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Glutamate-induced excitotoxicity is a major cause for
neuronal loss in many neurodegenerative disorders. This
process is mediated by excessive activation of glutamate
receptors and has been associated with damage observed
after epileptic convulsions, stroke, spinal cord trauma, head
injury (Faden et al. 1989; Dirnagl et al. 1999; Vincent and
Mulle 2009), and several neurodegenerative disorders, such
as Parkinson’s disease, Alzheimer’s disease, Huntington’s
disease, Amyotrophic lateral sclerosis, and Multiple sclerosis
(Dong et al. 2009). Excitotoxicity therefore remains a
challenging problem in neuropathology ever since it was
first described in the 1970s (Olney et al. 1972).

Excitotoxicity causes excessiveATPhydrolysis, resulting in
pronounced release of adenosine in affected brain tissue
(Dunwiddie and Masino 2001). Extracellular adenosine
suppresses neuronal activity by at least three cellular mech-
anisms: (i) pre-synaptic inhibition of neurotransmitter release,

(ii) post-synaptic inhibition of calcium influx through voltage
dependent calcium channels, and (iii) activation of G-protein
dependent inwardly rectifying K+ channels that mediate
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Abstract

Neuroprotection is one of the prominent functions of the

interleukin (IL)-6-type cytokine family, for which the underlying

mechanism(s) are not fully understood. We have previously

shown that neuroprotection and neuromodulation mediated by

IL-6 require neuronal adenosine A1 receptor (A1R) function.

We now have investigated whether two other IL-6-type cyto-

kines [oncostatin M (OSM) and leukemia inhibitory factor

(LIF)] use a similar mechanism. It is presented here that OSM

but not LIF, enhanced the expression of A1Rs (both mRNA

and protein levels) in cultured neurons. Whereas the neuro-

protective effect of LIF was unchanged in A1R deficient neu-

rons, OSM failed to protect neurons in the absence of A1R. In

addition, OSM pre-treatment for 4 h potentiated the A1R-

mediated inhibition of electrically evoked excitatory post-syn-

aptic currents recorded from hippocampal slices either under

normal or hypoxic conditions. No such effect was observed

after LIF pre-treatment. Our findings thus strongly suggest

that, despite known structural and functional similarities, OSM

and LIF use different mechanisms to achieve neuroprotection

and neuromodulation.

Keywords: adenosine A1 receptor, excitotoxicity, hypoxia,

leukemia inhibitory factor, neuroprotection, oncostatin M.

J. Neurochem. (2010) 114, 1667–1677.

JOURNAL OF NEUROCHEMISTRY | 2010 | 114 | 1667–1677 doi: 10.1111/j.1471-4159.2010.06881.x

� 2010 The Authors
Journal Compilation � 2010 International Society for Neurochemistry, J. Neurochem. (2010) 114, 1667–1677 1667



post-synaptic membrane hyperpolarization (De Mendonca
et al. 2000; Dunwiddie and Masino 2001). These effects also
reduce metabolic demand, thereby preserving ATP stores,
suppress glutamatergic transmission, and thus protect neurons
from excitotoxicity (Schubert et al. 1997). These effects in
neurons are predominantly mediated by A1 receptors (A1Rs).
Although several adenosine receptor agonists, such as
N6-cyclopentyladenosine (CPA) or 2-chloroadenosine are
neuroprotective, their therapeutic application in neurodegen-
erative diseases failed, as they provoke severe peripheral side
effects and/or receptor desensitization (De Mendonca et al.
2000; Stone 2002). In addition, attempts to rescue neurons
using anti-excitotoxic drugs, seriously affected various aspects
of synaptic plasticity rendering them useless for therapy
(Parsons et al. 2007; Mimica and Presecki 2009). This
augments the urge for the development of new therapeutic
approaches to suppress excitotoxicity.

Other neuroprotective factors include the family of inter-
leukin 6 (IL-6)-type cytokines, which therefore are also called
neurokines (Patterson 1992). Members of this family, such as
IL-6, IL-11, leukemia inhibitory factor (LIF), oncostatin M
(OSM), ciliary neurotrophic factor, novel neurotrophin-1, and
cardiotropin-1 have been shown to have neuroprotective
properties in various neuronal subpopulations (Holtmann
et al. 2005; Wen et al. 2005; Weiss et al. 2006; Gurfein et al.
2009; Suzuki et al. 2009). Despite this large body of evidence,
it is currently not very well understood how IL-6-type
cytokines mediate their neuroprotective effects. Recently, we
demonstrated that IL-6 affords neuroprotection and neuro-
modulation by enhancing the expression and function of
neuronal A1Rs (Biber et al. 2008). All IL-6-type cytokines
require gp130 receptor subunits for signaling leading to many
shared redundant functions (Heinrich et al. 2003; Kamimura
et al. 2003). We therefore hypothesized that IL-6-type cyto-
kines in general exert their neuroprotective properties via a
facilitation of neuronal A1R function.

Interleukin-6 and IL-11 are the only IL-6-type cytokines that
signal via gp130 homodimers, while the remaining members
signal via heterodimers of either gp130 and LIFr (LIF, ciliary
neurotrophic factor, cardiotropin-1, and novel neurotrophin-1)
or gp130 and OSMr (OSM) (see Bauer et al. 2007 for review).
Using LIF and OSM allows investigation of all major possible
receptor signaling combinations that are known for the IL-6-
type cytokine family. We thus here compared the neuropro-
tective properties of OSM and LIF in cultured cortical and
hippocampal neurons and investigated the electrophysiolog-
ical effects of these cytokines in mouse hippocampal slices.

Materials and methods

Chemicals
Neurobasal media, Basal Medium Eagle media, Hank’s Balanced

Salt Solution, phophate-buffered saline (PBS), sodium pyruvate,

L-glutamine, penicillin-streptomycin, HEPES, glutaMAX-1, and

B27 supplement were from Gibco (Breda, The Netherlands).

Dulbecco’s modified Eagle’s media and Fetal Calf Serum were

from PAA laboratories (Cölbe, Germany). Mito serum extender

was from Becton Dickinson Labware (Breda, The Netherlands).

Trypsin was from Life Technologies (Breda, The Netherlands) and

papain from Worthington Biochemical Corporation (Lakewood, NJ,

USA). Other chemicals were from Sigma-Aldrich (Zwijndrecht, The

Netherlands). Cytokines, recombinant mouse LIF was from Milli-

pore (Amsterdam, The Netherlands; Cat. No: LIF2005), and

recombinant mouse OSM from Sigma-Aldrich. Mouse monoclonal

anti-adenosine A1R antibody supernatant was kindly provided by

Prof. Yuko Sekino and mouse monoclonal anti-b-actin was from

Abcam (Cambridge, MA, USA). Fluorescence conjugated second-

ary antibody, donkey anti-mouse (IR Dey680) used separately to

detect adenosine A1R and b-actin bands was from LI-COR

biosciences (Cambridge, United Kingdom).

Animal experiments
Experiments were performed using wild-type C57BL/6J mice

(Harlan, Horst, The Netherlands or Harlan Iberica, Spain) and

adenosine A1R knockout (A1R)/)) mice with the same genetic

background (Universitá di Roma ‘‘La sapienza’’, Rome, Italy). All

procedures were in accordance with the regulation of the Ethical

Committee for the use of experimental animals of the University of

Groningen, The Netherlands (License number DEC 4623), as well

as with the Portuguese law on Animal Care and European Union

guidelines (86/609/EEC). Mice were housed in standard makrolon

cages and maintained on a 12 h light/dark cycle. They received food

and water ad libitum.

Primary neuron culture from mouse embryo and neonates
Primary neuronal cultures from mouse embryo (�E14) were

established as described previously (Biber et al. 2008). Primary

neuronal cultures from newly born mouse neonates (P0) were

established as described previously (Limatola et al. 2005). The

neuronal purity, determined by Microtuble-associated protein 2

(MAP2)-staining, was 90–95% (data not shown). Cortical and

hippocampal neurons were used for the experiments after 5 and

9 days of in vitro culture, respectively.

Induction of excitotoxicity
Following the number of days in culture, cortical and hippocampal

neurons were incubated with or without recombinant mouse OSM

or LIF (0.1, 1, or 10 ng/mL) for the indicated periods of time.

Where indicated, neurons were incubated with a selective A1R

antagonist, 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 100 nM)

or agonist, CPA (100 nM) for 15 min before they were subjected

to excitotoxicity with glutamate (50 lM) for 1 h. Following

glutamate treatment, the media was refreshed and neuronal

cultures were incubated for 18 h before assessing the degree of

cytotoxicity.

Determination of neuronal viability

• 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) assay: Survival of embryonic (�E14) cortical neurons in

culture was measured by the colorimetric MTT assay, as described

previously (Mosmann 1983; Biber et al. 2008).
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• Lysis-buffer assay: 18 h after glutamate treatment, cultures of

cortical and hippocampal neurons isolated from neonatal pups (P0)

were treated with detergent-containing lysing solution (0.5%

ethylhexadecyldimethylammonium bromide, 0.28% acetic acid,

0.5% Triton X-100, 3 mM NaCl, 2 mM MgCl2, in PBS; pH 7.4;

diluted 1 : 10) for 5 min at 21�C and the viable cells were counted

on a hemacytometer (Thoma chamber, Brand, Germany), as

described previously (Volonté et al. 1994; Limatola et al. 2005).

Western blot analysis
Equal amounts of protein (30 lg) were loaded on to 15% sodium

dodecyl sulfate–polyacrylamide gels and subsequently transferred

on to polyvinylidene fluoride membranes. The membranes were

blocked using Odyssey blocking buffer (diluted 1 : 1 in PBS) for

1 h and incubated overnight at 4�C on shaker with one of the

following primary antibodies diluted in 1 : 1 Odyssey blocking

buffer and PBS + 0.1% Tween 20 (PBS-T): mouse monoclonal anti-

A1R antibody supernatant (1 : 50) and mouse monoclonal anti-b-
actin antibody (1 : 8000). The membranes were then washed in

PBS-T (4 · 5 min), followed by incubation with fluorescent-

conjugated secondary antibody, donkey anti-mouse (IR Dey680

LI-COR; 1 : 8000 in PBS-T), for 1 h at 21�C on gentle shaking in

the dark. Membranes were washed again in PBS-T (4 · 5 min) and

fluorescent bands were detected using LI-COR’s Odyssey infrared

imaging system. The densiometric analysis of protein bands was

performed using Image J program (Abramoff et al. 2004).

Real-time PCR (Q-PCR)
Total RNA extracted from cultured cortical neurons were purified

and then transcribed into cDNA as described previously (Biber et al.
2008). The quality of the cDNA was controlled using GAPDH

primers (see Table S1 for primer sequences). Adenosine A1R

mRNA expression of cultured embryonic cortical neurons treated

with OSM (1 ng/mL) or LIF (10 ng/mL) for different time periods

(1, 2, 4, 8, 12, and 24 h) was analyzed by real-time PCR using the

iCycler (Bio-Rad, Veenendaal, The Netherlands) and the iQ SYBR

Green supermix (Bio-Rad). Neurons that were not treated with OSM

or LIF, served as control. Mouse ribosomal protein L32-A (rpL32A)

and GAPDH primers were used for normalization to house-keeping

genes and they showed no variations in response to experimental

treatments (see Table S1 for primer sequences). The comparative Ct

method [amount of target amplicon X in sample S, normalized to a

reference R and related to a control sample C, calculated by

2 ) ((CtX, S ) CtR, S) ) (CtX,C ) CtR,C))] was used to determine

the relative expression levels (Livak and Schmittgen 2001; Biber

et al. 2008). Linear regression analysis of the data was performed to

understand the effect of cytokine treatment over time on the

neuronal A1R expression.

Patch-clamp recordings in hippocampal slices
Acute hippocampal slices (300 lm thick) were prepared as

previously described (Diógenes et al. 2004). Whole-cell patch-

clamp recordings of excitatory post-synaptic currents (EPSCs) were

obtained from CA1 pyramidal cells upon stimulation of the Schaffer

collateral fibers (0.2 ms rectangular pulses delivered each 30 s).

EPSCs were acquired at 21�C with an Axopatch 200B amplifier

(Axon Instruments; Clampex 10 Software, Sunnyvale, CA, USA) at

10 KHz and were low-pass filtered at 2 KHz. CA1 pyramidal cells

were identified by visualization with an upright microscope (Zeiss

Axioskop 2FS, Göttingen, Germany) equipped with infrared video

microscopy and differential interference contrast optics, and were

functionally distinguished from interneurons by their slower firing

frequencies, longer action potentials, and for featuring spike-

frequency adaptation (Madison and Nicoll 1984). Patch pipettes

had resistances of 4–7 MW when filled with an internal solution

containing (in mM): K-gluconate 125, KCl 11, CaCl2 0.1, MgCl2 2,

EGTA 1, HEPES 10, MgATP 2, NaGTP 0.3, and phosphocreatine

10, pH 7.3, 280–290 mOsm. Junction potentials were not corrected

nor were access resistance compensated for. Whole-cell EPSCs were

recorded in voltage-clamp mode (Vh = )70 mV) and averages of

four consecutive individual responses were determined. Access

resistance and holding current were continuously monitored

throughout the experiment, and if any varied by more than 20%,

the experiment was discarded. Slices were perfused (2–3 mL/min)

with artificial CSF (aCSF), which contained (in mM): NaCl 125,

KCl 3, NaH2PO4 1.25, NaHCO3 25, CaCl2 2, MgSO4 1, and glucose

10. Drugs were added to the perfusion solution.

Hypoxia was induced by substituting the aCSF with an identical

aCSF pre-equilibrated with 95% N2 and 5% CO2 for 4 min. This

manipulation reduces bath oxygen tension in the recording chamber

from �600 to �250 mmHg (Sebastião et al. 2001). Each slice was

subjected to a single period of hypoxia, since the effects of hypoxia

may be modified by subsequent episodes in the same slice (Pérez-

Pinzón 1999).

Statistical analysis
The absolute data values were converted to percentage of control to

allow multiple comparisons and statistical analysis performed by

one-way ANOVA followed by the Bonferroni correction, using the

Statistical Package for the Social Sciences (SPSS, Chicago, IL,

USA). Analysis of the electrophysiology data was carried out using

paired t-test and that of the western blot data, by non-parametric

Mann–Whitney U-test. In all cases, values of p < 0.05 were

considered statistically significant.

Results

OSM, but not LIF-induced neuroprotection against
excitotoxicity is dependent on neuronal A1Rs
Treatment with various concentrations of glutamate (20 up to
200 lM) for 1 h caused a concentration-dependent cell death
in cultured embryonic cortical neurons that was abolished by
the NMDA receptor antagonist dizocilpine, as described
earlier (Figure S1; Biber et al. 2008). Pre-treatment with
OSM or LIF (0.1, 1, and 10 ng/mL for 24 h) alone had no
effect on neuronal viability but significantly protected
neurons against toxicity induced by glutamate (50 lM for
1 h) (Figure S2a). Subsequently, the effect of OSM (1 ng/
mL) and LIF (10 ng/mL) treatment on neuronal survival was
tested over various time periods (1, 2, 4, 8, 12, and 24 h)
(Figures S2b and c). In addition, pre-treatment with OSM
(1 ng/mL) or LIF (10 ng/mL) for 24 h showed a reduced
caspase 3 activation and reduced propidium iodide uptake in
MAP2-positive neurons subjected to glutamate toxicity
(50 lM for 1 h) (Figure S3a and b).

� 2010 The Authors
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Inhibition of A1R activity in embryonic cortical neurons
by DPCPX abolishes the neuroprotective function of IL-6
(Biber et al. 2008). Indeed, pre-incubation with DPCPX
(100 nM for 15 min before glutamate) completely abolished
the neuroprotective effects of OSM (1 ng/mL for 24 h)
(Fig. 1a), but left neuroprotection by LIF unaffected (10 ng/
mL for 24 h) (Fig. 1b). DPCPX alone, however, did not
influence glutamate-induced neurotoxicity (Fig. 1a and b).

Neuroprotection against glutamate toxicity induced by
OSM, but not LIF, is enhanced by the A1R agonist, CPA
We have previously shown that treatment of embryonic
cortical neurons with the A1R agonist, CPA alone did not
affect glutamate toxicity, but that neuroprotection induced by

IL-6 was further enhanced by CPA (Biber et al. 2008).
Similarly, we now describe that CPA (100 nM for 15 min
before glutamate) significantly enhanced the neuroprotective
effect of OSM against glutamate (50 lM for 1 h), but it did
not affect neuronal survival in the absence of OSM treatment
(Fig. 1c). In contrast, LIF-induced neuroprotection was not
affected by CPA (Fig. 1d). In accordance with the survival
experiments, CPA (100 nM for 30 min) alone did not affect
the glutamate mediated calcium transients in cultured cortical
neurons (Figure S4c). Whereas, in neurons pre-treated with
OSM (1 ng/mL for 24 h), CPA not only delayed the influx of
calcium, but also decreased the rate of calcium entry
(Figure S4d).

OSM, but not LIF, enhances A1R expression in cultured
cortical neurons
Interleukin-6 treatment enhances A1R expression in neurons
(Biber et al. 2008). We here investigated whether treatment
with OSM (1 ng/mL) or LIF (10 ng/mL) for various time
periods (1, 2, 4, 8, 12, and 24 h) has a similar effect in
cultured embryonic cortical neurons. Linear regression
analysis of RT-PCR experiments shows a time-dependent
increase in the A1R mRNA expression, when normalized to
GAPDH (Fig. 2a; R2 = 0.402, p < 0.001, n = 3) and to
rpL32A (Figure S5; R2 = 0.284, p = 0.005, n = 3), in neu-
rons treated with OSM, with an effect already apparent after
1 h of incubation. In addition, western blot analysis confirms
this since treatment with OSM (1 ng/mL for 24 h) signifi-
cantly (p < 0.05; n = 3) increased A1R protein expression
compared with the non-treated control (Fig. 2b). LIF treat-
ment, however, did not influence A1R mRNA or protein
expression in cortical neurons (Fig. 2 and Figure S5).

The protective effect of OSM, but not of LIF, against
glutamate-induced excitotoxicity is lost in A1R)/) neurons
To further evaluate the involvement of A1Rs in OSM-
induced neuroprotection, neuronal cultures were prepared
from A1R)/) mice and data were compared with that
obtained from wild-type mice. Neuronal cultures were
prepared from newborn mice (P0) to allow genotype
confirmation, as well as evaluation of neuroprotection in
distinct brain areas (cortex and hippocampus). Pre-incubation
of wild-type cortical and hippocampal neurons with OSM or
LIF (1 or 10 ng/mL for 24 h) significantly increased their
survival against glutamate toxicity (Fig. 3a and b). As shown
for embryonic neurons, the protective effects of OSM in
neonatal neurons were also abolished by DPCPX (100 nM,
for 15 min before glutamate challenge) (Fig. 3a). Pre-incu-
bation with OSM did not protect against glutamate toxicity in
cultured cortical and hippocampal neurons from A1R)/)
mice (Fig. 3c). In contrast to OSM, DPCPX treatment
(100 nM, added 15 min prior to glutamate challenge) did not
change the protective effect of LIF (Fig. 3b), thus confirming
the findings in embryonic neurons. Consistently, cortical and
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Fig. 1 Effect of A1R antagonist and agonist on oncostatin M (OSM)-

and leukemia inhibitory factor (LIF)-induced neuroprotection against

glutamate toxicity. Primary cortical neurons from wild-type (C57BL/6J)

mice embryo (�E14) were treated with or without OSM (1 ng/mL) (a, c)

and LIF (10 ng/mL) (b, d) for 24 h after 5 days in culture and were

subsequently challenged with glutamate (50 lM) for 1 h. Where indi-

cated, cultures were treated with A1R antagonist, 8-cyclopentyl-1,3-

dipropylxanthine (DPCPX; 100 nM) or agonist, N6-cyclopentyladeno-

sine (CPA; 100 nM) for 15 min prior to glutamate insult. Neuronal

survival was assessed 18 h following the glutamate insult by a color-

imetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) assay. The optical densities were measured at 570 nm with a

630 nm and blank correction. The bars represent mean ± SEM of

three independent experiments; **p < 0.001, *p < 0.05.
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hippocampal neurons from A1R)/) mice were still protected
by LIF pre-treatment (10 ng/mL, for 24 h before glutamate)
(Fig. 3d).

Modulation of A1R-mediated actions on synaptic
transmission by OSM, but not LIF
Since receptors for OSM and LIF are strongly and specifically
expressed in hippocampal principal layers (Rosell et al.
2003), we investigated whether sustained exposure of hippo-
campal slices to OSM or LIF could modify the neuromod-
ulatory actions of A1Rs on synaptic transmission, using
whole-cell recordings of electrically evoked EPSCs from CA1
pyramidal cells. To prevent pre-conditioned responses, the
effects of the selective A1R agonist (CPA, 30 nM) were
investigated in only one neuron per slice, from control and
OSM or LIF(10 ng/mL, for 4 h) treated slices, prepared from
the same hippocampus. Activation of A1Rs is well known to
decrease synaptic transmission in the hippocampus (Sebastião
et al. 1990). Accordingly, CPA (30 nM) inhibited EPSC peak
amplitude by 48 ± 7.7% (n = 4), in control conditions
(Fig. 4). When recording from slices pre-incubated with
OSM, EPSC inhibition by CPAwas significantly increased to
73 ± 6.7% (n = 4, p < 0.05, compared with the effect of CPA
in the absence of OSM). In contrast to OSM, EPSC inhibition
by CPA was not significantly affected (p > 0.05, n = 4 for
each group, comparisons within slices from the same
hippocampus) by pre-exposure to LIF (Fig. 5). Furthermore,
the experiments with LIF incubation served as control for the
possibility that prolonged pre-incubation time (4 h) per se
would be responsible for the potentiation of the inhibition
caused by CPA, observed in slices incubated with OSM but
not in slices incubated with LIF for similar time periods.

OSM potentiates A1R-mediated depression of synaptic
transmission during hypoxia
The consistent increase in the extracellular concentration of
endogenous adenosine that follows hypoxia and the
subsequent A1R-dependent inhibition of synaptic transmis-
sion (Sebastião et al. 2001) are main neuroprotective mech-
anisms in ischemic brain damage and hypoxia (Rudolphi
et al. 1992). We therefore investigated if the OSM-induced
modulation of A1R function could have any functional
impact in hypoxic conditions in pyramidal cells.

In control slices, brief (4 min) hypoxic insult caused a
42 ± 4.8% maximum inhibition of EPSC amplitude (n = 7).
In hippocampal slices previously exposed to OSM (10 ng/
mL, for 4 h), the same hypoxic insult caused a 69 ± 3.4%
EPSC inhibition (Fig. 6a), which was significantly higher
(p < 0.05) than that observed in control slices prepared from
the same hippocampus. The hypoxia-induced depression of
EPSC amplitude and its potentiation by OSM were abolished
upon A1R blockade by DPCPX (50 nM, applied 30 min
before hypoxia induction) (Fig. 7).

Discussion

We have recently provided a possible explanation for IL-6-
mediated neuroprotection. IL-6 treatment (thus gp130
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Fig. 2 Oncostatin M (OSM), but not leukemia inhibitory factor (LIF),

enhances A1R expression in wild-type (C57BL/6J) cortical neurons

in vitro. (a) Real-time PCR analysis of A1R mRNA expression in cul-

tured embryonic (�E14) cortical neurons. Graph shows the relative

expression level of A1R mRNA (normalized to GAPDH) in cultures

incubated with OSM (1 ng/mL) or LIF (10 ng/mL) for 1–24 h, compared

with the non-treated controls. Data presented as mean ± SEM of three

separate experiments, expressed as percentage of the control;

*p < 0.05 (compared with the control); independent samples t-test. (b)

Western blot analysis of A1R protein expression in cultured embryonic

cortical neurons incubated with OSM (1 ng/mL) or LIF (10 ng/mL) for

24 h, compared with the control. Relative optical densiometric values of

A1R proteins are shown in the lower panel. Data is presented as per-

centage of each respective ratio between optical density value of A1R

band intensity and optical density value of the matched b-actin band

intensity (n = 3); CHOA1F – Chinese hamster ovary cells transfected

with full-length A1R gene (positive control for A1R); *p < 0.05.
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homodimer activity) caused an up-regulation of neuronal
A1R expression and function in vitro and in vivo, which was
mandatory for IL-6-dependent neuroprotection (Biber et al.
2008). This hypothesis is corroborated by our findings that
IL-6 does not affect glutamate-induced excitotoxicity in
A1R-deficient neurons (unpublished observations). Notably,
the members of IL-6-type cytokine family often show
overlapping biological properties, because of the shared
usage of gp130 receptor subunits in their signaling cascade
(Taga and Kishimoto 1997; Bauer et al. 2007). We here
investigated the possible role of A1R function in neuropro-
tection and neuromodulation by OSM (OSMr/gp130 hetero-
dimer) and LIF (LIFr/gp130 heterodimer) in hippocampal
slices and in cultured neurons from wild-type and A1R)/)
mice.

Here we describe that pre-treatment for 24 hours with
OSM or LIF attenuates excitotoxicity in cultured neurons
from cortex and hippocampus. These findings reinforce the
idea of a principal neuroprotective effect of IL-6-type
cytokines (see for review: Ransohoff et al. 2002). Since
both cytokines display a comparable efficacy, similar mech-
anisms of action might be expected. However, blocking
neuronal A1R function with a selective antagonist (DPCPX,
100 nM) completely abolishes the neuroprotective effects of
OSM, but leaves LIF-induced neuroprotection unaffected. In
addition, activation of A1R function with CPA (100 nM;
15 min before glutamate) is effective in OSM-treated, but not

in LIF-treated neurons. The difference between OSM and
LIF was also found in cultured cortical and hippocampal
neurons from A1R)/) mice. While the neuroprotective effect
of LIF is preserved in A1R)/) neurons, OSM pre-treatment
does not affect neuronal survival against glutamate toxicity in
the absence of functional adenosine A1Rs. The lack of effects
of CPA and DPCPX in untreated neurons most likely reflects
an insufficient A1R expression level in these cells in vitro.
Whether or not this is because of the culture conditions is not
clear at the moment. However, since in untreated acute slices
both CPA and DPCPX showed effects, it is indicated that in
brain tissue basal A1R expression level is sufficient for
neuroprotection and can be increased by IL-6-type cytokines.

When evaluating consequences for synaptic transmission,
we found that a 4-h pre-treatment with IL-6 potentiates the
A1R-mediated inhibition of synaptic transmission in hippo-
campal slices, an effect that was of particular importance
during short periods of hypoxia (Biber et al. 2008). Here, we
present that OSM, but not LIF, significantly increases A1R-
mediated inhibition of EPSCs. Similarly to IL-6, OSM pre-
treatment also causes a significantly higher drop in EPSCs in
response to a 4-min hypoxic period, which is dependent on
A1R function. Thus, OSM, but not LIF, sensitizes neuronal
A1R-mediated responses, equally to the effects described
earlier for IL-6. It may therefore be concluded that OSM
treatment potentiates the functioning of neuronal A1R,
thereby increasing adenosinergic effects required for inhibi-
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Fig. 3 Oncostatin M (OSM)- and leukemia

inhibitory factor (LIF)-induced neuroprotec-

tion against glutamate toxicity in wild-type

(C57BL/6J) and A1R)/) neurons. Primary

cortical and hippocampal neurons from (a,

b) C57BL/6J and (c, d) A1R)/) mice neo-

nates (P0) were pre-incubated with or with-

out OSM (10 ng/mL for 24 h) (a, c) or LIF

(10 ng/mL for 24 h) (b, d). Where indicated,

the neurons were also pre-incubated with

the A1R antagonist, 8-cyclopentyl-1,3-di-

propylxanthine (DPCPX; 100 nM) for

15 min and were subsequently challenged

with glutamate (100 lM) for 1 h. Neuronal

viability was measured 18 h after the glu-

tamate challenge by lysis-buffer assay. The

bars represent mean ± SEM of three inde-

pendent experiments; **p < 0.001, *p <

0.05.
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tion of synaptic transmission and neuroprotection. Moreover,
real-time PCR and western blot analysis strongly support this
hypothesis as A1R mRNA and protein expression levels are
increased in OSM-treated, but not in LIF-treated neurons.

N
or

m
al

iz
ed

 E
P

S
C

 a
m

pl
itu

de

–10 0 10 20 30 40 50 60 70

0

25

50

75

100

125

150

175

CPA (30 nM)

1, 2

3

4

Control

OSM (10 ng/mL)

Time (min)

0

20

40

60

80

100

OSM (10 ng/mL)

CPA (30 nM) +
_

+

+

%
 E

P
S

C
 in

hi
bi

tio
n 

by
 C

PA

*

3

1

4

2

(a)

(b)

(c)

Fig. 4 Oncostatin M (OSM) potentiates inhibition of synaptic trans-

mission caused by A1R activation. (a) Averaged time-course of

afferent evoked excitatory post-synaptic current (EPSC) peak ampli-

tude changes caused by a 20 min application of the A1R agonist N6-

cyclopentyladenosine (CPA; 30 nM), in control versus OSM (10 ng/mL

for 4 h) treated slices, from the same hippocampus (n = 4). Each point

represents average amplitude of four EPSCs evoked once every 30 s

by electrical stimulation of the Schaffer collaterals; 100% corresponds

to the averaged amplitude calculated for 5–10 EPSCs recorded just

before adding CPA. (b) Superimposed current tracings of EPSCs re-

corded before (1, 2) and 20–30 min after (3, 4) introduction of CPA in

the superfusion medium, in representative control (1, 3) and OSM-

treated (2, 4) cells. Percent of EPSC inhibition corresponds to the

average EPSC decrease 20–30 min after starting CPA application.

Histogram (c) shows percent inhibition of synaptic transmission

(EPSC) caused by the activation of A1Rs was significantly higher in

OSM-treated slices compared with the control; *p < 0.05, paired t-test.

Calibration: 30 ms, 50 pA.

–10 0 10 20 30 40 50 60 70

0

25

50

75

100

125

150

175 Control

LIF (10 ng/mL)

N
or

m
al

iz
ed

 E
P

S
C

 a
m

pl
itu

de

CPA (30 nM)

1, 2

3, 4

Time (min)

3

1

4

2

(a)

(b)

0

20

40

60

80

100

LIF (10 ng/mL)

CPA (30 nM) +
_

+

+

%
 E

P
S

C
 in

hi
bi

tio
n 

by
 C

PA

n.s.

(c)
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synaptic transmission caused by A1R activation. (a) Averaged time-

course of afferent evoked excitatory post-synaptic current (EPSC)

peak amplitude changes caused by a 20 min application of the A1R

agonist N6-cyclopentyladenosine (CPA; 30 nM), in control versus LIF

(10 ng/mL for 4 h) treated slices, from the same hippocampus (n = 4).

Each point represents average amplitude of four EPSCs evoked once
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corresponds to the averaged amplitude calculated for 5–10 EPSCs

recorded just before adding CPA. (b) Superimposed current tracings

of EPSCs recorded before (1, 2) and 20–30 min after (3, 4) intro-

duction of CPA in the superfusion medium, in representative control

(1, 3) and LIF-treated (2, 4) cells. Histogram (c) shows percent inhi-

bition of synaptic transmission (EPSC) caused by activation of A1Rs is

not significantly different between control and LIF-treated slices; n.s.
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Taken together, our findings strongly suggest that two
members of the IL-6-type cytokine family (IL-6 and OSM)
depend on A1R function for their neuroprotective properties,
whereas LIF induces neuroprotection via a different,
unknown, mechanism. However, since both cytokines are
neuroprotective in vitro and may reduce ischemic damage
in vivo (see Suzuki et al. 2009 for review), a further
understanding of their mechanisms of action may provide
new therapeutic possibilities in stroke patients.

Although LIF and OSM are highly related members of the
IL-6 type cytokine family (Jeffery et al. 1993; Nicola et al.
1993) sharing most properties, distinct effects upon activa-
tion of LIF and OSM receptor complexes have been reported.
For example, only OSMr/gp130 heterodimer activation is
able to promote osteoblast differentiation, whereas activation
of both OSMr/gp130 and LIFr/gp130 heterodimers in these
cells inhibited the expression of osteocalcin, a protein
required for bone-building (Malaval et al. 2005). Further-
more, selective roles of OSM and LIF during haematopoiesis
and their effects on the regulation of certain target genes have
been reported (Tanaka et al. 2003; Weiss et al. 2005),
reinforcing the idea that different IL-6-type cytokine receptor
complexes may activate specific signaling cascades.

It is at the moment unclear which signaling pathways are
important for the neuroprotective effects of LIF, OSM, and
IL-6. In our preliminary observations, using blockers for any
of the possibly involved signaling pathways [ERK1/2,
STAT3, PI3K, or nuclear transcription factor-kappa B
(NFjB)], we were not able to identify the different signaling
pathways for the neuroprotective effects of LIF, OSM, and IL-
6 (data not shown). In fact, most of the blockers (toward
ERK1/2, PI3K, or NFjB) completely abolished neuroprotec-
tion by all cytokines; blocking STAT3 partially diminished
cytokine effects, but did not discriminate between OSM and
LIF (data not shown). The reasons for these unexpected
results are not clear, but it became evident that to elucidate
which signaling cascade is related to each cytokine neuro-
protective action, more selective approaches, e.g. RNAi, will
be required. In this context, it would be particularly relevant
to unravel the cellular mechanism(s) by which IL-6 and OSM
regulate A1R expression. It has been shown that the basal as
well as induced expressions of A1Rs are regulated by NFjB
(Jhaveri et al. 2007). Noteworthy, OSM regulates protein
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recorded from control [artificial CSF (aCSF)-treated] and OSM (10 ng/

mL for 4 h) treated slices prepared from the same hippocampus. Each

point represents average amplitude of four EPSCs evoked once every
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sponds to the averaged amplitude calculated for 5–10 EPSCs re-
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oxygenated aCSF (95% O2 and 5% CO2) by aCSF saturated with 95%

N2 and 5% CO2 for 4 min. Maximum inhibition was determined as the

lowest EPSC amplitude recorded for each experiment, at either 6 or

8 min after hypoxia onset. (b) Superimposed current tracings of EP-

SCs recorded before (1, 2) and 8 min after hypoxia (3, 4) was induced,

in representative control (1, 3) and OSM-treated (2, 4) cells. Histogram
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30 ms, 50 pA.
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synthesis, through NFjB activation, in smooth muscle cells
(Nishibe et al. 2001). When subjected to oxidative stress,
these cells show an increase in A1R mRNA that is prevented
by inhibitors of the NFjB (Nie et al. 1998). Incidentally, IL-6
has also been shown to activate NFjB in intestinal cells
(Wang et al. 2003). Therefore, it is likely that increased
expression of A1Rs by OSM and IL-6 is also, at least partially,
regulated by NFjB. Nevertheless, it is irrefutable that
adenosine A1Rs are key players in neuroprotection against
excitotoxicity induced by OSM and IL-6.

It has long been known that neuronal A1R suppress
neuronal activity and glutamatergic transmission, reduce
oxidative stress, minimize metabolic demand thereby
preserving ATP stores, and protect neurons from excitotox-
icity (Schubert et al. 1997). The concept now emerges that

cytokines from various families may utilize A1R to exert
their neuroprotective functions. In the absence of functional
adenosine A1Rs, numerous cytokines, such as IL-6 (Biber
et al. 2008), OSM (present work), chemokine (C–X3–C
motif) ligand 1 (CX3CL1) (Lauro et al. 2008), fail to protect
neurons under excitotoxic conditions. Given the urgent need
for new therapies in neurodegenerative diseases, it is
concluded that a detailed analysis of the intracellular
signaling cascade activated by IL-6 and OSM is not only
important for our molecular understanding of cytokine
biology, but might furthermore provide ideas of cellular
mechanisms by which the expression and function of
neuronal A1Rs can be therapeutically increased.
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Parsons C. G., Stöffler A. and Danysz W. (2007) Memantine: a NMDA
receptor antagonist that improves memory by restoration of
homeostasis in the glutamatergic system – too little activation is
bad, too much is even worse. Neuropharmacology 53(6), 699–723.

Patterson P. H. (1992) The emerging neuropoietic cytokine family: first
CDF/LIF, CNTF and IL-6; next ONC, MGF, GCSF? Curr. Opin.
Neurobiol. 2(1), 94–97.
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