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Abstract
Myocardial infarction leads to scar formation and subsequent reduced cardiac performance. 
The ultimate therapy after myocardial infarction would pursue stem cell-based regeneration. 
The aim of stem cell-mediated cardiac repair embodies restoration of cardiac function by 
regeneration of healthy myocardial tissue, which is accomplished by neo-angiogenesis and 
cardiogenesis.
A major reservoir of adult autologous stem cells distal from the heart is the bone marrow. 
Adequate regulation of signaling between the bone marrow, the peripheral circulation 
and the infarcted myocardium is important in orchestrating the process of mobilization, 
homing, incorporation, survival, proliferation and differentiation of stem cells, that leads to 
myocardial regeneration.
In this review, we discuss key signaling factors, including cytokines, chemokines and 
growth factors, which are involved in orchestrating the stem cell driven repair process. 
We focus on signaling factors known for their mobilizing and chemotactic abilities (SDF-1, 
G-CSF,  SCF , IL-8, VEGF), signaling factors that are expressed after myocardial infarction 
involved in the patho-physiological healing process (TNF-α, IL-8, IL-10, HIF-1α, VEGF, G-
CSF) and signaling factors that are involved in cardiogenesis and neo-angiogenesis (VEGF, 
EPO, TGF- β, HGF, HIF-1α, IL-8). 
The future therapeutic application and capacity of secreted factors to modulate tissue 
repair after myocardial infarction relies on the intrinsic potency of factors and on the 
optimal localization and timing of a combination of signaling factors to stimulate stem cells 
in their niche to regenerate the infarcted heart.
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Introduction 
Myocardial infarction leads to adverse remodeling that depresses cardiac function. The 
cardiomyocytes that survive ischemia primarily respond with cellular hypertrophy rather 
than proliferation, due to the limited mitotic capacity of adult cardiomyocytes. Under 
physiological circumstances this limited mitotic capacity restricts the repair of the ischemic 
myocardium leading to replacement by fibrotic tissue, which disrupts proper contractile 
function resulting in decreased cardiac performance. 
One way to intervene in this downward spiral and thereby repair the myocardium is to 
replace fibrotic tissue by healthy myocardial tissue consisting of cardiomyocytes and 
vasculature that forms a syncytium with the spared myocardium. A source for generation 
of myocardial cells is formed by stem cells.  Stem cells are defined as cells capable of self 
renewal and differentiation into various cell types with specialized structure and function. 
Stem cells are regarded as a new opportunity to intervene in degenerative disease of liver, 
brain and heart [1-3]. Although adult stem cells are present in several mature tissues e.g. 
muscle, brain, skin and liver, in this review we focus on bone marrow-derived stem cells 
(BMSC) and cardiac stem cells (CSC). 
The ultimate goal of stem cell-mediated cardiac repair is regeneration of healthy, functionally 
integrated, myocardial tissue. To date, three distinct (experimental) treatment modalities of 
myocardial infarction involving stem cells can be recognized: 1) stem cell transplantation: 
adult stem cells can  be harvested and injected (locally) into the infarcted recipient; 2) 
stem cell mobilization: availability of stem cells for cardiac repair can be augmented by 
enhancing mobilization of stem cells from the bone marrow; and 3) manipulation by local 
factors: stem cells (BMSC and CSC) can be manipulated by altered expression of cytokines 
and growth factors to improve their local reparative capacity in the infarcted myocardium. It 
is conceivable that the optimal stem cell-mediated repair will be a combination of different 
modalities. 
 With the different modalities of stem cell therapy, three recurrent substantial components 
can be recognized: the bone marrow as major reservoir of stem cells, the infarcted 
myocardium as place of repair and the peripheral circulation as transport way of the stem 
cells and signaling factors. Signaling among these different components is essential for 
regulation, but can also be regarded as a target to enhance stem-cell mediated repair. In 
this review, we discuss signaling factors involved in stem cell mobilization from the bone 
marrow, in directing and engrafting stem cells to the ischemic lesion in the heart and factors 
involved in differentiation and proliferation of cells pivotal for healthy myocardium. 

Stem cell transplantation studies
The first stem cell-mediated treatment modality after myocardial infarction we mentioned 
here was stem cell transplantation i.e. harvesting stem cells from the bone marrow or the 
peripheral blood and transplanting them into the infarcted recipient.  
Numerous studies of BM stem cell transplantation in infarcted myocardium have been 
published over the past few years. Many of them claim improved cardiac function and 
attenuation of adverse remodeling. Since these studies have been reviewed extensively, 
we will not enlist them here [4-6]. The methods used in stem cell transplantation studies 
are varying. Different populations of stem cells were used in various numbers at different 
time points after ischemia in different infarction models in several mammalian species 
including man [4]. Notwithstanding the divergent methods used, some reports claim 
differentiation of transplanted stem cells into cardiomyocytes. However, there are also
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recent publications stating quite the contrary: differentiation of stem cells is an extremely 
rare event [7] and could be potentially due to cell fusion [8,9]. Two recent reports, in 
which sophisticated methods to prove differentiation were used, claimed failure to replicate 
findings of differentiation of transplanted stem cells into cells other than hematopoietic 
cells [9,10]. Thus, whether bone marrow-derived stem cells can become cardiomyocytes 
after transplantation is still a matter of debate. 
Also, the mechanism of functional improvement after stem cell transplantation pleads for 
more thorough investigation. For instance, how do the transplanted cells improve cardiac 
function if they do not abundantly differentiate into cardiomyocytes? Is enhancing perfusion 
by stem cells that differentiate into vasculature already sufficient to improve function and 
will this improvement last?  Or could the function of BMSC be orchestration of cardiac 
repair rather then actual structural incorporation and differentiation? 
The reported stem cell transplantation studies were the first step in attainable regenerative 
therapy after myocardial infarction that opened a plethora of novel stem cell-based treatment 
modalities. However, the time has come to refine stem cell transplantation by taking a closer 
look at stem cell function and their environmental needs. Besides finding (and isolating) 
the most suitable stem cell subpopulation in sufficient quantities, we have to focus on the 
optimal time window and best localization for incorporation and differentiation of stem cells. 
This time window depends on the patho-physiological (inflammatory) process following 
myocardial infarction. To be able to create the ideal recipient environment, knowledge 
of factors that are involved in BMSC signaling for mobilization, homing, incorporation, 
survival, differentiation and proliferation is invaluable.

Bone marrow as stem cell reservoir
Bone marrow can be regarded as the major reservoir of stem cells. Upon proper stimulation, 
stem cells can be activated and subsequently mobilized into the peripheral blood. The niche, 
in which bone marrow stem cells remain quiescent, is comprised of a diverse population 
of stromal cells and extracellular matrix components, such as fibronectin, collagens and 
proteoglycans [11]. Interactions of stem cells with the niche and release of anchored 
stem cells and subsequent trafficking from the bone marrow into peripheral blood is under 
thorough investigation. Only recently, surface molecules on BMSCs, like very late antigen 
4 (VLA-4) [12], glycosaminoglycan hyaluronan receptor CD44 [13] and Selectins [14], that 
play a role in adhesive interactions of BMSCs in the bone marrow have been recognized. 
Understanding mechanisms of stem cells mobilization is critical in designing new strategies 
for enhancement, but reaches beyond the scope of this review.
Moreover, the actual constitution of the most pluripotent stem cell or stem cells committed 
to specific organs that resides in the bone marrow is not known yet. Ratajczak  and co-
workers hypothesize that the bone marrow not only harbors hematopoietic stem cells, 
but also provides a ‘hideout’ for circulating tissue-committed stem cells of various organs 
(muscle, liver, brain, heart)[15,16]. During stress or tissue injury (for example myocardial 
infarction)  the levels of the tissue-committed stem cells in the peripheral blood are 
increased and available for damage repair [15,16]. 

Nevertheless, a wide number of factors are known to increase the mobilization of bone 
marrow-derived stem cells into the peripheral blood, among which are the factors G-CSF, 
GM-CSF, SCF, VEGF, IL-8 and SDF-1, which we chose to discuss in this review [17]. 
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Cardiac Stem Cells
Besides exogenous stem cell transplantation, reports emerge that claim the existence 
of cardiac stem cells. The dogma of the heart as a terminally differentiated organ was 
challenged by the observation of early cardiac cells in a mitotic state. Beltrami et al. 
showed proliferation of cardiomyocytes in patients who died 4 to 12 days after myocardial 
infarction. They observed a ratio of cells undergoing mitosis to the number of cells not 
undergoing mitosis of 0.08 % in the zone adjacent to the infarct and 0.03 % in the zones 
distant to the infarcts [18]. Only a few years later the same group of Anversa reported the 
existence of Linˉc-kit+   cells with properties of stem cells, found in clusters of an (average) 
density of 0.01% in the rat adult myocardium. A small percentage (7-10%) of these cells 
showed expression of early cardiac transcription factors, and in vitro experiments with 
these cells indicate that the isolated  Linˉc-kit+  cells  are self-renewing, replicate unlimited 
and could give rise to the main myocardial cell types: cardiomyocytes, smooth muscle 
cells and endothelial cells i.e. these cells clearly possess stem cell features. The cultured 
cells were injected into infarcted myocardium of rats. Twenty days after infarction they 
showed that these cardiac stem cells could contribute to functional cardiac repair [19]. The 
stem cell transplantation resulted in a band of proliferating regenerating myocardium that 
reduced the infarct size and was composed of cardiomyocytes and functional blood vessels 
resembling the neonatal heart [19]. 
Moreover, notwithstanding the origin of cardiac stem cells, proliferating host cells with early 
cardiac markers (MEF2 and GATA-4) were identified in sex mismatched heart transplants, 
a female heart into a male recipient. [20]. However, the ability of these proliferating early 
host cardiomyocytes to repair the heart after myocardial infarction is insufficient, as can 
be concluded from a clinical study on sex-mismatched heart transplantation of patients 
who developed myocardial infarction after heart transplantation. In this study an increase 
in Y-chromosome positive cardiomyocytes compared to non-infarcted controls was not 
observed [21]. 
The cardiac origin of the Y-positive cells found in transplanted hearts is challenged by 
a study of a small number of sex mismatched bone marrow transplantation patients. Y-
chromosome positive cardiomyocytes (0.23%) were found in the hearts, suggesting that 
these cardiomyocytes originate from the bone marrow [22]. More evidence that a small 
percentage of cardiomyocytes in the heart may originate from bone marrow-derived cells 
is provided by animal studies in which bone marrow reconstitution with genetically marked 
bone marrow cells (GFP, LacZ) was followed by myocardial infarction. In these animals 
marked cardiomyocytes were detected in the heart after myocardial infarction [23,24].
To summarize, there is evidence for the existence of cardiac stem cells. They are small cells 
that are present in the myocardium, that can proliferate and have regenerative capacity. 
They are present in small quantities, but are, under patho-physiological circumstances, 
incapable of functional cardiac repair after myocardial infarction. It is conceivable, that 
these cells serve a function in “normal” tissue turnover and might not be equipped to repair 
severe myocardial damage. Nevertheless, adequate exogenous activation signals given to 
cardiac stem cells might aid myocardial regeneration.

The infarcted myocardium
The infarcted myocardium forms the recipient environment for stem cells in stem cell-
mediated repair. It can also be regarded as target environment for signaling factors. 
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Knowledge of the physiological healing process and of cytokines and growth factors 
involved following myocardial infarction is essential for timing and localization of stem 
cell-mediated repair. 
The patho-physiological remodeling process after myocardial infarction can be divided 
into four phases: 1. Cardiomyocyte death from apoptosis and necrosis, 2. Inflammation 
characterized by influx of inflammatory cells (primarily macrophages, neutrophils and 
mestcells) and degradation of extracellular matrix (ECM), 3. Formation of granulation tissue 
comprised of neovasculature, macrophages and myofibroblasts, and 4. Scar formation 
[25]. In the inflammatory phase and granulation forming phase, e.g. the early phase after 
myocardial infarction, there is an abundant upregulation of cytokines and growth factors. 
Ignoring differences in species used and differences in myocardial infarction-model, 
the inflammatory response at the tissue level, starts with a rapid transient increase in 
neutrophils in the infarcted area. This is followed shortly by an influx of macrophages 
and not long thereafter a transient accumulation of myofibroblasts [26]. Complement 
activation has an important role in the initiation of neutrophil, and subsequent monocyte 
recruitment towards the ischemic myocardium [27,28]. However, after a prolonged period 
the effect of complement activation wanes and monocyte chemotactic activity becomes 
more attributable to factors such as TGF-β1 and MCP-1 [27]. Also, free radicals such as 
Reactive Oxygen Species (ROS), which are formed immediately after ischemia, can directly 
harm cardiomyocytes and endothelial cells by inducing apoptosis. ROS are also involved in 
triggering the inflammatory cascade through induction of cytokines [29-31]. 
The infiltrated inflammatory cells themselves are rich sources of cytokines and growth 
factors that play a role in the cardiac remodeling process.  Inflammation after myocardial 
infarction is a complex process invoked by cell death, consisting of cellular infiltration and 
extracellular remodeling, that is orchestrated by cytokines and growth factors. Cytokines 
and growth factors have different effects dependent on temporal and spatial variability. The 
complexity of unraveling chronological importance and roles of cytokines lies within their 
properties of redundancy and pleiotrophy, but also in their synergistic and antagonistic 
activities [32]. The factors that govern the inflammatory process also dictate the behavior 
of stem cells in cardiac repair process. 
The pro-inflammatory cytokine cascade constitutes the release of TNF-α, IL-1β and IL-
6 and is instrumental in the induction of cellular infiltration. It has been suggested that 
secretion of preformed mast cell-derived TNF-α is essential in upregulating IL-6 in infiltrating 
leukocytes after myocardial ischemia [33]. These three pro-inflammatory cytokines are 
not only associated with the orchestration of the inflammatory response after myocardial 
ischemia, but are also involved in aspects of heart failure itself, for instance left ventricular 
dysfunction, pulmonary edema, LV remodeling and cardiomyopahty [34-37]. Furthermore, 
IL-8 also regulates neutrophil recruitment [38,39]. IL-10 inhibits the production of IL-1β, 
TNF-α, IL-6 and IL-8 and therefore suppresses the inflam matory response and helps to 
maintain a balance [40].
Hence, in this review we highlight the role of TNF-α (as exemplary pro-inflammatory 
cytokine) and IL-8 in stem cell-mediated cardiac repair, since these factors are expressed in 
the infarct after myocardial infarction and therefore may interfere in stem cell engraftment. 
A special part of the natural healing process after myocardial infarction is the 
angiogenicresponse.  Two possible sources of endothelialization have been identified: 
1) sprouting or endothelial migration from adjacent pre-existing blood vessels [41] or 
2) neo-angiogenesis by differentiation from migrated, circulating bone marrow-derived  
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endothelial progenitor cells (EPCs), i.e. a subpopulation of BMSCs [42]. Thus, restoration 
of vessel infrastructure is not only important for transport and survival of transplanted 
or recruited stem cells, but stem cells themselves also appear to play a role in neo-
angiogenesis. Evidence for this phenomenon originates from studies that demonstrate 
that genetically marked bone marrow-derived stem cells were recruited to ischemic limbs 
of mice, incorporated at the site of neovascularization and accelerated revascularization 
[43,44]. Notwithstanding whether these BMSC actually differentiate into endothelial cells 
[45], the fact that stem cells home to ischemic areas to promote neovascularization [44] 
opens another door for stem cell-mediated cardiac repair. Therefore, in this review we are 
interested in regulatory factors that promote angiogenesis, such as VEGF, HIF-1α and IL-
8.

Signaling factors for stem cell-mediated repair
In stem-cell mediated cardiac repair, three components can be distinguished: 1) the bone 
marrow as the major reservoir of stem cells, 2) the ischemic myocardial tissue as the place 
of repair and 3) the peripheral circulation as transport way of the stem cells and signaling 
factors. Interactive signaling between these components is important for the orchestration 
of mobilization, incorporation, survival, proliferation and differentiation of stem cells (fig. 
1).

Figure 1. The signaling between the three fundamental components of stem cell-mediated 
cardiac repair, i.e. the myocardial infarction, the peripheral circulation and the bone 
marrow, to acquire regeneration is driven by the substantial processes of mobilization, 
homing, incorporation, survival, proliferation and differentiation. Whether the mobilization/ 
homing part can be circumvented by encouraging endogenous cardiac stem cells to support 
regeneration is under investigation. 
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We further discuss the factors that have a significant role in the signaling process. Factors 
that are important for mobilization include G-CSF, GM-CSF, SCF, SDF-1, IL-8 and VEGF. 
Factors that are expressed after myocardial infarction and are involved in the subsequent 
inflammatory process include TNF-α, IL-8, IL-10, HIF-1α, VEGF and HGF. Factors that are 
potentially involved in the differentiation, proliferation and survival process of stem cells 
include EPO, TGF-β family, VEGF and HGF. We have highlighted only a selection of key 
signaling factors, because these factors are exemplary in stem cell-mediated repair.

A. TNF-α
Tumor Necrosis Factor-alpha (TNF-α) is a very potent pro-inflammatory cytokine that is 
rapidly secreted after ischemic injury. This pro-inflammatory cytokine is exemplary among 
the pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6. TNF-α is produced by  
monocytes/macrophages [46], degranulating mast cells [33], cardiac fibroblasts [47] and 
cardiomyocytes [48]. 
Data on effects of TNF-α on the heart are complex and often are contradicting. Although 
TNF-α overexpression leads to a phenotype of heart failure [49,50] and TNF-α seems 
to have an early role in increase of infarct size [51-54], these negative effects of TNF-α 
after myocardial infarction could not be confirmed clinically by anti-TNF therapy [55,56].  
Moreover, TFN-α induces resistance of cardiomyocytes to hypoxic stress in vitro [57,58]. 
Similarly, the role of  TNF-α  in stem cell mobilization is also comples and variable. In 
vitro, migration of embryonic stem cells was enhanced by neonatal rat cardiomyocytes 
overexpressing TNF-α, which was attenuated after pre-incubation of the embryonic stem 
cells with antibody against TNF-RII, which suggests a chemoattractive response of stem 
cells towards TNF-α  [59]. However, although a chemoattractive response was seen with 
embryonic stem cells, proliferation of BMSCs was inhibited when TNF-α was added to an in 
vitro single cell proliferation assay. Moreover, the number of  BMSCs was increased in TNF-
receptor p55 deficient mice [60]. This is in concordance with stem cells numbers observed in 
patients with heart failure, in which CD34+ stem cells and endothelial progenitor cells were 
inversely related to TNF-α titers in serum. Circulating stem cell numbers were decreased 
where TNF-α levels were increased in patients with advanced stage of heart failure, which 
could be related to a myelosuppressive role of TNF-α [61].
To conclude, TNF-α is a pleiotrophic cytokine that works in a temporal and spatial dependent 
manner. Early blocking of TNF-α, within the first hours or days after MI, could decrease 
infarct size. Moreover, TNF-α is shown to have chemoattractive features, but also has anti-
proliferative features on BMSCs. To conclude, usage of TNF-α in stem cell mediated cardiac 
repair can be invaluable if timed and located correctly, but can be deleterious, if not.

B. Interleukin-8
The CXC chemokine Interleukin-8 (IL-8/CXCL8) is expressed by various cell types, such 
as monocytes and endothelial cells, and is strongly upregulated by pro-inflammatory 
cytokines [62]. IL-8 is a chemoattractant and activator of neutrophils. Overexpression 
of IL-8 in vitro increases the adhesion of neutrophils to isolated cardiomyocytes in vitro, 
which induces cardiomyocyte death [63]. IL-8 mRNA is markedly increased after coronary 
occlusion followed by reperfusion, although without reperfusion only minimal amounts can 
be detected [63].
Besides its inflammatory effect, Il-8 is also able to rapidly induce stem cell mobilization, 
albeit at lower numbers as compared to G-CSF stimulation and also for a shorter time
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period [64,65]. Nevertheless, in G-CSF treated patients the level of IL-8 positively correlated 
with BMSC (CD34+) numbers before and during treatment, which suggests that IL-8 
production may be of importance in G-CSF induced stem cell mobilization [66]. The short 
mobilizing time period of IL-8 was demonstrated in a study with primates, in which a single 
injection of human recombinant IL-8 resulted in a 10- to 100 fold increase in numbers of 
circulating hematopoietic progenitor cells in the peripheral blood, which returned to almost 
pretreatment values within four hours after IL-8 injection [67].
In IL-8 induced mobilization, the enzyme matrix metalloproteinase-9 (MMP-9) is of 
importance, since pretreatment with an anti-MMP-9 antibody in primates prevents BMSC 
mobilization by IL-8 [68]. Neutrophils release MMPs that are able to cleave extracellular 
matrix molecules such as Kit-ligand inside the bone marrow and thereby support release 
of BMSCs into the peripheral blood. This coherence between neutrophils, MMPs and 
IL-8-induced mobilization is affirmed by the observation of a reduction in IL-8 induced 
mobilization of BMSCs in absence of neutrophils [69]. Thus, in absence of either neutrophils 
or MMP-9, IL-8 induced BMSC mobilization is reduced. Although neutrophils and IL-8 seem 
to play a role in BMSC mobilization, treatment with anti-neutrophil monoclonal antibody 
lowered the levels of IL-8, but also decreased infarct size in rats [70].  This suggests that 
neutrophils have a negative effect on infarct size, but stimulate the production of IL-8. 
Whether the positive effect of IL-8 and neutrophils on mobilization outweighs the negative 
inflammatory effect in myocardial infarction and on infarct size, can be doubted.

Nevertheless, a space and time dependent introduction of IL-8 can be interesting to 
enhance its positive effects. Since serum levels of IL-8 have a positive effect on rapid early 
mobilization of BMSCs and since IL-8 may augment the local adverse response in the heart 
after myocardial infarction, early blockade of the effects of IL-8 in the heart and overall at 
later time points can be interesting for stem cell mediated cardiac repair.

D. G-CSF and SCF 
Granulocyte and Granulocyte/Macrophage Colony-Stimulating Factor (G-CSF and GM-CSF) 
and Stem Cell Factor (SCF) are hematopoietic factors, that are involved in proliferation, 
differentiation and survival of bone marrow derived stem and progenitor cells [71-73]. 
SCF, also known as c-kit Ligand or Steel Factor, binds to c-Kit, a receptor expressed on 
the surface of stem and progenitor cells and has a chemoattractant effect on these cells 
[74]. Although mRNA of M-CSF and SCF is abundantly expressed in the normal heart, it 
is actually downregulated after permanent coronary artery ligation in mice. G-CSF mRNA 
expression was not detected in the heart at all and GM-CSF mRNA expression in the normal 
heart was negligible [75,76].
G-CSF and GM-CSF are used clinically to increase the rate of recovery of hematopoietic 
cells after bone marrow transplantation. In rodents, the addition of SCF to G-CSF increased 
the levels of proliferation in the bone marrow prior to mobilization [77]. The group of 
Orlic et al. was one of the first to show that combined treatment of G-CSF and SCF, given 
from 5 days prior to 3 days after coronary artery ligation in mice, attenuates adverse 
cardiac remodeling 27 days after myocardial infarction, such as decreased infarct size, less 
ventricular dilatation and decreased diastolic stress. Moreover, they observed proliferation 
of cardiomyocytes [78]. This observation was questioned by other groups that failed to 
demonstrate cardiomyocyte proliferation as a consequence of G-CSF and SCF stimulation.  
In a non-human primate model, after a single administration of G-CSF and SCF four



64

hours after coronary ligation, an increase in myocardial blood flow and endothelial cell 
differentiation was observed, although no  differentiation into cardiomyocytes was seen 
[79]. Also, in a study in which 8 weeks after permanent ligation of the coronary artery in 
rat G-CSF was administered for 5 days, no induction of cell proliferation or improvement of 
cardiac function was observed [80].
G-CSF administration for 5 days starting directly after coronary artery ligation in mice also 
resulted in  improved cardiac function, less remodeling and increased number of bone 
marrow-derived capillaries, but again not cardiomyocyte proliferation [81]. Altogether, 
this data suggest a time and dose dependent effect of G-CSF (in combination with SCF) 
administration, which can result in improvement of cardiac function and potentially even in 
cardiomyocyte proliferation, although this is only observed by some authors.
An increase in influx and maturation of inflammatory cells is detrimental in the absence 
of a proper regulatory mechanism, and therefore forms a conceivable disadvantage of 
G-CSF and SCF treatment.  SCF is induced in and secreted by infiltrating macrophages 
in the ischemic myocardium and attracts mast cell precursors [82]. G-CSF and GM-CSF 
are not only associated with stem cell mobilization, but they are also known to stimulate 
the development of committed progenitor cells into traditional hematopoietic cells, mainly 
granulocytes and macrophages [83]. Whether the increase of neutrophils and macrophages 
would be a negative effect of G-CSF is contradicted in a study that aimed at defining the 
modifying effect of G-CSF on the healing process following MI [84]. In this study an 
increase of macrophages and neutrophils was found 7 days post-MI, after five days of 
treatment with G-CSF, which was related to the enhanced absorbtion of necrotic tissue and 
coincided with an enhanced induction of regenerating myocardial cells and improvement 
of cardiac function [84].
After promising results of G-CSF therapy  in rodents, the safety and efficacy of G-CSF 
therapy was tested clinically. Although results of the first clinical study in which G-CSF alone 
or in combination with intracoronary infusion of collected peripheral blood stem cells was 
given to myocardial infarction patients who underwent stenting of the coronary artery were 
promising, they also found a higher incidence of in-stent restenosis [85]. This hazardous 
side-effect was not observed in a study with more patients [86]. In two other clinical trials 
(FIRSTLINE AMI and STEMI) with patients undergoing percutanous coronary intervention, 
show improvement of cardiac function after G-CSF therapy [87-89]. Contradictorily, others 
found  that the functional activity of mobilized Hematopoietic Stem Cells (HSCs) of patients 
with chronic ischemic heart disease, measured as the migratory response towards SDF-1 
and VEGF-A, was markedly reduced after G-CSF-induced mobilization [90]. Potentially, this 
paradox is related to the origin of BMSC source, as can be concluded from a study in which 
the origin of G-CSF mobilized cells that repair infarcted myocardium is investigated [91]. In 
this study it is suggested that clonally purified nonhematopoietic mesenchymal stem cells, 
rather than HSCs form the origin of BM-derived cardiomyocytes after G-CSF therapy [91].
Nevertheless, CSFs and SCF are interesting factors for stem cell mediated cardiac repair, 
since these have the ability to mobilize stem cells from the bone marrow and apparently 
have an attenuating effect on cardiac remodeling. The efficacy of stem cell incorporation 
and thereby of stem cell-mediated repair could be enhanced by upregulation of SCF in 
the infarcted area. SCF is downregulated in the heart after myocardial infarction under 
physiological circumstances, which is unfavorable for homing of BMSCs to the damaged 
heart. Also, upregulated CSFs in the ischemic heart could enhance local proliferation, 
differentiation and survival of BMSCs. 
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To conclude, elevated levels of both SCF and CSFs in the circulation would enhance 
mobilization of BMSC from the bone marrow. Upregulation of both SCF and CSFs in the 
heart after myocardial infarction would potentially foresee in the incorporation, proliferation, 
differentiation and survival of BMSC in the infarcted heart, which are essential steps in 
stem cell-mediated repair. 

E. SDF-1 and its receptor CXCR4
Stromal Derived Factor-1 (SDF-1) and its receptor CXCR4, are crucial in stem cell 
mobilization. In vitro assays showed that migration of BMSC (cultured CD34+ cells) towards 
SDF-1 is strong and dose-dependent [92]. Moreover, intravenous injection into mice of an 
adenoviral vector encoding SDF-1α resulted in increased mobilization of hematopoeitic 
stem cells [93,94]. Mobilization of stem cells is inhibited by neutralizing antibodies towards 
CXCR4 and SDF-1 [95]. Also, overexpression of CXCR4 by a lentiviral gene transfer on 
human BMSC (CD34+) improved migration towards lower SDF-1 levels and improved 
survival of these CXCR4 overexpressing progenitor cells [96]. The SDF-1 – CXCR4 axis 
is involved in the chemoattraction of BM-derived cardiac progenitor cells after myocardial 
infarction [15]. 
The suggested mechanism of stem cell mobilization from the bone marrow by SDF-1 
is that SDF-1 induces upregulation of metalloproteinase-9 (MMP-9) activities, which 
cause shedding of soluble Kit-ligand (SCF) and thereby liberate c-Kit positive stem cells 
into the circulation [97]. Nevertheless, MMP-9 knockout mice did not show a disturbed 
BMSC mobilization [98], suggesting that other factors also contribute to the mobilization 
mechanism. 
Beside their effect on stem cell mobilization, SDF-1 and CXCR4 are also important in 
cardiogenesis and vasculogenesis. Both SDF-1 deficient mice and CXCR4 deficient mice 
die perinatally and have defects in cardiac ventricular septal formation, bone marrow 
hematopoiesis and organ-specific vasculogenesis  [99,100]. In the normal adult heart, 
SDF-1 is expressed constitutively, and was shown to be upregulated  after myocardial 
infarction in rats [80,101].
Askari et al. re-upregulated SDF-1 expression 8 weeks after myocardial infarction by 
intramyocardial transplantation of stably transfected cardiac fibroblasts overexpressing 
SDF-1 in combination with G-CSF therapy. This was associated with much greater numbers 
of BMSCs (c-Kit or CD34 positive) and endothelial cells in the heart and resulted in an 
increase of vascular density and improvement of left ventricular function. Strikingly, this 
improvement of function was not related to proliferation of cardiomyocytes [80]. This 
implies again that improvement of left ventricular function can be achieved by improved 
cardiac perfusion alone. 
A hurdle in the clinical usage of SDF-1 as single therapy could be a reduced migratory 
response towards SDF-1 of bone marrow mononuclear cells derived from patients with 
chronic ischemic heart disease, despite similar number of cells [102]. Age-related reduction 
of migration towards SDF-1 was also demonstrated in mice, in which optimal migration 
was seen with BMSCs of 1 month- old mice, which was greatly reduced with BMSCs of 2 
month-old mice [15]. 
To conclude, SDF-1 and its receptor CXCR4 are important in orchestrating mobilization of 
stem cells from the bone marrow and migration of BMSCs to the ischemic myocardium. 
They also have a substantial role in embryonic cardiogenesis, which, to date, is not affirmed 
in later developmental stages. Moreover, SDF-1 and its receptor contribute substantially
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to both embryonic vasculogenesis as well as to revascularization of the infarcted myocardium. 
Taken together, upregulation of both factors is crucial in stem cell-mediated repair.   

F. HGF
Hepatocyte Growth Factor (HGF) was, as the name suggests, originally associated with liver 
regeneration, but was rediscovered as a growth factor affecting various tissues and cell 
types. Activities of HGF include induction of cell proliferation, cell motility and dissociation, 
morphogenesis as well as inhibition of cell growth. Upon activation HGF is expressed by 
fibroblasts, smooth muscle cells, mast cells, macrophages, endothelial cells and leukocytes 
(see for review: [103]). Expression of HGF is induced by mediators such as IL-1, PDGF, 
bFGF and G-CSF and is suppressed by TGF and glucocorticoids [104,105].
HGF and its receptor are also involved in cardiogenesis, in which it is transiently expressed 
during early cardiac development [106]. The levels of HGF mRNA and of its receptor (c-
met) are normally low in the heart, but are upregulated for at least fourteen days after 
permanent coronary artery occlusion in rats [107]. Both in vitro and in vivo, HGF enhanced 
survival of cardiomyocytes under ischemic conditions [107,108]. Moreover, intramyocardial 
gene therapy with HGF after myocardial infarction resulted in increased angiogenesis and 
preserved cardiac contractile function [109-111]. 
The role of HGF in stem cell-mediated repair is probably not only locally in the heart, 
but also stretches to the bone marrow, where HGF is involved in adhesion of stem cells 
to their bone marrow microenvironment. HGF is produced by bone marrow stromal cells 
and it promotes adhesion, proliferation and survival of hematopoietic stem cells [112]. 
Fujii et al. showed an inverse correlation between serum levels of HGF and the number of 
BMSC (CD34+) mobilized cells in G-CSF treated patients, which could be explained by the 
encouragement of BMSC adhesion to the bone marrow microenvironment orchestrated by 
HGF [105] 
The mechanism of HGF in stem cell mediated repair in the myocardium lies furthermore in 
its ability to create an adhesive microenvironment in the heart after stem cells are recruited 
there. This is demonstrated in a study of HGF transfected BMSCs transplanted in infarcted 
myocardium [113]. Bone marrow-derived mesenchymal stem cells transfected with HGF 
that were intramyocardially injected in the borderzone of permanently ligated rat hearts 
incorporated in the heart, which resulted in a reduced infarct size, increased number of 
capillaries, as well as reduced collagen content and improved cardiac function four weeks 
after transplantation. The authors also claim that the incorporated mesenchymal stem cells 
were morphologically indistinguishable from the surrounding cardiomyocytes, although 
their proof of differentiation of BMSCs was only based on morphological grounds [113].
In conclusion, HGF seems to be a promising factor in stem cell mediated cardiac repair.  
HGF increases survival of cardiomyocytes after oxidative stress, and thereby reduces 
apoptosis. When overexpressed in the heart, HGF increases angiogenesis and improves 
the function of the infarcted heart. Furthermore, HGF is involved in anchoring stem cells 
to a microenvironment, e.g. the bone marrow and the ischemic myocardium, where HGF 
promotes adhesion, survival and proliferation of the BMSCs.

G. HIF
Hypoxia-inducible factors (HIF) are early transcriptional regulators of the response to 
hypoxia, which activate pathways that increase oxygen delivery and promote adaptive 
pro-survival responses. Among the many target genes of HIF are erythropoeitin (EPO), 
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endothelin and VEGF (with its receptor Flk-1) [114,115]. Episodes of intermittent hypoxia in 
wildtype mice induce HIF-1α quantities sufficient to induce EPO production in the kidneys, 
which did not occur in HIF-1α nullizygous mice. EPO production is associated with cardiac 
protection after ischemia-reperfusion injury [116].
HIF-1α is essential in normal cardiac development during embryogenesis. Complete HIF-
1α deficiency in mice results in lethal cardiac and vascular malformations [117]. Moreover, 
HIF-1α is associated with coordinating energy availability and utilization in the heart and 
has a central role in balancing oxygen demand and supply. Cardiomyocyte-specific HIF-1α 
gene deletion in the hearts of genetically engineered mice caused a significant reduction 
in contractility and vascularization, and is accompanied with altered expression of genes 
involved in angiogenesis and glucose metabolism [118]. After permanent coronary artery 
ligation in rats, HIF-1α and HIF-2α accumulate at the borderzone of the infarcted tissue, in  
nuclei of cardiomyocytes, interstitial cells and endothelial cells. This persists for four weeks 
and is colocalized with transcriptional target gene expression [119].  
Therapy based on expression of HIF can be regarded as a strategy to induce neo-
angiogenesis in the ischemic heart. Administration of HIF-1α, by intramyocardial injection 
of HIF-1α encoding plasmid DNA in a permanent ligation infarction model in the rat, 
significantly decreased infarct size and enhanced neovascularisation by increasing capillary 
density and thereby regional myocardial blood flow. [120] Therapeutic interventions aimed 
at the increase the endogenous HIF-1 expression, can be accomplished by blockade 
of degradation of HIF-1α [121] or by the use of small molecule inhibitors of the HIF-
hydroxylases [122,123]. Interestingly, HIF activates gene expression of several additional 
vasculogenic growth factors besides VEGF. Transgenic mice containing constitutively active 
HIF-1α molecule showed significantly increased activation of HIF transcriptional targets 
and hypervascularity. These vessels were not associated with increased edema and their 
vascular integrity appeared to be fully intact, in contrast to phenotypes developing in 
transgenic mice overexpressing only VEGF [124]. Therefore, targeting HIF instead of 
VEGF can activate more angiogenic factors at the same time resulting in intact neo-
vascularization. 
To summarize, HIF is a hypoxia-sensitive transcription factor, which is able to orchestrate 
and activate many factors and pathways that are indispensable after ischemic damage. 
Early overexpression of HIF can result in an increased transcriptional response of factors 
involved in pathways that increase oxygen delivery and promote adaptive pro-survival 
responses, which is substantial for stem cell mediated cardiac repair. 

H. Vascular Endothelial Growth Factor
Vascular Endothelial Growth Factor (VEGF) is a group of secreted proteins that are 
produced by almost every cell type [125]. Embryos lacking just one allele of VEGF-A (VEGF 
+/- mice) are lethal because of abnormal blood vessel development [126]. Also both VEGF-
A receptors, VEGF-R1 (flt-1) and VEGF-R2 (Flk-1 or KDR), are important for endothelial 
differentiation, migration, proliferation and vascular remodeling, as can be concluded from 
knockout studies [127]. Cultured rat cardiomyocytes subjected to hypoxia rapidly induced 
mRNA expression of VEGF, which is also observed in vivo in the ischemic myocardium 
[128].
VEGF is a strong promoter of angiogenesis, which is illustrated by clinical studies with 
myocardial infarction patients. Naked plasmid DNA encoding VEGF-165 directly injected 
into the ischemic myocardium in patients with symptomatic myocardial ischemia, led to
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reduced symptoms and improved myocardial perfusion [129-131]. Beside the capability 
of VEGF to promote neo-vascularization, which is investigated thoroughly (see for review 
[132]), VEGF is also involved in the mobilization of BMSCs [133,134]. In a clinical study 
of patients with acute myocardial infarction,  increased plasma levels of VEGF correlated 
significantly with an increase in circulating  BMSCs (CD34+), which indicates that VEGF is 
able to recruit stem cells in myocardial infarction patients [135]. 
The importance of VEGF in stem cell-mediated therapy after myocardial infarction, is 
further illustrated by a recent study in which intravenous injection of BMSC after coronary 
artery ligation in mice was performed. The authors showed that the decrease in infarct 
size, caused by the BMSC injection, was diminished after blocking VEGF with either 
neutralizing antibodies or with gene transfer of a soluble form of the VEGF-R1 receptor 
[136]. Moreover, in another study, even 2 month after intramyocardial injection of BMSCs 
into a one week old myocardial infarction, elevated levels of VEGF were observed together 
with improved perfusion and cardiac function. The assumed underlying mechanism is para-
secretion of growth factors paralleled by the differentiation of BMSCs into endothelial cells 
[137]. Beside the BMSC mobilizing capacity of VEGF, this factor may also be involved in 
induction of cardiomyocyte proliferation, although there is not much conclusive evidence. 
Intramyocardial injection of a naked plasmid DNA encoding VEGF-165 in pigs, who 
underwent coronary occlusion, resulted in a several-fold increase in number of mitotic 
cardiomyocyte nuclei and nuclear hyperplasia, suggesting that VEGF could either directly 
or indirectly promote karyokinesis in cardiomyocytes [138].
To summarize, VEGF is involved in stem cell mediated cardiac repair, because of its prominent 
role in angiogenesis, but also its capability of mobilizing BMSC into the peripheral blood in 
myocardial infarction patients. Furthermore, it might act as a mitogen on cardiomyocytes. 

I. EPO 
he production of Erythropoietin (EPO) is induced by hypoxia and is predominantly produced 
by the kidneys in adult life [139]. Other cell types, such as activated macrophages, also 
express EPO mRNA [140], which could play a role in the inflammatory reaction after 
myocardial infarction since this is accompanied by a massive invasion of macrophages. 
EPO-R, the Erythropoietin Receptor, is expressed in the heart mainly in the epicardium and 
pericardium on endothelial cells, smooth muscle cells and cardiomyocytes [141].
EPO is not only associated with erythropoiesis, it also plays a crucial role in cardiac 
development. EPO and EPO receptor knockout mice (EPO-/- and EPO-R-/- mice) are both 
embryonic lethal, due to a combination of anemia and cardiac abnormalities. In these mice 
a ventricular hypoplasia exists, potentially due to a reduction in the number of proliferating 
cardiomyocytes [141]. Probably, this developmental cardiac abnormality is due to altered 
hematopoietic expression of EPO-R, since Suzuki et al. showed that in transgenic mice that 
expressed EPO-R exclusively in the hematopoietic lineage (so they lack EPO-R expression 
in non-haematopoietic tissue), normal cardiac development occured [142]. 
In vitro, neonatal rat cardiomyocytes mitotically respond in a dose-dependant fashion 
to recombinant Human EPO (rHuEPO), which could be blocked with antibodies against 
Human EPO. Thus, EPO appears to be a strong mitogen for neonatal cardiomyocytes 
[143]. Moreover, cultured adult rat cardiomyocytes subjected to hypoxia were prevented 
from apoptosis by EPO. In vivo, 7 subsequent daily EPO injections started directly after 
coronary ischemia-reperfusion in the rat reduced cardiomyocyte loss by 50% [144]. In 
addition, recombinant Human EPO stimulated capillary outgrowth in myocardial tissue in 
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an in vitro angiogenesis assay using adult human myocardial tissue [145].
Notwithstanding positive cardiac effects of EPO, we have to bear in mind that an excess 
of EPO leads to an elevation in blood viscosity and thrombolic events. Transgenic mice 
overexpressing human EPO have an increased ventricular dilatation and have intracellular 
edema of the cardiomyocytes, which results in cardiac dysfunction, reduced exercise 
performance and a significant shorter life expectancy [146,147]. Thus, although EPO 
has various positive effects on cardiac repair, an overload of EPO has quite the opposite 
effects. 
Finally, EPO is also involved in proliferation and mobilization of BMSCs. EPO treated mice 
showed an increase in number and in proliferation of BMSC in the bone marrow and 
an increase in circulating Endothelial Progenitor cells, which contributed to significantly 
improved ischemia-induced neovascularization [148]. This is in concordance with the 
raised serum levels of EPO in patients with coronary artery disease that was associated 
with  the number and function of circulating EPC [148].
In conclusion, EPO is a potent factor in stem cell-mediated repair. EPO has anti-apoptotic 
properties and is involved in cardiomyocyte proliferation. EPO stimulates neovascularization 
and has proliferative and mobilizing effects on BMSCs.

7. Conclusion
A plethora of cytokines and growth factors appear to play a role in stem cell-mediated 
cardiac repair of the infarcted myocardium. In this process, it is difficult to pinpoint the 
function and efficacy of each individual factor, due to pleiotrophic, redundant, synergistic 
and antagonistic properties of orchestrating factors and their, often undefined, concomitant 
receptors. Most importantly, the effects are time and spatial dependent. We are only 
beginning to elucidate the role and significance of cytokines and growth factors in the 
communication for stem cell-mediated cardiac repair (see table 1). 

To gain the optimal regenerative capacity for clinical application, we need to target and 
balance the orchestrating factors that play a crucial role in the fundamental steps of stem 
cell mediated-cardiac repair: mobilization, incorporation, survival, differentiation and 
proliferation. Affecting the orchestrating factors could be either by enhancing or blocking 
their presence, depending on their spatial-dependant separate roles.
Whether mobilizing stem cells from the bone marrow can be circumvented by directly 
aiming at the small but evident cardiac stem cell population, is under investigation.
To induce stem cell-medicated cardiac repair, the 3 recurrent substantial components
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should be targeted. 1) The bone marrow as major stem cell reservoir should be triggered 
to release BMSCs, preferably cardiac progenitor cells. 2) The peripheral circulation as 
transport way and infrastructure within the infarcted myocardium should be optimal to 
home and to incorporate BMSCs in the infarcted zone. 3) The infarcted myocardium itself, 
the place of repair, should be attractive and inviting for BMSCs. 
There should be space to incorporate, BMSC should not be challenged by the infiltrated 
inflammatory cells and inflammatory cytokines to differentiate into leukocytes, and there 
should be factors present that give liberty to BMSCs to proliferate and differentiate into 
cardiomyocytes and vascular cells (Fig. 2).  The regulation between these components 
should be done by mobilizing factors, such a G-CSF, SCF and SDF-1. Regulation within the 
infarct in the acute phase is primarily by (pro-) inflammatory cytokines (among which TNF-
α and IL-8) of which negative effects should be avoided. Positive effects on angiogenesis 
and myogenesis could be expected from HIF-1α, HGF, VEGF and EPO. 
Altogether, the possibilities of stem cell-mediated cardiac repair seem promising and 
are starting to put an end to the era of the insurmountable consequences of myocardial 
infarction.

Figure 2. Overview of the key processes and factors involved in the stem cell-mediated 
cardiac repair process. Myocardial infarction is followed by an inflammatory response in 
which the interplay of inflammatory factors and influxes of various cell types play a decisive 
role for the subsequent regeneration. Ideally a beneficial stem cell prone environment will 
develop in which BMSCs or CSCs are attracted and activitated such that and regeneration 
is augmented while scarring is attenuated. This requires a proper balance of secreted 
mediators.
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