed, we compute the
vector of split occurrence frequencies F Q

2

� �
for all splits in

FIG. 4. Schematic view of the tree space sampled by the IQPNNI
algorithm. The solid curve reflects the log-likelihood surface on the
tree space. The structure of tree space is defined by the NNI operations
where each n-taxon tree has exactly 2n� 6 neighboring trees.
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the current set of bootstrap trees T�1 , T�2 , . . . , T�B
� �

. At the
end of the Q-th iteration we compute F Qð Þ and the Pearson’s
correlation coefficient cF between the two vectors F Q

2

� �
and

F Qð Þ: For splits occurring in one split set but not the other,
a corresponding zero entry is added into the other vector.
If cF � 0:99, then more IQPNNI iterations do not substan-
tially change the split support values. In such case, we stop
and output the split support values in F Qð Þ. Otherwise, we
continue the exploration step with 100 more iterations

(i.e., we increase � :¼ Q+100
Q � jCj

h i
and Q :¼ Q + 100).

Therefore, we compute the bootstrap split support every
50 iterations and evaluate the convergence every 100 itera-
tions. Finally, we provide an option to specify a maximum
number of iterations Qmax such that we will also stop once
Q � Qmax. This ensures that the analysis will finish in case a cF

of 0.99 is unlikely to be reached.

Performance Study with Yule–Harding Simulation

We simulated data with varying number of sequences and
sites (table 1) to assess the performance of UFBoot. For each
setting, we used IQ-TREE (Nguyen L-T, Minh BQ, Schmidt HA,
von Haeseler A, in preparation) to generate 200 random trees
(true trees) under the Yule–Harding model (Harding 1971)
where the branch lengths follow an exponential distribution
with the mean of 0.1. Seq-Gen (Rambaut and Grassly 1997)
was used to evolve the DNA or protein sequences along
the tree under the GTR + � (Lanave et al. 1984; Yang 1994)
and WAG + � (Yang 1994; Whelan and Goldman
2001) model, respectively. The GTR model parameters are:
rAC ¼ 3, rAG ¼ 5, rAT ¼ 7, rCG ¼ 4, rCT ¼ 6, rGT ¼ 2,
�A ¼ 0:25, �C ¼ 0:15, �G ¼ 0:2, �T ¼ 0:4. The � distri-
bution parameter is � ¼ 0:5. In total, we simulated 600
DNA alignments and 400 amino acid alignments for five set-
tings (table 1).

For each simulated alignment, we then performed UFBoot
with B ¼ 1,000, Qmax ¼ 1,000, and pdel ¼ 0:5. To compare
the UFBoot results, we conducted SBS as implemented in
RAxML-SSE3 7.3.0 with 100 replicates (Stamatakis 2006),
RBS with 1,000 replicates (Stamatakis et al. 2008), and
PhyML SH-aLRT (Guindon et al. 2010). For each bootstrap
method, the inferred split support values were mapped onto
the ML tree reconstructed by IQ-TREE.

Finally, we collected the set � of unique splits occurring
in the 1,000 ML trees reconstructed from the 1,000 align-
ments generated and classified them as true or false splits
(i.e., splits that occur in the corresponding true tree or not).
Each split � 2 � was associated with four support values:
sSBS �ð Þ, sRBS �ð Þ, sSH�aLRT �ð Þ, and sUFBoot �ð Þ rounded as inte-
gers between 0% and 100%. Then, we computed the frac-
tion, f?ðxÞ, of true splits with support value x% against all
splits with the same support value x%, thus we computed:

fSBS xð Þ ¼
true splits � 2 � : sSBS �ð Þ ¼ x
� ��� ��

splits � 2 � : sSBS �ð Þ ¼ x
� ��� �� : ð2Þ

Similarly, we computed fRBS xð Þ, fSH-aLRT xð Þ, and fUFBoot xð Þ. This
ratio is coined “accuracy” (Hillis and Bull 1993) and was used
recently by Anisimova et al. (2011).

PANDIT-Based Simulation

Moreover, we performed a large-scale simulation based on
the PANDIT database (Whelan et al. 2006) to examine the
performance of different bootstrap strategies on trees inferred
from biological data. To this end, we retrieved 6,491 DNA and
6,617 protein alignments with at least four sequences from
the PANDIT website. Following the recommendation of
Whelan et al. (2006), we removed all short alignments
(m < 3n for DNA and m < n for protein alignments). For
the remaining 6,222 DNA and 6,182 protein alignments, we
selected the best-fit models with the Bayesian information
criterion using ModelTest (Posada and Crandall 1998) and
ProtTest (Darriba et al. 2011), respectively. We then recon-
structed an ML tree for each alignment using IQ-TREE under
the selected model. The reconstructed ML trees were treated
as true trees to generate alignments. We again used Seq-Gen
to simulate alignments with the same alignment lengths
as the original PANDIT alignments and under the estimated
model parameters. We then superimposed the gap positions
from the original PANDIT alignments onto corresponding
simulated alignments. The use of PANDIT trees and the
introduction of gaps into the simulated alignments are to
reflect as much reality as possible in the simulation.

Finally, we compared the bootstrap strategies with respect
to the accuracy as in the Yule–Harding simulations (eq. 2).
Moreover, for 5,688 DNA alignments, where the selected
best-fit models are more complex than JC + � (Jukes and
Cantor 1969; Yang 1994), we assessed the impact of model
misspecification on the accuracy (i.e., when the trees are re-
constructed under JC + � and JC models representing mod-
erate and severe model violations, respectively).
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