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ABSTRACT

We propose a biologically motivated computational step,
called non-classical receptive field (non-CRF) inhibition, to
improve contour detection in images of natural scenes. We
augment a Gabor energy operator with non-CRF inhibition.
The resulting contour operator responds strongly to isolated
lines, edges, and contours but exhibits a weaker or no re-
sponse to edges that make part of texture. As such, the con-
tour operator is more useful for contour-based object recog-
nition tasks than traditional edge detectors, which do not
make such a distinction. The contour operator consistently
outperforms the Canny edge detector on natural images with
associated ground truth contour maps.

1. INTRODUCTION

One of the problems with contemporary edge detectors is
that they do not make a distinction between isolated edges
and edges originating from a textured region. There is evi-
dence that the human visual system makes such a difference
in its early stages of visual information processing, and that
isolated edges, on one hand, and edges in a group, on the
other hand, are perceived in different ways.

Psychophysical experiments have shown that the per-
ception of an oriented stimulus, such as a line or a contour,
can be influenced by the presence of other such stimuli (dis-
tractors) in its neighborhood, see Fig. 1(a)-(c). There is neu-
rophysiological evidence that the response of orientation-
selective neurons in the visual cortex to an optimal stimulus
(a line or an edge) is reduced when other oriented stimuli
are added to the surrounding [1]. This effect, called non-
classical receptive field (non-CRF) inhibition, is shown by
nearly 80% of all orientation selective cells. In approxi-
mately one third of the cells, the suppression effect depends
on the orientation of the surrounding stimuli, whereas in
40% of the cells the effect is independent of the orientation
of the surrounding stimuli [1].

In this study, we examine more closely what the biolog-
ical utility of such a mechanism would be. Our main hy-
pothesis is that this inhibitory mechanism suppresses edges
which make part of texture, while it does not suppress edges

(a) (b) (c)

Fig. 1. Manifestations of perception modulation by the con-
text. (a) Orientation contrast pop-out: the center stimulus
segregates when surrounded by elements of orthogonal ori-
entation, but it does not “pop out” in a surrounding of par-
allel stimuli. (b) An isolated contour is more salient than a
contour which is surrounded by texture. (c) The perception
of the three legs of the triangle depends on the context in
which the triangle is embedded.

that belong to the contours of objects. We propose two
contour operators based on Gabor energy augmented with
non-CRF inhibition, and compare their performance with
the standard Canny edge detector [2].

2. COMPUTATIONAL MODEL

We briefly summarize the model of non-CRF inhibition in-
troduced elsewhere [3]. We consider two types of inhibi-
tion: (i) anisotropic, in which only responses obtained for
the same preferred orientation as a central response con-
tribute to the suppression, and (ii) isotropic, in which all
responses neurons contribute to the suppression in an equal
way, independently of their preferred orientations.

2.1. Simple and Complex Cells

The spatial summation properties of simple cells can be
modelled by a family of 2-D Gabor functions [4]. A recep-
tive field functiongλ,σ,θ,ϕ(x, y), (x, y) ∈ Ω ⊂ R2, centered
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Fig. 2. (a) Intensity map of a 2-D Gabor function. The
bright ellipse specifies the boundary of the CRF. (b) Non-
CRF inhibition is caused by the surround of the CRF.

in the origin specifies the response to an impulse at point
(x, y) and is defined as follows:

gλ,σ,θ,ϕ(x, y) = e−
x̃2+(γỹ)2

2σ2 cos(2π
x̃

λ
+ ϕ)

x̃ = x cos θ + y sin θ, ỹ = −x sin θ + y cos θ,
(1)

whereγ = 0.5 is the spatial aspect ratio,σ determines the
size of the receptive field, andλ is the preferred wavelength.
The ratioσ/λ determines the spatial frequency bandwidth
and the number of parallel excitatory and inhibitory stripe
zones in the receptive field (Fig. 2(a)). In this paper, we
useσ/λ = 0.56, which corresponds to a bandwidth of
one octave at half-response. The angle parameterθ, θ ∈
[0, π), determines the preferred orientation. The parame-
ter ϕ, ϕ ∈ (−π, π], is a phase offset that determines the
symmetry ofgλ,σ,θ,ϕ(x, y) with respect to the origin. The
responserλ,σ,θ,ϕ(x, y) of a simple cell with a receptive field
function gλ,σ,θ,ϕ(x, y) to an input image with luminance
distributionf(x, y) is computed by convolution:

rλ,σ,θ,ϕ(x, y) = (f ∗ gλ,σ,θ,ϕ)(x, y). (2)

The Gabor energyEλ,σ,θ(x, y) is related to a model of
a complex cell which combines the responsesrλ,σ,θ,0(x, y)
and rλ,σ,θ,−π2 (x, y) of a pair of a symmetric and an anti-
symmetric filter as follows:

Eλ,σ,θ(x, y) =
√
r2
λ,σ,θ,0(x, y) + r2

λ,σ,θ,−π2
(x, y). (3)

In the following, we use the Gabor energiesEλ,σ,θi(x, y)
for a number ofNθ different orientations

θi =
(i− 1)π
Nθ

, i = 1, 2, . . . , Nθ. (4)

2.2. Models of Non-CRF Inhibition

For a given point in the image, an inhibition term is com-
puted by weighted summation of the responses in a ring-
formed area surrounding the CRF centered at the concerned

point (cf. Fig. 2(b)). We use a normalized weighting func-
tion wσ(x, y) defined as follows:

wσ(x, y) =
1

||H(DoGσ)||1
H(DoGσ(x, y)),

H(z) =

{
0 z < 0
z z ≥ 0,

(5)

where ||.||1 denotes theL1 norm, and DoGσ(x, y) is the
following difference of Gaussians:

DoGσ(x, y) =
1

2π(4σ)2
e
− x

2+y2

2(4σ)2 − 1
2πσ2

e−
x2+y2

2σ2 . (6)

2.2.1. Anisotropic inhibition.

We compute a suppression termtAλ,σ,θi(x, y) for each orien-
tationθi as follows:

tAλ,σ,θi(x, y) = (Eλ,σ,θi ∗ wσ)(x, y). (7)

We now introduce a new operatorb̃A,αλ,σ,θi
(x, y) which takes

as its inputs the Gabor energyEλ,σ,θi(x, y) and the inhibi-
tion termtAλ,σ,θi(x, y):

b̃A,αλ,σ,θi
(x, y) = H(Eλ,σ,θi(x, y)− αtAλ,σ,θi(x, y)). (8)

The factorα controls the strength of the suppression exer-
cised by the surround on the Gabor energy operator. Fi-
nally, we introduce the contour detector with anisotropic in-
hibition bA,αλ,σ (x, y), which takes the maximum response of

b̃A,αλ,σ,θi
(x, y) over all orientations:

bA,αλ,σ (x, y) = max{b̃A,αλ,σ,θi
(x, y) | i = 1, . . . , Nθ}, (9)

We also compute an orientation mapΘA(x, y) containing
the orientation for which this maximum response is achieved:

ΘA(x, y) = θk,

k = argmax{b̃A,αλ,σ,θi
(x, y) | i = 1, . . . , Nθ}.

(10)

Fig. 3(c) shows the output of the contour detector on a syn-
thetic input image. Since the suppression effect depends on
the relative orientation of center and surround, we refer to
this type of modulation asanisotropic inhibition.

2.2.2. Isotropic inhibition.

We model isotropic inhibition by computing an inhibition
termtIλ,σ(x, y) that is independent of orientation. First, we

construct an energy map̂Eλ,σ(x, y) with values of maxi-
mum Gabor energy response:

Êλ,σ(x, y) = max{Eλ,σ,θi(x, y) | i = 1, . . . , Nθ}, (11)



(a) (b) (c) (d)

Fig. 3. (a) Synthetic input image. (b) The Gabor energy
operator (according to (11)) responds to lines and edges in-
dependently of the context, i.e., the surrounding in which
these lines and edges are embedded. (c) The operator with
anisotropic inhibition responds selectively to isolated lines
and edges, and lines that are surrounded by a grating of a
different orientation. (d) The operator with isotropic inhibi-
tion responds selectively to isolated lines and edges only.

and an orientation mapΘI(x, y) with the orientation for
which this maximum response is achieved:

ΘI(x, y) = θk,

k = argmax{Eλ,σ,θi(x, y) | i = 1, . . . , Nθ}.
(12)

The inhibition termtIλ,σ(x, y) is computed as follows:

tIλ,σ(x, y) = (Êλ,σ ∗ wσ)(x, y). (13)

Finally, we introduce the contour detector with isotropic in-
hibition bI,αλ,σ(x, y) which takes as its inputs the maximum

energy map̂Eλ,σ(x, y) and the inhibition termtIλ,σ(x, y):

bI,αλ,σ(x, y) = H(Êλ,σ(x, y)− αtIλ,σ(x, y)). (14)

The factorα controls the strength of the inhibition of the
surround on the maximum Gabor energy term. Fig. 3(d)
shows the output of this operator on a synthetic input image.

2.3. Binary Edge Map Construction

Binary edge maps are constructed by the standard procedure
of nonmaxima suppression followed by hysteresis thresh-
olding [2]. From the orientation mapΘI(x, y) (orΘA(x, y))
and corresponding responsebI,αλ,σ(x, y) (or bA,αλ,σ (x, y)) that
specify the normal to the local edge direction and the local
edge strength, respectively, nonmaxima suppression thins
the edges to one-pixel wide candidate contours. The final
binary contour map is computed from the candidates by
hysteresis thresholding. This process involves two thresh-
old valuestl andth, tl < th. Commonly,th is computed
as a quantileth(1− p) of the percentagep of the candidate
pixels that should be retained in the final edge map. We fix
the low threshold valuetl to tl = 0.5th.

We decided for the same post-processing operations as
performed by the Canny edge detector [2] in order to sim-
plify comparison in a later stage.

3. PERFORMANCE EVALUATION

Most state-of-the-art methods that evaluate the performance
of an edge detector use natural images with an associated
ground truth specified by a human [5]. We selected a set of
40 images which depict either man-made objects on tex-
tured background or animals in their natural habitat; for
each image, an associated ground truth binary contour map
was drawn by hand. A pixel is included in the ground truth
if any of the following criteria holds: (i) it is part of the
outline of an object or it belongs to a contour in the inte-
rior of an object; (ii) it makes part of boundaries between
(textured) regions (e.g. sky and grass, water and sky).

3.1. Performance Measure

We describe here briefly the performance measure intro-
duced in [6]. LetEGT andBGT be the set of contour pixels
and background pixels of the ground truth contour image,
respectively, andED andBD be the set of contour pixels
and background pixels of the operator-detected contour im-
age, respectively. The set of correctly detected contour pix-
els isE = ED ∩ EGT. False negatives, i.e. ground-truth
contours missed by the contour detector, are given by the
setEFN = EGT ∩ BD, while false positives (spurious con-
tours) are given by the setEFP = ED ∩ BGT. We define a
performance measureof a contour detector as

P =
card(E)

card(E) + card(EFP) + card(EFN)
, (15)

in which card(X) denotes the number of elements of set
X. Since contours cannot always be detected at exact inte-
ger image coordinates, we consider that a contour pixel is
correctly detected if a corresponding ground truth contour
pixel is present in a5 × 5 square neighborhood centered at
the respective pixel coordinates.

3.2. Experimental Results

We compare the performances of the two contour detectors
with the performance of the Canny edge detector.

The Canny edge detection operator [2] computes a gra-
dient magnitude and direction for each pixel of the filtered
image, and constructs a binary edge map by post-processing
with nonmaxima suppression and hysteresis thresholding.
The gradient magnitude and direction are computed using a
scale-dependent differential geometry operator.

The parameters of the Canny edge detector areσ, the
standard deviation of a Gaussian smoothing kernel, andp,
the percentage of edge pixels that should be retained in the
final edge map. The contour detectors have an additional
parameter,α, which is the texture inhibition factor. The pa-
rameterσ here denotes the standard deviation of the Gaus-
sian envelope of the Gabor function. For the Canny edge



Original Ground truth Canny Contour detector with Contour detector with
image contour map edge map anisotropic inhibition isotropic inhibition

Elephant 2 P = 0.23, σ = 2.4, P = 0.40, σ = 2.4, P = 0.42, σ = 2.0,
p = 10%, α = 1.2, p = 10%, α = 1.0, p = 10%,

eFP = 71%, eFN = 50% eFP = 36%, eFN = 45% eFP = 31%, eFN = 49%

Fig. 4. From left to right: input image, corresponding ground truth contour map, the best contour map obtained with the
Canny edge detector, the contour detector with anisotropic inhibition, and the contour detector with isotropic inhibition.

detector, we used eight scales withσ ranging from1.0 to
2.4. For the contour detectors, we used four scales covering
the same domain withσ ranging from1.2 to 2.4, and two
texture attenuation factors,α = 1.0 andα = 1.2. For all
methods, we applied five high hysteresis threshold values,
based onp ranging fromp = 50% to p = 10%. In total, we
used 40 parameter combinations for each of the methods.
We choseNθ = 12.

For similar values ofσ andp, the contour maps deliv-
ered by the contour operators had better performance (up to
a factor of two) than Canny’s edge maps for all 40 images.
This is mostly due to a reduced percentage of false positives,
which is in agreement with the proposed model: edges re-
sulting from a texture background (false positives) are sup-
pressed, and object contours are retained. Fig. 4 shows the
best performance edge maps for one of our test images.

4. DISCUSSION

Inhibition mechanisms have been applied previously to bio-
logically motivated edge detectors in order to improve cer-
tain aspects of their function. A symmetric Gabor filter,
will, for instance, respond not only along a line but also
alongside the line at a certain distance from it. Similarly,
the largest response of an antisymmetric Gabor filter to a
line will be displaced from the line. In [7], various in-
hibition mechanisms have been proposed to remove these
flanking responses. These works differ from the current
work in two major aspects. First, the inhibition mechanisms
act within the CRF. Second, the purpose of the inhibition
is quite different: it deals with the removal of flanking re-
sponses, rather than with the suppression of texture edges.

The isotropic inhibition can be applied as an additional
processing step to most edge detectors. More specifically,
it can be added to the Canny edge detector as an interme-
diate step between the gradient computation and the edge
thinning and binarization [6]. With this modification, the
Canny algorithm becomes similar to the contour operator

with isotropic inhibition presented above.
In summary, in this work we have shown that the (bi-

ologically inspired) non-CRF inhibition is a useful compu-
tational mechanism which reflects well human perception,
and which can substantially improve the performance of
contour detectors.
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