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The adenosinergic system

General aspects

Adenosine and ATP belong to a group of molecules, called purines, which have
similar molecular structure. Purines are important constituents of living cells, for
example adenine and guanine are basic components of nucleic acids. 
ATP is the universal “currency” of free energy in the cell, acting as a energy donor
in most cellular activities. Besides their role in energy transfer, purines also
function as important intercellular signaling molecules [65]. When cells use
energy, ATP is hydrolyzed into ADP, AMP and finally into adenosine. Under
physiological conditions the production and consumption of energy are balanced
and the amount of intracellular adenosine is tightly regulated. Since under
physiological conditions ATP concentrations in the cell are high (about 3 mM),
adenosine concentrations rise sharply if a small amount of ATP is metabolized.
Thus, in situations where cells are impaired in their ability to synthesize ATP, the
levels of intracellular adenosine will therefore increase rapidly. 
Adenosine is transported passively across the cell membrane by facilitated
diffusion transporters, which equilibrate the concentration of extra- and
intracellular adenosine. Rising intracellular levels of adenosine will thus lead to
the release of adenosine, Under basal conditions the concentration of extra-
cellular adenosine in all biological fluids is estimated at 30-300 nM, but as a
result of decreased energy supply or increased metabolic activity the concen-
tration can rise to 10 µM or higher [86, 178, 189]. Another source of adenosine is
the extracellular breakdown of ATP by ecto-nucleotidases, but this has been
suggested to be a minor contributor to the amount of extracellular adenosine
[65].
The two main mechanisms responsible for the clearing of adenosine from the
extracellular space are transformation into inosine by adenosine deaminase or by
reuptake into cells, which occurs by facilitated diffusion or by active transport
[43, 65]. 
The breakdown rate of adenosine in the extracellular space is very high due to the
high expression of the appropriate enzymes. Thus the extracellular concen-
trations of adenosine can rise and decrease rapidly, which makes adenosine an
ideal signaling molecule. Figure 1.1 describes pathways of adenosine release,
production and degradation and the enzymes involved.

Purinoreceptors

Purinoreceptors have been subdivided into P1 receptors, which bind adenosine as
natural ligand and P2 receptors which can bind ATP, ADP, adenine dinucleotides
but also pyrimidines like UTP and UDP [32]. P1 or adenosine receptors have
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initially been divided in two subtypes. This classification between A1 and A2 was
based on their effect on cAMP [219]. Currently, the adenosine receptor family
contains the four subtypes, A1, A2A, A2B and A3, which all couple to G-proteins
and have the typical seven-transmembrane structure as shown in figure 1.2 [85].
Originally it was reported that adenosine A1 and A3 interact primarily with Gi-
proteins and induce inhibition of adenylyl cyclase whereas adenosine A2A and A2B

receptors couple preferentially to Gs-proteins and thus stimulate adenylyl cyclase
and increase cAMP levels [86, 152, 218]. Adenosine receptors, however, have also
been reported to interact with other G-proteins and signal through various other
pathways, independent of adenylyl cyclase, as reviewed recently [189]. In table
1.1 an overview of the second messenger pathways induced by adenosine
receptors has been provided. Several reviews addressing the structure,
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classification and pharmacology of adenosine receptors have been published [2,
86, 152, 153, 157, 201].
P2 receptors are divided in a family of ligand gated ion channels, P2X receptors
and G-protein coupled receptors termed P2Y receptors. Several subtypes of both
families have been cloned and characterized [170]. 

Physiological functions of adenosine in the periphery

In situations of increased energy use or a decreased energy supply the consumption
of ATP overrides its’generation. As a result the balance is shifted towards higher
levels of adenosine, which is rapidly released from the cell. The resulting
increased extracellular levels of adenosine and the subsequent stimulation of cell-
surface adenosine receptors will generally result in an inhibition of the cell
metabolism (Figure 1.3). Thus adenosine-based phosphate metabolism provides a
very basic feedback system linking energy demand to energy supply, which
controls the metabolic rate in order to prevent energy depletion and subsequent
cellular damage [58, 65, 98, 157]. 
Already since 1929, when adenosine was described to be involved in cardiovascu-
lar regulation [61], extensive research on the many physiological functions of
adenosine has been performed [22, 63, 111, 202, 230].
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In keeping with the already mentioned role of adenosine, coupling energy
consumption to energy demand, adenosine receptors are distributed in almost all
biological tissues and in many different species [147, 172, 173]. Although
adenosine may have different actions depending on cell type, the ultimate result
of the action is the control of metabolic rate. Thus, adenosine has several actions,
which directly modulate energy supply. Adenosine induces relaxation of vascular
smooth muscle cells causing vasodilatation, thereby increasing blood flow. In the
kidney, adenosine causes vasoconstriction thus reducing renal blood flow and
indirectly regulating blood pressure [100, 231]. Adenosine plays a role in the
modulation of cardiac and respiratory function as well [144, 198, 208]. For
example, adenosine is involved in hypoxia-induced angiogenesis, thereby
counteracting the effects of a reduced energy supply [135]. In addition, adenosine
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Table 1.1. Overview of G-protein coupling and second messenger signaling of adenosine
receptors. (Adapted from refs 86, 189).

adenosine G-protein effects of MAPK signaling pathway  
receptor G-protein coupling subtype
subtype

A1 Gi1/2/3 cAMP ERK1/2 Gi/0 > βγ > Tyr kinasea >
IP3/DAG (PLC) P13K> MEK1
Arachidonate (PLA2)
choline, DAG (PLD)
K+ channels
Q,P, N type Ca2+ channels

G0

A2A Gs cAMP ERK1/2 Gs > cAMP > PKA > Rap1b

Golf cAMP > B-Raf > MEK1
G15/16 IP3 ERK1/2 Gαs > cAMP > PKA > Src >

Ras

A2B Gs cAMP ERK1/2 Gs > cAMP > P13K> MEK1
Gq/11 IP3/DAG (PLC) p38 Gs > cAMP > PKA

A3 Gi2/3 cAMP ERK1/2 Gi/0 > βγ > P13K> Ras >
IP3/DAG (PLC) MEK1
choline, DAG (PLD)
K+ -ATP channels
Cl- channels

Gq/11 IP3/DAG (PLC)

←←

←

←
←
←

←←

←
←
←
←

←
←

←
←

←
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Figure 1.3. The adenosinergic system forms a negative feedback loop to regulate cell metabolism.
Adenosine levels rise in cases of excessive energy use. Adenosine is transported out of the cell,
binding to adenosine receptors on the surface. Activation of adenosine receptors slows down
energy usage, which will eventually result in reduced formation of adenosine.

Table 1.2. Overview of physiological systems/pathological conditions in which adenosine plays a
role.

physiological system/pathology references

central nervous system [65, 175, 202]
sleep [17, 168, 169]
circadian rhythm [69]
anxiety [82, 110]
drugs of abuse induced actions [64, 203]
pain modulation [110, 166, 184, 185]
cardiac system [14, 144, 154, 208] 
blood flow [58, 164, 208]
angiogenesis [62, 94, 135, 136]
platelet aggregation [126, 183]
respiratory system [95, 198]
mast cell degranulation, asthma [83, 125]
immune system [47, 126]
kidney [42, 100]
gastrointestinal tract [177]
lipolysis [103, 186, 212]
cell growth, proliferation [33]
apoptosis [4, 151]
embryogenesis [119]



is involved in several other physiological functions, which are not directly linked
to energy control. Adenosine is known to mediate anti-inflammatory effects,
which could protect tissues from damage [77, 126, 204]. Furthermore, adenosine
is involved in platelet aggregation, gastrointestinal mobility, mast cell
degranulation, pain modulation, induction of sleep, cell growth, proliferation and
apoptosis. In table 1.2 an overview of all the different functions in which
adenosine plays a role has been provided. 

Physiological functions of adenosine in the nervous system

Generally the brain consumes approximately 20% of our total energy.
Consequently, the brain is very vulnerable to fluctuations in energy supply. In
this respect adenosine plays an important role by coupling energy use to energy
demand. Large amounts of adenosine are produced and released during
conditions of increased energy use such as high neuronal activity during seizures,
or under conditions of reduced energy supply like in ischemia or hypoglycemia.
[180]. Stimulation of cell surface adenosine receptors in the brain, that are mainly
of the A1 subtype, protects neurons by retaining neuronal firing and inhibiting
the release of excitatory neurotransmitters, including glutamate [202]. These
actions are primarily described for neurons in the brain but adenosine seems to
exert similar effects in the spinal cord [56].
Whereas under pathological conditions adenosine is neuroprotective, under
physiological conditions adenosine acts as a neuromodulator by regulating a
general inhibitory tone in the brain. This neuromodulatory role at the synapse
level is mediated by stimulation of inhibitory A1 receptors and facilitatory A2A

receptors [48, 231].
Besides neuromodulatory and neuroprotective effects, adenosine also induces
trophic effects in neurons and glia cells. Adenosine stimulates neurite outgrowth
[36], increases glia cell proliferation and promotes myelination [200]. These
actions are more extensively reviewed in chapter 2. 

Adenosine is also involved in other functions in the central nervous system. For
instance adenosine is known to induce sleep [168], which explains the activating
properties of the unspecific adenosine antagonist caffeine [87]. There is some
evidence that adenosine may play a role in the effects of drug abuse, since opiates,
benzodiazepines as well as ethanol inhibit adenosine reuptake [65]. Since
adenosine is known to have analgesic effects [66, 110], it has been suggested that
analgesic effects of for example morphine are actually caused by its effect on
adenosine  [63, 64, 203].
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Functions of different adenosine receptors in the nervous system

Although adenosine receptors are found throughout the brain, their expression
varies in specific brain regions [55, 175] (Figure 1.4). The specific expression
pattern of the different receptor subtypes is related to their specific functions. The
functions of adenosine receptors have been analyzed by using selective adenosine
receptor antagonists and by the generation of mouse strains with targeted
deletions of adenosine A1, A2A and A3 receptor subtypes [110, 124, 149, 235].

Adenosine A1 receptors
Adenosine A1 receptors are clearly involved in neuroprotection. These receptors
are found throughout the brain, but show especially high expression in vulnerable
areas like for example the hippocampus. Adenosine A1 receptors are found both
pre- and postsynaptically in neurons, where they play an important role in
inhibiting the release of excitatory neurotransmitters and inducing hyper-
polarization respectively. Thus presynaptically, adenosine inhibits the release of
the excitotoxic neurotransmitters glutamate, probably through the inhibition of
Ca2+-influx [63, 65, 70]. Postsynaptically, adenosine counteracts depolarization
by stabilization of the Mg2+ blockade of NMDA receptors [178, 181]. Adenosine
also actively reduces postsynaptic Ca2+-influx, probably by an inhibition of N-
type voltage-dependent Ca2+-channels [60, 129, 148, 159, 195, 210]. Moreover,
stimulation of adenosine A1 receptors causes hyperpolarization of the postsynaptic
resting membrane potential via G-protein-dependent activation of inwardly
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rectifying K+-channels (GIRKs) [160, 214]. In addition, adenosine A1 receptor
stimulation enhances a calcium-dependent potassium current, in much the same
way as GABAB receptor stimulation, although different G-proteins might be
involved [90, 98].

Adenosine A2A receptors
In general adenosine A2A receptors are involved in the facilitation of neuronal
firing. In close interaction with adenosine A1 receptors they modulate synapse
function. Although A2A receptors have been found in all brain regions they are
particularly expressed in the nucleus accumbens, olfactory tubercle and striatum,
where they are co-localized with dopamine D2 receptors [88, 122, 143, 155, 170].
It has been shown that antagonistic interactions between adenosine A2A and
dopamine D2 receptors and also between adenosine A1 and dopamine D1

receptors are partly responsible for the motor stimulant effects of adenosine
receptor antagonists like caffeine [88]. Furthermore, involvement of adenosine
A2A receptors in locomotion, anxiety, aggression, motivation and reward in drug
addiction and psychotic-like behavior have been suggested [37, 39,124,143].
Most of these functions have been revealed using adenosine A2A receptor knock
out mice. [37, 38, 52, 143].
Adenosine A2A receptors are also involved in the control of cerebral blood flow
[58, 170].

Adenosine A2B receptors
Adenosine A2B receptors have been found in most tissues but are generally
expressed at low levels. Low expression levels were also found throughout the
brain [59]. Since selective ligands for the adenosine A2B subtype are lacking, and
no A2B knock mouse has been generated yet, less is known on its physiological
role. It has been suggested that A2B receptors play a role in vascularization and
control of cerebral blood flow [93, 170, 193]. Stimulation of A2B receptors has
been shown to induce release of vascular endothelial growth factor in both
peripheral and cerebral endothelial cells [73, 78, 93, 94]. There are indications
that A2B receptors are involved in neuroexcitatory actions and that stimulation of
these receptors would aggravate tissue injury [72]. A2B receptors are also
expressed in glia cells where they have been shown to induce release of
interleukin-6 [76, 191].

Adenosine A3 receptors
Adenosine A3 receptors are widely distributed in the brain, but its physiological
role is largely unknown [170]. Adenosine A3 receptors mediate inhibition of
synaptic transmission in neurons in concert with A1 receptors [31] and they play
a role in modulating synaptic plasticity [46]. More extensive research on the role
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of the A3 receptor in the brain has been done by the group of Von Lubitz [224,
226-228]. Von Lubitz and colleagues showed that stimulation of A3 receptors
induces apoptosis of brain tissue and they therefore suggested that the A3

receptor acts as a “death receptor”. Inducing apoptosis of badly damaged neurons
in stroke would be beneficial since it would limit neuroinflammation and infarct
size [228]. 
In contrast, stimulation of the A3 receptor with low concentrations of adenosine
seems to induce neuroprotective effects [3, 4, 71, 106]. These seemingly
conflicting actions do have physiological significance. High levels of adenosine in
the core area of an ischemic insult would induce apoptosis through action of A3

receptors, while in the surrounding brain tissue lower adenosine levels exert
neuroprotective effects mediated by the same receptors. Furthermore, several
reports indicate that adenosine A3 receptor stimulation in glia cells leads to
neuroprotection by inducing cytoskeleton rearrangement [1, 5].

The four different adenosine receptor subtypes have a different affinity for
adenosine. Whereas A1 and A2A receptors have relatively high (nanomolar range)
affinities for adenosine, A2B and A3 receptors have a much lower affinity and are
only activated at micromolar concentrations [65]. These differences in affinity
may reflect functional significance. Thus different receptors with different
functional responses are activated by varying extracellular concentrations of
adenosine. Moreover, adenosine at varying concentrations not only activates
different receptor subtypes, but also induces multiple, sometimes even opposite
effects by activation of the same receptor subtype. These observations show that
the adenosinergic system regulates a complex interplay of biological activities. 

Adenosine in pathology and therapy

Adenosine-based treatment of disorders

Since adenosine is involved in many physiological functions, drugs that interact
with the adenosinergic system (so called “adenosine-based drugs”) could be
developed to treat a variety of pathological conditions. But at the same time these
adenosine-based drugs cause serious side effects because adenosine receptors are
so widely distributed. This explains why presently only very few adenosine-based
drugs are used in the clinic, even though extensive research on the physiological
roles of adenosine has been done since 1929 [61].
Currently, adenosine is only therapeutically used as intravenous application to
treat patients suffering from supraventricular tachycardias (see [176] and
www.adenocard.com). Adenosine-based treatment of other disorders is still at an
early stage of investigation. 
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High levels of extracellular adenosine have been associated with the
pathophysiology of lung diseases [24]. Adenosine A2B and A3 receptors play a
role in adenosine-induced mast cell degranulation and bronchoconstriction and
have therefore been associated with the pathophysiology of asthma [74, 171, 185,
236]. In order to block adenosine-induced bronchoconstriction asthmatic patients
use theophylline, a non-specific adenosine antagonist [72].  High doses of
theophylline, however, can lead to seizure activity, so more specific adenosine
receptor antagonists, which show fewer side effects are preferable. Since specific
antagonists for A2B receptors are not available, currently only adenosine A3

antagonists are under investigation as possible anti-asthmatic drugs [75, 83,
197].
It has been reported that adenosine and adenosine analogues induce apoptosis in
various types of tumor cells [13, 35, 115, 139, 188]. Furthermore, it has been
reported that particularly adenosine A3 receptors are beneficial in the treatment
of cancer [79, 140, 151]. In addition to inducing apoptosis in tumor cells,
stimulation of adenosine A3 receptors protects tissue from damage by chemo-
therapy and induces the release of granulocyte colony-stimulating factor (G-CSF)
which stimulates the proliferation of bone marrow cells [16, 80]. Currently, 2-
chlorodeoxyadenosine is tested in clinical trials for the treatment of glioma (see
www.clinicaltrials.gov). 
Adenosine is also known to mediate anti-inflammatory effects, like suppression
of phagocytosis and reduction of free radical generation, which could protect
tissues from damage [77, 101, 126, 204]. 

Adenosine and the treatment of neurological diseases

It is well established that adenosine induces neuroprotective activity in the brain
[53, 111, 178, 202]. These effects of adenosine might have significant therapeutic
potential in acute brain injuries like brain trauma and stroke, but also in a wide
range of chronic neurological diseases including seizures, Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease and multiple sclerosis [10, 27, 65, 175,
179, 216, 230].
Before considering possible pharmacological tools to manipulate the adeno-
sinergic system it is important to realize that prolonged stimulation of adenosine
receptors leads to receptor desensitization. This process involves uncoupling of
the activated receptor from its G-protein by receptor phosphorylation mediated
by G-protein kinases (GRK’s). Internalization of receptors into intracellular
compartments may also occur [28]. Ligand stimulation for hours to days causes
receptor down regulation. In this case degradation of receptors leads to a decrease
in actual receptor number.
Desensitization of adenosine A1 receptors in several tissues including brain,
requires exposure to agonist for at least 15 minutes to hours or even days, while
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adenosine A3 receptors in astrocytes undergo significant desensitization already
after several minutes after stimulation [44, 170, 213]. Long-term stimulation of
adenosine receptors with antagonists generally leads to an increase in receptor
number [170]. 
Stimulation of adenosine A1 receptors as well as inhibition of adenosine A2A

receptors reduces neuronal damage when administered acutely [51]. Accordingly,
mice lacking adenosine A2A receptors show less neuronal damage in ischaemia
models [30, 38]. Surprisingly, it has also been reported that chronic stimulation
of adenosine A1 receptors or chronic inhibition of adenosine A2A receptors,
aggravates neuronal damage [53, 107].  These contradictory results, a phenomenon
called “effect inversion”, may be caused by desensitization and up-regulation of
adenosine receptors due to the chronic agonists and antagonists treatment,
respectively [53, 107]. 

Possible pharmacological approaches to increase the neuroprotective effects of
adenosine
It is clear that the adenosinergic system is important to maintain a healthy
nervous system. It may thus be attractive to evaluate therapeutic approaches to
several neurological diseases based on the adenosinergic system. Several
pharmacological approaches to manipulate the adenosinergic system are available
and can be divided in two categories: synthetic adenosine derivatives that directly
stimulate adenosine receptors or factors that indirectly increase the effectiveness
of endogenous adenosine. Table 1.3 shows a summary of neuroprotective effects
of different pharmacological approaches in various models of brain pathology. 

STIMULATION OF ADENOSINE RECEPTORS

Stable synthetic adenosine derivatives that can cross the blood-brain barrier make
much better candidates for clinical use than adenosine, which is instantly degraded.
For clinical use it is also mandatory that these compounds are effective even
when administered hours after the pathological event, e.g. stroke. The adenosine
A1 agonists CHA and R-PIA and the adenosine-amine congener ADAC showed
neuroprotective effects 30 minutes to several hours after cerebral ischaemia [108,
130, 225].
However, due to the widespread distribution of adenosine receptors throughout
the body, especially the A1 subtype, peripheral side effects often occur when
using adenosine A1 receptor agonists [202]. This could be prevented by using
adenosine A2A receptor antagonists, which have less effect on heart rate and
blood pressure than adenosine A1 receptor agonists [202]. 
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Experimental model Drug Mechanism Effect refs

Kainic acid injection in hippocampus adenosine agonist protection [133]
Kainic acid induced toxicity 2-CA agonist protection [11]
rat hippocampal cell culture CPA A1 agonist protection [142]   

cell injury
vessel occlusion in rats (forebrain R-PIA A1 agonist protection [26]

ischaemia)/ KA induced seizures
carotid artery occlusion in gerbils ADAC A1 agonist protection [223]

hypoxia, ischaemia
carotid artery ligation in newborn rats PD 81,273 allosteric enhancer protection [99]

hypoxia, ischaemia of A1 receptor binding 
hyperglycemic cerebral ischaemia PD 81,273 allosteric enhancer protection [138] 

of A1 receptor binding
preconditioning MCA occlusion followed DPCPX A1 antagonist reduction of  [146]

by longer MCA occlusion protective effect
hypoxia, ischaemia of preconditioning

quinolic acid injection# combined with SCH 58261 A2A antagonist protection [19]
free radicals (xanthine) in hippocampus ZM 241358

β-amyloid toxicity in cultured rat neurons caffeine antagonist protection [51]
ZM 241358 A2A antagonist

carotid artery occlusion in newborn rats theofylline antagonist protection [30]
hypoxia, ischaemia SCH 58261 A2A antagonist              

quinolic acid induced neurotoxicity# SCH 58261 A2A antagonist protection [167]
MPTP induced neurotoxicity* SCH 58261 A2A antagonist protection [40]
MPTP induced neurotoxicity* KW-6002 A2A antagonist protection [104]
MCA occlusion in rats                       GP683 adenosine kinase protection [211]

hypoxia, ischaemia inhibitor
MCA occlusion in rats 5’d-5IT adenosine kinase protection [109]

hypoxia, ischaemia inhibitor
cell death by stimulation with               propentofylline adenosine uptake protection [81]

macrophage/microglial products inhibitor
carotid artery occlusion                         propentofylline adenosine uptake increased cerebral [217]

hypoxia, ischaemia inhibitor blood flow
subclavian and brachiocephalic artery NBTI adenosine uptake protection against [91]

occlusion. ischaemia inhibitor reperfusion injury
bilateral artery occlusion in gerbils deoxyco- adenosine deaminase protection [165]

ischaemia formycin inhibitor

# animal model for Huntington’s disease, * animal model for Parkinson’s disease. 2-CA = 2-chloroadenosine,
CPA= N6- cyclopentyladenosine, R-PIA = R- N6-phenylisopropyladenosine, ADAC = adenosine amine
congener, PD 81,273 = a 2-amino-3-benzylthiophene(no details given in paper), DPCPX = 8-cyclopentyl-1,3-
dipropylxanthine, SCH 58261 = 7-(2-phenylethyl)-5-amino-2-(2-furyl)pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-
c]pyrimidine, ZM 241358 = 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}{1,3,5}triazin-5-yl-
amino]ethyl)phenol, KW-6002 = (E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-
2,6-dione, GP 683 = 4-(N-phenylamino)-5-phenyl-7-(5’-deoxy β- D-ribofurasonyl)pyrrolo[2,3-d]pyrimidine,
5’d-5IT = 5’-deoxy-5-iodotubercidin, NBTI = nitrobenzylthioinosine, KA = kainic acid. 



INCREASING THE EFFECTIVENESS OF ENDOGENOUS ADENOSINE

Compounds that increase the effectiveness of endogenous adenosine will only
enhance effects at sites of high extracellular adenosine levels. Presumably, this
approach would induce tissue/region-specific effects without much peripheral
side effects. Inhibition of enzymes that metabolize adenosine, like adenosine
deaminase or adenosine kinase have been shown to increase the neuroprotective
effects of adenosine [53, 109, 165]. The extracellular concentration of adenosine
can also be increased by inhibition of adenosine reuptake [81]. Yet another
approach to increase the effectiveness of adenosine is the use of factors, so-called
allosteric enhancers, that do not activate the adenosine receptor itself but
enhance the binding of endogenous adenosine to the receptor [99].

Alzheimer’s disease
It has been suggested that chronic neurological diseases as well as acute brain
injuries could be treated with trophic factors like nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor
(GDNF). However, poor penetration of the blood-brain barrier and the
occurrence of side effects limits the use of exogenous application of these factors.
Therefore stimulating the local production of trophic factors seems a more
attractive approach [43].
Two synthetic purine derivatives, propentofylline and AIT-082, are currently
under evaluation in clinical trials for the treatment of Alzheimer’s disease. Both
compounds have been shown in vivo to increase the mRNA expression for NGF,
neurotrophin-3 and basic fibroblast growth factor (bFGF) in vivo. As NGF is
considered to protect cholinergic neurons, which degenerate in Alzheimer’s
disease, it has been suggested that propentofylline and AIT-082 might have a
neuroprotective effect in Alzheimer’s disease [43, 57, 96, 118].
Propentofylline acts as an adenosine uptake inhibitor thereby maintaining high
concentrations of adenosine in the extracellular space. Furthermore, it has been
demonstrated that propentofylline stimulates the production of NGF in cultured
mouse astrocytes [194]. In addition, the capacity of propentofylline to improve
cerebral blood flow presumably also contributes to its’ neuroprotective effect [43,
217]. It is not yet known whether propentofylline has been successful in clinical
trials since the pharmaceutical company involved is reluctant to publish the
results. A meta-analysis of clinical trial results published so far, did not show any
beneficial effect of propentofylline in patients with Alzheimer’s disease [84].
AIT-082 is under evaluation in clinical trials as a memory-enhancing agent since it
increases NGF release from glia cells, it enhances NGF induced neurite outgrowth
in a neuron-like cell line and it protects neuronal tissue from damage in vivo [57,
141, 174]. The mechanism of AIT-082-induced protection remains to be elu-
cidated, but it has been suggested that AIT-082 increases the release of adenosine
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from astrocytes. First clinical trials have been performed with AIT-082, now
renamed as NeotrofinTM, to investigate pharmacokinetics and tolerability [96]. 

Parkinson’s disease
Parkinson’s disease is caused by degeneration of dopaminergic neurons in the
substantia nigra that innervate the striatum. The subsequent decreased levels of
dopamine in the striatum lead to a disturbed regulation of motor behavior causing
the symptoms typically observed in Parkinson’s disease. In the striatum dopamine
D2 receptors are co-localized with adenosine A2A receptors whereas dopamine D1

receptors are in close proximity of adenosine A1 receptors. Through a system of
receptor cross talk, adenosine counteracts the actions of the neuro-transmitter
dopamine. Whereas stimulation with dopamine or other dopamine D2 receptor
agonists enhances motor activity, stimulation of adenosine A2A receptors reduces
this effect [88]. Likewise, stimulation with adenosine A1 receptor agonists
counteracts the enhancing effect of dopamine D1 receptor agonists on motor
behavior. These interactions are probably responsible for the motor stimulant
effects of adenosine receptor antagonists like caffeine. Furthermore, adenosine
A2A receptor antagonists have been reported to attenuate the neurotoxicity
observed in a mouse model of Parkinson’s disease [40, 104]. In addition,
adenosine A2A receptor antagonists were found not only to diminish the
symptoms of Parkinson’s disease but also to potentiate the effect of L-DOPA
[229]. L-DOPA, a dopamine precursor, which is currently used to treat
Parkinson’s disease, shows significant side effects like dyskinesia that are observed
especially in patients that receive high dosages of L-DOPA. If adenosine A2A

receptor antagonists indeed increase the efficacy of L-DOPA, lower doses of L-
DOPA could be used and less side effects would occur [25]. All these findings
suggest that adenosine A2A receptor antagonists could be useful in the treatment
of Parkinson’s disease [192]. Recently, phase II clinical trials of the adenosine A2A

receptor antagonist, KW-6002 (IstradefyllineR) have been performed and showed
relief of Parkinson’s disease motor symptoms without side effects [102, 114, 120].
Phase III clinical trials will start shortly (Schwarzschild, personal communication).

Adenosine A1 receptor expression in pathological events

During seizure activity, cerebral hypoxia and ischemia elevated extracellular
concentrations of adenosine have been found in brain tissue [65, 67]. It has been
assumed that these elevated levels of extracellular adenosine cause endogenous
anticonvulsant activity as well as neuroprotection [66, 178]. Since the main
protective actions of adenosine are mediated via the A1 receptor, it is likely that
the expression level of this receptor has a significant influence on the efficiency of
neuroprotection by adenosine. The study of adenosine A1 receptor expression in
disease is therefore of particular interest. 
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Several conflicting reports addressing the level of adenosine A1 receptor expression
in epilepsy have been published. Some reports show that adenosine A1 receptors are
chronically reduced in epilepsy [65, 92, 150]. Others have found an upregulation
of these receptors [9, 221]. It is thus not clear whether changes in adenosine A1

receptor expression might be a causal factor in the pathophysiology of epilepsy. 
Several reports describe modification of adenosine A1 receptor activity that is
related to the aging process [41, 128]. This modification is most likely due to a
decrease in adenosine A1 receptor expression, which has been observed in aged
rats and mice [49, 50, 68, 156, 196]. 
A reduction of adenosine A1 receptors has also been observed in autopsy and
post-mortem samples of patients with Alzheimer’s disease [112] as well as
dementia with sclerosis type pathology [54].

Glia cells 

Most of the research on adenosine receptors in the brain has been focussed on
neurons. Mechanisms of neuroprotection induced through neuronal adenosine
receptors have been well described. In addition glia cells form a considerable
component of the nervous system and play an important role in for example brain
development, nerve tissue maintenance, modulation of synaptic transmission,
formation of the blood-brain barrier and brain immune function [113]. This thesis
will partly focus on the role of glia cells in adenosine-induced neuroprotection. I
therefore briefly describe here the properties and functions of glia cells.

Microglia

Unlike neurons and astrocytes, microglia are derived from bone-marrow and
migrate to the brain during development. Microglia are the primary
immunocompetent cells of the brain. Under physiological conditions microglia
are resting ramified cells, with many large processes to monitor their
surroundings. If damage in the CNS occurs, microglia become activated, retract
their processes and adapt a round macrophage-like morphology [199]. Microglia
can orchestrate neuroinflammation by producing cytokines and by presenting
antigens. Furthermore microglia can phagocytose both cells and cell debris [7].
Since microglia can produce neurotoxic substances, activation of microglia, so-
called reactive microgliosis has been linked to the pathophysiology of many types
of brain pathology [12, 15, 205]. In addition to their detrimental activity,
microglia can also assume a neurosupportive role by producing neurotrophins
[145, 205, 206]. Whether microglia mediate detrimental or beneficial effects
probably depends on a variety of factors. Indeed it has been shown that adenosine
receptors are involved in the regulation of microglia activation [105]. 
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Astrocytes

Astrocytes are the most abundant cells in the brain; by estimation the number of
neurons in the human brain is outnumbered ten times by astrocytes.  During
early brain development astrocytes form growth tracts to guide the migration of
neurons. In this development phase astrocytes also produce trophic factors thus
supporting neurons in their development. In the adult brain, astrocytes play an
essential role in the maintenance of the nervous system. Astrocytes that surround
glutamatergic synapses regulate the extracellular glutamate concentration by
actively taking up glutamate (Figure 1.5). This mechanism prevents the occurren-
ce of glutamate excitotoxicity [8]. Since the active uptake of glutamate requires a
large amount of energy, it is clear that a balanced cell metabolism in astrocytes
surrounding the synaptic cleft is of the utmost importance. It is likely that besides
their involvement in inhibiting neurotransmitter release from the presynaptic
neuron, adenosine receptors also play an essential role in regulating cell
metabolism in astrocytes surrounding the synaptic cleft. 
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Figure 1.5. Regulation of glutamate concentration in the synaptic cleft by astrocytes.  Glutamate
released presynaptically stimulates glutamate receptors on the postsynaptic neuron leading to
depolarization. Excessive stimulation of glutamate receptors can lead to an increase of the
intracellular Ca2+ concentration, resulting in neuronal damage. Astrocytes control the action of
glutamate by actively taking up glutamate from the synaptic cleft. Glutamate is cotransported with
Na+, leading to an increase of the Na+ concentration in astrocytes. Na+ concentrations in
astrocytes are regulated by the energy consuming Na+/ K+ - ATPase (Adapted from ref 215).



During physiological conditions but also in brain pathology, astrocytes are known
to produce and release neuroprotective substances. Furthermore, astrocytes
constitute an important component of the blood-brain barrier, a structure that
prevents antigens from entering the brain. 

Both astrocytes and microglia fulfill various important roles in regulation of
neuronal function. It is likely that adenosine is widely involved in the molecular
mechanisms underlying the multiple functions of these glia cells [43]. Therefore
part of this thesis is focussed on glial adenosine receptors and their involvement
in glial function is being reviewed in chapter 2. 

Interleukin-6 in the brain

The cytokine interleukin-6 (IL-6), like adenosine is released during
neuropathological conditions and has been shown to mediate neuroprotective
effects. IL-6 belongs to the family of neuropoietic cytokines, which consists of
ciliary neurotrophic factor (CNTF), leukemia inhibiting factor (LIF), oncostatin M
(OSM), cardiotrophin-1 (CT-1), IL-6 and IL-11 [209].
This family of cytokines is involved in several biological functions including
immune responsivity and hematopoiesis [117]. IL-6 does not only elicit its
functions in the peripheral immune system. Since IL-6 is also produced by
neurons, astrocytes and microglia, various additional functions of IL-6 in the
brain have been proposed [21, 97, 182, 187, 220, 233]. Under physiological
conditions IL-6 levels in the brain are very low or undetectable, but during
pathological events like neuroinflammation, ischaemia and seizures, IL-6 levels
rise dramatically [97, 127, 134, 161, 222]. IL-6 mediates contrasting effects in the
brain [89]. IL-6 is involved in the neuroimmune response, causing neuronal
degeneration. Therefore, IL-6 has been associated with the pathophysiology of
neurodegenerative disorders like Alzheimer’s disease [18, 158, 234]. On the
other hand, IL-6 plays a role in neuronal and glial differentiation and survival [89,
97]. Numerous reports show neuroprotective effects of IL-6. In vitro, IL-6 protects
neurons during ischemia or induced excitotoxicity [123, 137, 232]. In vivo, IL-6
shows neuroprotective effects in a number of different animal models [6, 20, 127,
132]. IL-6 deficient mice showed increased neuronal death in animal models like
experimentally induced brain-injury, the MPTP (Parkinson’s disease) model and
after kainic acid-induced seizures [29, 162, 163, 207].
IL-6 elicits effects in CNS cells by binding to the IL-6 receptor, which is asso-
ciated with the transmembrane transduction peptide gp130. Two forms of the IL-
6 receptor have been identified; an extracellular soluble form and a membrane
bound form. Under both conditions the receptor can induce signal transduction
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after binding to gp130 [116]. The gp130-IL6 receptor complex can activate
second messenger pathways involving JAK kinases and homodimerization of
STAT3, which then act on the IL-6 response element to activate gene
transcription leading to protein synthesis [190]. An alternative pathway involves
the RAS/MAPK cascade and the activation of the nuclear factor NF-IL-6 [97]. 
Although the signaling pathway involved in IL-6 action has been described, the
complete signaling cascade leading to the neuroprotective effects of IL-6 is still
largely unknown. IL-6 might have neuroprotective properties due to induction of
other neuroprotective substances since IL-6 has been found to induce the expres-
sion of vascular growth factor, a factor involved in angiogenesis [45]. Furthermore,
IL-6 was found to induce the release of NGF from astrocytes [34, 121, 131].

Aim of the thesis

Adenosine is released during pathological conditions and has significant
neuroprotective effects mainly by stimulating adenosine A1 receptors in neurons.
These neuroprotective effects are increased following upregulation of adenosine
A1 receptors. Much research has been performed to enhance the neuroprotective
effects of adenosine experimentally. Since direct interference with the
adenosinergic system causes side effects, it would be preferable to find ways to
increase the neuroprotective effects of adenosine indirectly, for example by
finding factors that increase adenosine A1 receptor expression.

Like adenosine, the proinflammatory cytokine interleukin-6 (IL-6) is released
during pathological conditions and IL-6 is also known to reduce neuronal damage
and mortality. In contrast to adenosine, however, little is known so far regarding
the mechanism of IL-6 mediated neuroprotection.  Recent findings in vitro have
shown that IL-6 is being released by cultured astrocytes after adenosine receptor
stimulation [76, 191]. Furthermore, it has been shown that stimulation with IL-6
increases the expression of adenosine A1 receptors in nervous tissue, which implies
that the neuroprotective effect of IL-6 might partially be due to upregulation of
adenosine A1 receptors [23]. From these findings we propose a model for inter-
actions between the adenosinergic system and IL-6 (Figure 1.6). 

The aim of the current thesis is to further investigate the interactions between the
adenosinergic system and IL-6 and to check whether IL-6 has an effect on adenosine A1

receptor expression in pathological conditions. 

While the mechanisms of direct adenosine-induced neuroprotection in neurons
are well understood, less is known on putative neuroprotective effects of
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adenosine that are mediated by glia cells. Therefore part of this thesis focuses on
the role of glia cells in adenosine-induced neuroprotection. 
In chapter 2 we have reviewed current knowledge on the neuroprotective sub-
stances that are released by glia cells after adenosine receptor stimulation. In
addition, in chapter 3 we show that the chemokine CCL2 is another factor with
“presumed” neuroprotective effects that is released after stimulation of glial
adenosine receptors.
Most research on receptor pharmacology has been performed on rat and human
adenosine receptors while mouse adenosine receptors have not been fully
characterized. In order to study the adenosinergic system in knock out models in
mice, it was necessary to investigate pharmacological properties of mouse
adenosine receptors. In chapter 4 we therefore present a pharmacological
characterization of the mouse adenosine A1 receptor using functional studies and
radioligand binding assays.
In chapter 5 we have investigated the effect of IL-6 on the regulation of
adenosine A1 receptor expression during seizures. Finally, the results have been
summarized and discussed in chapter 6.
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Figure 1.6. Proposed model of interactions between adenosine and IL-6.
Neuropathological events lead to an increase of extracellular adenosine concentration (1). Adeno-
sine A1 receptors in neurons are stimulated, resulting in membrane hyperpolarization and
inhibition of neurotransmitter release, which will protect neurons (2). Stimulation of adenosine
A2B receptors on glial cells leads to a release of interleukin-6 (3), which will subsequently result
in adenosine A1 receptor upregulation (in neurons) (4) and thereby increasing adenosine’s
neuroprotective effects. Question marks (3,4) indicate that it is not yet known if these
interactions exist in vivo. IL-6 has neuroprotective effects but the mechanisms are unknown (5).
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