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ABSTRACT
Determining node positions is essential for many next-generation
network functionalities. Previous localization algorithms lack cor-
rectness guarantees or require network density higher than required
for unique localizability. In this paper, we describe a class of al-
gorithms for fine-grained localization called Sweeps. Sweeps cor-
rectly finitely localizes all nodes in bilateration networks. Sweeps
also handles angle measurements and noisy measurements. We
demonstrate the practicality of our algorithm through extensive sim-
ulations on a large number of networks, upon which it consistently
localizes one-thousand-node networks of average degree less than
five in less than two minutes on a consumer PC.

Categories and Subject Descriptors: C.2.1 [Computer Commu-
nication Networks]: Network Architecture and Design – Wireless
communication; F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Performance, Design.

Keywords: Localization, Sweeps, Global Rigidity, Controlled Mo-
bility

1. INTRODUCTION
Determining node positions or possible positions is an essential

requirement for many next-generation network functionalities. For
example, in crisis response, it is important to know the precise po-
sition or possible positions of an emergency in order to take prompt
action. For some inventory applications or ubiquitous computing, it
is necessary to precisely identify one particular item out of a large
number of items in close proximity. Although the importance of
precise localization has long been well-recognized, no entirely sat-
isfactory solution yet exists for the anticipated networks of thou-
sands of resource-constrained, and possibly mobile nodes.

Naive approaches are easily seen to be inadequate. While it may
be possible to manually furnish each node with its position in small
and static networks, this approach is clearly infeasible in the envi-
sioned large-scale networks. Another straightforward approach is
to equip each node with GPS, enabling it to determine its position
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by communicating with GPS satellites. However, there are sev-
eral potential problems with this approach. First, GPS hardware-
requirements may be excessive for resource-constrained nodes in
large-scale networks. Next, GPS-reliant localization will not be
robust in the presence of obstructions such as dense foliage and
tall buildings blocking communication with satellites, and has great
difficulty operating indoors or underground. Another potential pit-
fall in designing a GPS-reliant localization layer is that it will be
dependent on the GPS infrastructure, which may come under at-
tack or be made unavailable by its owner.

The difficulties in the obvious approaches have led researchers to
address the problem in alternative technological settings. A promis-
ing class of approach for precise localization is fine-grained local-
ization (e.g., [1, 7, 8, 11, 13, 21, 28, 29, 30, 31, 32, 34, 35, 36, 39]).
In such approaches, only some of the network nodes called bea-
cons or anchors are endowed with their positions through GPS or
manual configuration, and all nodes measure the distance between
themselves and nearby nodes using hardware ranging techniques.
The essential aim of fine-grained localization is to propagate the
knowledge of the positions of only a few nodes to the positions of
many using relationships in position expressed by pairwise distance
information.

Fine-grained localization algorithms can be broadly classified
into two categories: the global approaches, which localize all nodes
simultaneously (e.g., [8]), and the sequential approaches, which lo-
calize nodes in some order (e.g., [28, 35]). A representative global
approach is semi-definite programming (SDP) [8, 7]. This ap-
proach works well for a dense network. However, it may generate
faulty positions in sparse networks where global incorrect flip con-
figurations cannot be escaped. Another technique to compute all
node positions simultaneously is multi-dimensional scaling (MDS)
(e.g., [21, 25, 36]). However, the quality of MDS position esti-
mates depends crucially on the quality of the estimate of the com-
plete distance matrix. The problem of producing good estimates of
the complete distance matrix for non-convex network deployments
is still an unsolved problem. Although important work was done
by Lim and Hou [24] addressing this issue, since their approach
utilizes anchors, the problem still stands for cases in which anchors
are not distributed uniformly, or there are no anchors at all. Over-
all, the global approaches treat all nodes equally without identify-
ing correctly localizable nodes. Given the inherent NP-hardness of
localization [4], it is unlikely that the global approaches can avoid
large errors for some nodes. Such errors can happen particularly in
sparse networks or dense networks with sparse sub-regions. How-
ever, as the authors of [28] pointed out, “for many applications,
missing localization information for a known set of nodes is prefer-
ential to incorrect information for an unknown set.”

One way to guarantee correctness is to localize nodes sequen-
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tially. A representative sequential approach is robust quadrilater-
als [28]. This approach processes nodes one by one, and in the
process, prunes distance measurements that are deemed unreliable.
Although this approach ensures the absence of systematic localiza-
tion errors, it succeeds in localizing only a small portion of poten-
tially localizable nodes. It fails on sparse networks, and does not
succeed in extending a localized region past areas of local sparsity.

In this paper, we study fine-grained localization with the follow-
ing requirements: 1) compute positions without potential system-
atic errors; 2) localize uniquely localizable nodes with high prob-
ability, even in networks that are not uniformly dense; and 3) for
nodes that cannot be uniquely localized but can be localized up to
a set of possibilities, output the set of possible positions whenever
feasible. It is easy to envision that outputting the set of all possible
positions of a node can be useful in many applications. We call this
generalized localization objective finite localization, as opposed to
unique localization, upon which most previous localization tech-
niques focus.

In this paper, we provide a class of simple algorithms referred
to as Sweeps which satisfies the above design requirements. In
prior work [15, 16], the idea of sweeping through a network in a
sequential fashion was proposed and preliminary results were ob-
tained. In this paper, we improve the computational complexity of
sweeping using consistent position combinations and shell sweeps,
and extend sweeping to handle angle and noisy measurements. By
design, our algorithm does not fall victim to large localization er-
rors due to flip configurations. We prove that our algorithm finitely
localizes all nodes in a large class of sparse network called bilater-
ation networks. For uniformly random networks, we demonstrate
that in the worst case, our algorithm uniquely localizes at least 90%
of all uniquely localizable nodes, when the average connectivity
degree of the network nodes varies from 3 to 13; except in the tran-
sition phase when the average connectivity degree of the network
nodes is between 6 and 7.5, it localizes above 95% of all uniquely
localizable nodes. As comparison, iterated trilateration sometime
localizes only 40% of the uniquely localizable nodes. For regular
networks deployed to provide spatial coverage, at average connec-
tivity degree 6, our algorithm localizes 90% of uniquely localizable
nodes, while iterated trilateration localizes less than 10%.

The tradeoff for achieving high localizability at low density is
that the worst-case time complexity of our algorithm could be ex-
ponential in the number of nodes. However, we show that at a given
density, typically, the running time of our algorithm grows linearly
with increasing number of nodes. It localizes more than 95% of
uniquely localizable nodes of a network with one-thousand nodes
with average connectivity degree less than five in two minutes on
a consumer PC with an Intel CPU of 2.8 GHz. Our algorithm is
not essentially centralized, in that it does not require any global
information. Thus, our algorithm can be extended to distributed
settings. We also extend our algorithm to handle angle and noisy
measurements.

As a demonstration on the applicability of our algorithm, we
investigate localization in a mobile network in which individual
nodes use controlled mobility to optimize spatial coverage. We
show that extremely sparse networks with just enough constraints
for unique localizability are produced in this setting, and that our
algorithm succeeds in localizing these sparse networks feasibly and
predictably1.

The rest of the paper is structured as follows. In Section 2 we
give useful terms and definitions, and review background results.

1Here predictability is in the sense that we can quickly check
whether Sweeps will successfully localize the network without ac-
tually performing the localization.

In Section 3 we describe our algorithms and in Section 4 we prove
its correctness on bilateration networks. In Section 5 we present
our simulation results on realistic networks. In this section, we also
present our case-study of a coverage-optimizing mobile network
and the success of Sweeps Localization on this network class. In
Section 6 we cover related work. We conclude and discuss future
work in Section 7.

2. BACKGROUND
In this section, we briefly review the theoretical background of

localization. For a more thorough exposition of the concepts which
follow, we refer the interested reader to [14, 3].

In our network model, we assume that nodes are located at dis-
tinct physical locations in some region of space. Let N be a network
in R

d with nodes labeled 1, 2, . . ., n. Let π(i) denote the position
of node i. Suppose the positions of some nodes are known. The
nodes whose positions are known are also called anchors.

Below we assume that nodes have some means by which to mea-
sure the distance between themselves and their neighboring nodes.
Later in this paper, we also consider the case of angle measure-
ments. If the distance between nodes i and j is known, then let dij

denote that distance. Note that the distance between any two an-
chors is known since the positions of all of the anchors are known.
By a consistent assignment of the network N is meant any function
α : {1, 2, . . . , n} → R

d where α(a) = π(a) whenever node a is
an anchor, and for all i, j ∈ {1, 2, . . . , n}, ||α(i)−α(j)|| = dij if
the distance between nodes i and j is known.

If there exists exactly one consistent assignment of N, we say
that the network N is uniquely localizable, or simply localizable.
A node v of N is said to be localizable if for all consistent assign-
ments α for N, we have that α(v) = π(v). There are networks
in which the positions of some can be varied continuously while
simultaneously satisfying all distance constraints. Such networks
have an infinite number of possible position assignments, and are
called flexible. Networks that are not flexible are called rigid. If a
network has a finite number of consistent assignments, it is called
finitely localizable.

0
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3 2

1 1

3

(a) a flip ambiguity
0

3

0

4

4

3

2
1 12

(b) a discontinuous flex ambiguity

Figure 1: Rigid networks with flip and discontinuous flex am-
biguities.

Rigid networks have a finite number of possible position assign-
ments. Rigidity can be combinatorially characterized generically
in the plane by Laman’s condition [22], which expresses the well-
distributedness of distance constraints over the graph. The multiple
possible position assignments of a rigid network in the plane are
due to flip ambiguities and discontinuous flex ambiguities. It is not
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known whether or not in 3D there could be other discontinuous am-
biguities. In a flip ambiguity, a set of nodes is reflected across a line
between a separating pair of nodes. An example is shown in Fig-
ure 1(a). A discontinuous flex ambiguity occurs when the network
becomes flexible upon removal of a single edge and then subject to
a continuous deformation over which at some configuration differ-
ing from the original, the removed constraint becomes satisfied and
can then be reinserted. An example is shown in Figure 1(b).

We are interested in localization in the generic sense, and as
such, a graph-theoretic property for almost all problem instances.
A multi-point p = {p1, . . . , pn} in d-dimensional space is a set
of n points in R

d labeled p1, . . . , pn. A multi-point p is generic
if the coordinates of points in p are algebraically independent over
the rationals. If we assume precise distance measurements, we can
neglect such degeneracies as vanishingly unlikely in random net-
works.

Two multi-points p = {p1, . . . , pn} and q = {q1, . . . , qn} of n
points are congruent if for all i, j ∈ {1, . . . , n}, the distance be-
tween pi and pj is equal to the distance between qi and qj . A point
formation of n points at a multi-point p = {p1, . . . , pn} consists of
p and a simple undirected graph G with vertex set V = {1, . . . , n},
and is denoted by (G, p). If (i, j) is an edge in G, then the length of
edge (i, j) in the point formation (G, p) is the distance between pi

and pj . A network with n nodes is modeled by a point formation
(G, p), where each node corresponds to exactly one vertex of G,
and vice versa, with (i, j) being an edge of G if i and j are distinct
and the distance between the corresponding nodes is known, and
p = {p1, . . . , pn} where pi is the position of the node correspond-
ing to vertex i. We say that G is the graph of the network, and p
is the multi-point of the network. Since almost all multi-points are
generic, we have that the multi-points of networks are almost al-
ways generic. Henceforth, we shall consider mainly networks with
generic multi-points. However, degeneracy may become important
when distance measurements are imprecise. We will return to this
topic in Section 5.

It was shown in [3, 14] that a network is localizable if the grounded
graph of the network consisting of a vertex for each network node
and an edge for every distance measurement and every pair of an-
chors, is globally rigid (triconnected and remains rigid upon re-
moval of any single edge). Specifically, a point formation (G, p)
is globally rigid in R

d if p and q are congruent multi-points in R
d

whenever (G, p) and (G, q) have the same edge lengths. A graph
G is said to be generically globally rigid in R

d if (G, p) is globally
rigid in R

d whenever p in R
d is generic. There are a number of ef-

ficient algorithms for determining if a graph is generically globally
rigid in R

2. Since almost all multi-points are generic, we have that
(G, p) is globally rigid in R

2 for almost all multi-points p in R
2 if

G is generically globally rigid in R
2. A graph that is generically

globally rigid in R
2 is said to be minimally generically globally

rigid in R
2 if the removal of any edge causes the graph to not be

generically globally rigid in R
2.

The computational complexity associated with localizing uniquely
localizable networks has been shown to be NP-hard even for unit-
disk networks [4]. Intuitively, this complexity is linked with expo-
nential growth in possible network configurations due to flip ambi-
guities present before all constraints are taken into consideration.
In spite of the NP-hardness of localization, as we shall see in this
paper, there are large classes of networks for which localization is
efficiently computable.

One type of efficiently localizable network is trilateration net-
works. A graph has a trilateration ordering with seeds v1, v2 and
v3 if its vertices can be ordered as v1, v2, v3, . . . , vn so that v1, v2

and v3 induce a complete subgraph, and each vi, i > 3, is adjacent

to at least three vertices vj where j < i. Graphs with trilateration
orderings are called trilateration graphs and are generically glob-
ally rigid in R

2. We say a network is a trilateration network if its
graph has a trilateration ordering.

A graph has a bilateration ordering with seeds v1, v2 and v3 if
its vertices can be ordered as v1, v2, . . . , vn so that v1 and v2 are
adjacent, and each vi, i > 2, is adjacent to at least two vertices vj

where j < i. Graphs with bilateration orderings are called bilater-
ation graphs, and a network is called a bilateration network if its
graph is a bilateration ordering. An example bilateration graph with
vertex set V is a wheel graph, if there exists a vertex v ∈ V such that
v is adjacent to all other vertices in V , and vertices in V − {v} can
be ordered as v1, . . . , vm such that each vi, i ∈ {2, . . . , m− 1}, is
only adjacent to vi−1 and vi+1, and v1 is adjacent to vm. Figure 2
shows an example of a wheel graph with 6 vertices.

0

1
2

34

5

Figure 2: A wheel graph.

In this paper, we say a network is sparse if its average node de-
gree is less than 10. Iterative localization algorithms based on tri-
lateration have difficulty localizing sparse networks, but we will
show that our algorithm localizes most localizable nodes in sparse
networks.

3. PRECISE LOCALIZATION USING
SWEEPS

The idea of the Sweeps algorithm is related to simple iterated
trilateration. In iterated trilateration, an initial set of three nodes is
fixed and used to define a coordinate system. At each stage of the
algorithm, there is a set of localized nodes and a set of unlocalized
nodes. If an unlocalized node has distance measurements to at least
three localized nodes, its position is calculated and it is added to the
set of localized nodes. Simple iterated trilateration is sub-optimal
in that there are many localizable networks which it cannot local-
ize. Only networks called trilateration networks are completely lo-
calized by iterated trilateration [3, 14]. Wheel networks (Figure 2)
are an example of a class of localizable but non-trilateration net-
works [3, 14]. We will see that all generic wheel networks can be
localized by the Sweeps algorithm, which we now describe.

3.1 The Basic Shell Sweeps Algorithm
The objective of our Sweeps algorithm is to localize a much

larger class of networks than previously possible. In the basic
Sweeps algorithm, as in iterated trilateration, an initial set of three
nodes is fixed. At each stage of the algorithm, there is a set of
finitely localized nodes whose positions have been determined up
to a finite set of possibilities, and a set of unlocalized nodes. We
say that the finitely localized nodes have been “swept”. If an un-
localized node has distance measurements to at least two finitely
localized nodes, it calculates all possible positions for itself based
on the consistent combinations of these nodes’ positions. Two node
positions pu and pv are consistent if for every node w whose set of
possible positions Pw is used in computing both pu and pv , only
a single possibility pw ∈ Pw is used. In other words, if pu and
pv both depend on a position of w, they must depend on the same
possibility. This is illustrated in Figure 3.
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u’
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1
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Figure 3: A network illustrating consistency. The sweep starts
at nodes 0 and 1. Node w is then finitely localized to possibilities
w and w′. Node u is then finitely localized using the unique
position of node 1 and each of the two possible positions of node
w. Possibilities u and u1 are derived from w, while u′ and u′

1

are derived from w′. The position of v is not consistent with u
′

and u
′
1 because they depend on w

′
while v depends on w.

Let us consider a run of Sweeps on the wheel network shown in
Figure 2. We use vi to refer to node i in the figure. We fix the
coordinates of v0, v1, and v2 so that v0 = (0, 0), v1 = (a, 0) and
v2 = (b, c) for some a, c > 0. Knowledge of the lengths of v2v3

and v0v3 establishes the position of v3 with a binary ambiguity. For
each of these possible positions for v3, knowledge of the lengths
v3v4 and v0v4 will establish the position of v4 with a binary ambi-
guity, making four possibilities in all. Lastly, we obtain eight pos-
sible positions of v5. For an analogously labelled wheel network of
arbitrary size k + 1, in a similar fashion, we obtain the positions of
v6, v7, . . . , vk with 24, 25, . . . , 2k−2 ambiguities. However, vk is
also connected to v0 and v1. Knowledge of the associated lengths
resolves the ambiguity in the position of vk. This in turn allows
resolution of the ambiguity in vk−1, vk−2, . . . , v3, and in this way
the unique localization of the network is established.

We have seen that if we run Sweeps on the wheel network, we
run into exponential growth in possible node positions. One chal-
lenge facing the Sweeps algorithm is to avoid this effect if possible.
To this end, we eliminate possibilities as soon as it is possible to do
so. After a node is added to the set of swept nodes, all of its dis-
tance measurements to other already swept nodes are considered,
potentially eliminating some of its possible positions, and some of
the possible positions of already swept nodes. Note that there exist
examples, such as wheel networks, for which there are no chances
to eliminate any possibilities until the very last edge is added.

We further reduce the growth in possible positions by choosing
a particular sweep ordering. In the so-called shell Sweeps, we per-
form a breadth-first sweep in which at each stage, all nodes having
a distance measurement to at least two already swept nodes are
placed earlier in the ordering than all other nodes. In localizing the
wheel network of Figure 2, this would result in the order v0, v1, v2,
v3, v5, v4, with 1, 1, 1, 2, 2, and 4 respectively being the maximum
number of possible positions, instead of the ordering v0, v1, v2, v3,
v4, v5 of the naive method, where we have 1, 1, 1, 2, 4, and 8 re-
spective maximum possible node positions. In typical random and
regular networks, this approach dramatically reduces the number
of possibilities that the algorithm has to maintain.

The complete shell sweeps algorithm is shown in Figure 4. The
correctness of the algorithm will be analyzed in Section 4.

Sweeps succeeds in finitely localizing all nodes in bilateration
networks [15, 16], which as we saw in Section 2 are defined anal-
ogously to trilateration networks [3, 14]. While bilateration net-
works are rigid, they are not necessarily globally rigid nor are glob-
ally rigid networks necessarily bilateration networks In Figure 5
there are two example of globally rigid graphs that are not bilat-

ShellSweep(Node u, Node v, Node w)
List Order = Order(u, v, w)
foreach (Vertex x in Order)

List Ancestors = (Neighbors of x earlier in Order)
Bilaterate(x, Ancestors(0), Ancestors(1))
for (i = 2; i < Ancestors.length; i++)

UpdateBilateration(x, Ancestors(i))

Order(Node u, Node v, Node w)
List Order = new List
Order.add(u, v, w)
List Shell = new List
do

foreach (Vertex x with at least 2 neighbors in Order)
Shell.add(x)

foreach (Vertex x in Shell)
Order.add(x)

while (Shell != null)
return Order

Bilaterate(Node u, Node v, Node w)
Pu = new List
foreach (Position pv of Node v)

foreach (Position pw of Node w)
if (Consistent(pv , pw))

[pu1, pu2] = CircleIntersection(pv , pw , duv , duw)
pu1.AncestorsByDepth = MergeAncestors(pu , pv)
pu2.AncestorsByDepth = pw1.AncestorsByDepth
Pu.add(pu1, pu2)

u.setPositions(Pu)

UpdateBilateration(Node u, Node v)
foreach (Position pu of Node u)

foreach (Position pv of Node v)
if (Consistent(pu , pv))

duv = Measured distance between u and v
if (pu.distanceTo(pv ) == duv)

pu.valid = true
pv.valid = true
pu.AncestorsByDepth = MergeAncestors(pu , pv)

foreach (Position pu of Node u)
if (pu.valid == false)

Pu.remove(pu)
foreach (Position pv of Node v)

if (pv .valid == false)
Pv .remove(pu)

Consistent(Position pu, Position pv)
Position[] Ancestorsu = pu.AncestorsByDepth
Position[] Ancestorsv = pv.AncestorsByDepth
for (i = 0; i < max(Ancestu .length, Ancestv .length); i++)

Ancestu = Ancestorsu[i]
Ancestv = Ancestorsv [i]
if (Ancestu != null and Ancestv != null)

if (Ancestu != Ancestv )
return false

return true

Figure 4: The shell Sweeps localization algorithm.
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eration graphs. We have never seen the graph in part (a) of the
figure arise in practice, and the union of two globally rigid sub-
networks connected by a non-bilaterable “bridge” as in part (b) is
uncommon. We will exhibit in Section 5 that many globally rigid
networks, especially globally rigid unit disk networks, are also in
fact bilateration networks. This is significant because globally rigid
bilateration networks are uniquely localized by Sweeps.

(a) The bipartite graph K3,4 (b) Two copies of K5

Figure 5: Graphs which are globally rigid but not bilateration
graphs.

3.2 Sweeps with Distance and Angle Measure-
ments

The Sweeps algorithm is very well suited to incorporate angle
measurements in addition to distance information. An angle be-
tween two edges along with their lengths determines the distance
between their distinct endpoints. Therefore, measuring the angle
between every two distance measurements incident on a node is
equivalent to “doubling” the network, i.e., adding distance mea-
surements between all nodes within two hops of each other.

Doubling a connected network gives a bilateration network [3,
14, 2], so this means that the Sweeps algorithm will succeed in
finitely localizing a connected network with angle information. Fur-
thermore, doubling a 2-edge connected network gives a globally
rigid network, so it follows that doubling a 2-edge connected net-
work gives a globally rigid bilateration network that Sweeps will
uniquely localize.

As 2-edge connectivity is a mild condition on the connectivity of
a network relative to the high density requirements of trilateration-
based localization, this application of Sweeps could be very useful.
An example scenario is an urban setting, where sensors could be
deployed along streets in a minimally 2-edge connected fashion
and still localize.

3.3 Sweeps with Noisy Distance Measurements
The Sweeps algorithm can be extended to handle noisy measure-

ments. As noted in previous studies (e.g., [28]), the larger the noise
present in distance measurements, the more likely to occur are de-
generate cases in which distance measurements to three nodes do
not uniquely determine a node’s position. This means that the basic
Sweeps algorithm cannot succeed in always choosing the correct
flip configuration. Because of this, we cannot eliminate potential
node positions as we did before, or else we risk eliminating the
correct configuration. We found that elimination criteria which use
constraints on the position of only a single node result in correct
positions being discarded with high frequency.

What we do instead is to consider groups of nodes together when
deciding among flip configurations. Not all groups however have
uniquely determined positions. Thus, we apply rigidity theory and
identify groups of uniquely localizable nodes by identifying glob-
ally rigid components.

Specifically, we extend the shell Sweeps algorithm to partition
nodes in each shell into two groups: those which are uniquely
localizable when combined with constraints to nodes in previous

shells, and those which are not. After nodes in a shell are finitely
localized, all consistent combinations of positions of uniquely lo-
calizable nodes are produced. For each of these configurations, we
calculate the squared discrepancy between the induced inter-node
distances and the measured distances, which measures the stress
of the configuration,

P

(i,j)∈Egr
(|xi − xj | − d̂ij)

2, where Egr

is the set of edges in the globally rigid component, xi and xj are
computed possible positions for nodes i and j, and d̂ij is the noisy
measured distance between them. We use a simple approach in
which we first eliminate the highest-stress configurations, and then
choose the remaining configuration which violates the fewest unit-
disk graph constraints. A different criterion could be used, but we
have found this condition to work best among those tested. This
approach works because each stage (shell) of the shell Sweep typi-
cally expands radially outward from previous shells. In general, an
incorrectly flipped point tends to lie “inside” an earlier shell, at a
position where it would have edges which it in fact does not have
to previously swept nodes, while the correct position lies “outside”,
where it is less likely to violate unit-disk graph constraints.

The complete algorithm handling noisy measurements is out-
lined in Figure 6.

GloballyRigidShellSweep(Node u, Node v, Node w)
List Order = Order(u, v, w)
for (shellNum = 0; shellNum < numShells; shellNum++)

foreach (Vertex x in Order and in Shell[shellNum])
List Ancestors = (Neighbors of x earlier in Order)
Bilaterate(x, Ancestors(0), Ancestors(1))

FindGloballyRigidComponents(
S

i≤shellNum Shell[i])
foreach (GRComponent)

Eliminate high stress configurations
Choose config. violating fewest unit-disk graph constraints

FindGloballyRigidComponents(Nodes)
if(̃induced graph not triconnected) then

recurse on each triconnected component
else if (not redundantly rigid) then

recurse on each redundantly rigid component
else return Nodes

Figure 6: Globally rigid shell Sweeps localization algorithm for
noisy distance measurements.

4. ANALYSIS OF SWEEPS
Let N be a localizable network in the plane with nodes labeled

1, . . . , n. Let π(1), . . . , π(n) denote the positions of nodes 1, . . . , n
respectively. Suppose the set of node positions is generic, and more
specifically, no three nodes are collinear. Let G = (V, E) be the
graph of N, and assume G has a bilateration ordering. In the fol-
lowing we will show how the Sweeps algorithm can compute a
position for each node such that all known inter-node distances are
satisfied. The actual node positions can then be obtained by a Eu-
clidean transformation using anchor positions.

For v ∈ V , let N (v) denote the set of all nodes adjacent to
v in G. The Sweeps algorithm begins by selecting a bilateration
ordering [v] = v1, . . . , vn of G. Let S denote the set of seed nodes
of [v]: S = {v1, v2, v3}. An ordering of all of the nodes of G is
called a sweep of N just in case all of the nodes in S precede all
of the other nodes, and there is at least one node in V − S that
is adjacent to a node preceding it in the ordering. An assignment
is any function α : U → R

2 where U ⊂ V . Let D(α) denote
the domain of the assignment α. Two assignments α and α′ are
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said to be consistent with each other if α(u) = α′(u) for all u ∈
D(α) ∩ D(α′). Note that α and α′ are consistent with each other
if D(α)∩D(α′) = ∅. For p ∈ R

2 and a positive real number r, let
C(p, r) denote the circle of radius r centered at p.

The Sweeps algorithm selects the first sweep to be the bilatera-
tion ordering [v] and computes the first sweep by computing a set
S(vi, 1) for each i ∈ {1, . . . , n} as follows. Assign a position to
each of the seed nodes v1, v2, v3 so that the known inter-node dis-
tances among them are satisfied. For seed node vi, i ∈ {1, 2, 3}, let
pvi denote the position assigned to vi; define αpvi

to be the assign-
ment with domain {vi} where αpvi

(vi) = pvi ; define S(vi, 1) =
{(pvi , αpvi

)}.
The Sweeps algorithm recursively computes the sets S(vi, 1),

i > 3, as follows. For vi, i > 3, let M(vi) = N (vi)∩{v1, . . . , vi−1}.
Since [v] is a bilateration ordering, M(vi), i > 3, must be a set of
at least two elements. Let u1, . . . , um be the elements of M(vi).
Let S(vi, 1) be the set of all (p, αp) computed as follows:

1. There exist (puj , αpuj
) ∈ S(uj , 1), j ∈ {1, . . . , m}, such

that αpuj
is consistent with αpuh

for all j, h ∈ {1, . . . , m},
and p ∈ T

j∈{1,...,m} C(puj , dujvi).

2. Let αp(vi) = p. For w ∈ S

h∈{1,...,m} D(αpuh
), we let

αp(w) = αpuj
(w) where w ∈ D(αpuj

) for some j ∈
{1, . . . , m}.

Note that αp is well defined because αpuj
is consistent with

αpuh
for all j, h ∈ {1, . . . , m}, and only S(uj , 1), j ∈ {1, . . . , m},

are used in computing S(vi, 1). It is straightforward to show that
S(u, 1) is non-empty and consists of a finite number of elements
for each u ∈ V . We say Sweeps has computed the first sweep when
all S(vi, 1), i ∈ {1, . . . , n}, are computed.

Sweeps computes the kth sweep, k > 1, by selecting a sweep
[u] distinct from the previous k − 1 sweeps, and computing a set
S(ui, k) for each i ∈ {1, . . . , n} as follows. Note that [u] does
not have to be a bilateration ordering if it is not the first sweep. Let
M(ui) = N (ui)∩ {u1, . . . , ui−1}. Let S(ui, k) = S(ui, k − 1)
if i ∈ {1, 2, 3} or M(ui) = ∅.

Consider ui, i > 3, where M(ui) is non-empty. Let w1, . . . , wm

be the elements of M(ui). Let S(ui, k) be the set of all (p, αp)
computed as follows:

1. There exist (p,α′
p) ∈ S(ui, k − 1) for some α′

p, and also
(pwj , αpwj

) ∈ S(wj , k), j ∈ {1, . . . , m}, such that the

assignments α′
p and αpwj

, j ∈ {1, . . . , m}, are pairwise
consistent, and p ∈ T

j∈{1,...,m} C(pwj , duiwj ).

2. Define αp as follows: For x ∈ D(α′
p)∪

S

h∈{1,...,m} D(αpwh
),

let αp(x) = α′
p(x) if x ∈ D(α′

p), and let αp(x) = αpwj
(x)

if x ∈ D(αpwj
) for some j ∈ {1, . . . , m}.

Note that αp is well defined because the assignments α′
p and

αpwj
, j ∈ {1, . . . , m}, are pairwise consistent, and only S(ui, k−

1) and S(wj, k), j ∈ {1, . . . , m}, are used in computing S(ui, k).
It is straightforward to show that S(w, k) is non-empty and consists
of a finite number of elements for each w ∈ V . We say Sweeps has
computed the k-th sweep when all S(ui, k), i ∈ {1, . . . , n}, are
computed.

A path from node a to b in G is a sequence of nodes a1, . . . , al

where a is adjacent to a1, ai is adjacent to ai+1, i ∈ {1, . . . , l−1},
and al is adjacent to b. Let [w] = w1, . . . , wn be a sweep. For
wj ∈ V−S , define G(wj , [w]) as the subgraph of G induced by wj

and all nodes wi, i < j, where wi is adjacent to wj or there exists
a path wi1 , . . . , wim from wi to wj such that i < ik < ik+1 < j
for k ∈ {1, . . . , m−1}. If node wj is in G(wi, [w]), then we write
wj ∈ G(wi, [w]).

LEMMA 1. Suppose Sweeps has computed k sweeps where k ≥
1, and let [w] be the kth sweep. Suppose (pu, αpu) ∈ S(u, k)
where u ∈ V − S .

1. If node v ∈ G(u, [w]), then v ∈ D(αpu).

2. If nodes a and b are adjacent in G(u, [w]), then ||αpu (a) −
αpu(b)|| = dab.

3. If v ∈ S and v ∈ D(αpu), then αpu(v) = pv , where pv is
the position assigned to v.

Proof: See Appendix. �

Consider u ∈ V − S . Let N1(u) denote the set of nodes in
V adjacent to u. Suppose for some integer i ≥ 1, Nj(u), j ∈
{1, . . . , i} have been determined. Let Ni+1(u) denote the set of
nodes w ∈ V where w /∈ S

j∈{1,...,i} Nj(u) and w is adjacent to
a node in Ni(u) − S . Since there are a finite number of nodes,
there can be only a finite number of sets generated this way. Sup-
pose we have h sets generated this way: N1(u), . . . ,Nh(u). We
call Ni(u), i ∈ {1, . . . , h}, the path sets of node u. Let un =
|S

i∈{1,...,h} Ni(u)−S|+1. Select any un elements of {4, . . . , n}
and label them as i1, i2, . . . , iun so that i1 < i2 < . . . < iun .
We construct a “complete sweep” for u as follows. Assign in-
dices 1 to 3 to nodes in S in any manner, and assign index iun

to node u. Assign indices iun−1 to iun−1−|N1(u)−S| to the nodes
in N1(u) − S . Similarly, assign indices iun−1−|N1(u)−S|)−1 to
iun−1−|N1(u)−S|)−1−|N2(u)−S| to the nodes in N2(u) − S . And
so on. Assign the indices in {4, . . . , n} − {i1, . . . , iun} to the re-
maining nodes in any manner. The resulting ordering c1, . . . , cn is
a sweep since the nodes in S precede all other nodes, and node u
is adjacent to at least one node preceding it. We call this ordering a
complete sweep for u.

LEMMA 2. Let u ∈ V−S , and suppose u has path sets N1(u),
N2(u), . . . ,Nh(u).

1. The set
S

i∈{1,...,h} Ni(u) is equal to the set of all nodes
x ∈ V that is either adjacent to u or has a path x1, . . . , xm

to u, where xi ∈ V − S , i ∈ {1, . . . , m}.

2. Suppose [c] is a complete sweep for node u. Then G(u, [c])
is the subgraph of G induced by u and all nodes x ∈ V that
is either adjacent to u or has a path x1, . . . , xm to u, where
xi ∈ V − S , i ∈ {1, . . . , m}.

Proof: See Appendix. �

Consider the subgraph H of G induced by nodes in V − S . Let
H1, . . . , Hm be the maximally connected components of H. Let
ui be a node of Hi for each i ∈ {1, . . . , m}. Construct a com-
plete sweep for u1, then use the left over indices to construct a
complete sweep for u2, and so on. We call the resulting sweep a
complete sweep of the network, and we say that the sweep is based
on u1, . . . , um. Lemmas 1 and 2 can be used to show the follow-
ing:

LEMMA 3. Select two sweeps, the first of which is the bilatera-
tion ordering [v] of G, and the second of which is a complete sweep
of the network. Let u1, . . . , um be the nodes on which the complete
sweep is based.
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1. S(ui, 2) is a singleton for all i = 1, . . . , m.

2. Suppose S(ui, 2) = {(pi, αpi)} for i ∈ {1, . . . , m}. Define
the assignment α : V → R

2 as α(w) = αpi(w) if w ∈
D(αpi). Then α is well defined, and ||α(w)−α(x)|| = dwx

for all adjacent nodes w and x in G.

A direct consequence of Lemma 3 is the following:

THEOREM 1. A localizable bilateration network N can be lo-
calized by the Sweeps algorithm in two sweeps, the first of which
is a bilateration ordering, and the second of which is a complete
sweep of the network, followed by an Euclidean transformation us-
ing anchor positions.

5. EVALUATIONS

5.1 Precise Distance Measurements
We first evaluate the performance of Sweeps with precise dis-

tance measurements. We generate uniformly random networks of
250 nodes in a square region. We do not consider anchors, as we
are interested here in how many nodes Sweeps can localize. In
all our measurements, we aggregate the results from 100 network
instances at each sensing radius and compute 95th-percentile con-
fidence intervals for each quantity of interest.

We use sensing range to control the density and connectivity of
the network. In random networks, there is a sensing radius r which
ensures k-connectivity as well as trilaterability with high proba-
bility [3]. This is important because 3-connectivity is a necessary
condition for unique localizability. The results of this section all
stem from the fact that an average degree will ensure bilaterability
with a certain (possibly low) probability, but this average degree is
lower than that required for trilaterability with the same probability.
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Figure 7: Numbers of nodes localizable, Sweeps localized, tri-
lateration localized, and finitely localized vs. average network
connectivity in random networks.

Figure 7 reports our results. To generate this figure, we first iden-
tify all theoretically uniquely localizable nodes by finding the glob-
ally rigid components. Then we start a sweep at a random edge in
the largest globally rigid component. The number of uniquely lo-
calizable nodes swept by our algorithm is labeled as Swept. From
this figure, it is clear that the number of swept nodes is very close
to the number of uniquely localizable nodes. Our algorithm also
identifies nodes with finite but not uniquely determined positions.
These nodes are labeled as Finite. For comparison, this figure also
plots the number of nodes whose positions are determined by iter-
ated trilateration. We observe that our algorithm significantly out-
performs trilateration.
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Figure 8: Ratios of the number of nodes localized to the number
of nodes that is theoretically possible to localize.

The performance gap between our algorithm and trilateration is
highlighted in Figure 8. We find that iterated trilateration always
localizes fewer nodes than a sweep started at the same nodes be-
cause a trilateration network is necessarily a bilateration network
but the converse is not true. Specifically, Sweeps localizes at least
90% of uniquely localizable nodes with high confidence in ran-
dom networks when the network density varies in a wide range.
For comparison, trilateration guarantees localization of only 40%
of nodes. Most sequential algorithms operate only on trilateration
graphs [28], so to the best of our knowledge, no such algorithm
succeeds in localizing more nodes than Sweeps.

Figure 8 also illustrates the transition from non-localizable to lo-
calizable and sweepable networks. At around average degree 6 to
8, Sweeps localizes a lower proportion of localizable nodes than it
does elsewhere. It was observed and theoretically justified in [17]
that this is the connectivity level at which networks start making
the transition from containing many small globally rigid compo-
nents to a single large component. At this density, large globally
rigid components start to absorb small peripheral components, and
non-bilaterable structures appear at the edges of the globally rigid
component. Even in this problematic regime, the extent of local-
ization remains around 90%.
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As worst-case exponential computational complexity is a poten-
tial concern, we test the running time of Sweeps. We found that po-
tential exponential growth in possibilities rarely develops to a point
where the algorithm fails to complete in minutes on a consumer PC
even for networks of a thousand nodes. At a given density, typi-
cally, the running time of Sweeps grows linearly with increasing
number of nodes. It localizes more than 95% of uniquely localiz-
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able nodes in a network of one-thousand nodes with average degree
less than five in two minutes on a consumer PC with an Intel Xeon
CPU of 2.80 GHz. Thus, a potentially more serious problem is state
keeping. We run Sweeps and keep track of the maximum number
of possibilities kept at any time for any node over the course of the
algorithm, the mean number of possibilities kept for all nodes, and
the 95th percentile number of possibilities. These numbers are pre-
sented in Figure 9. We observe that on these 250-node networks,
the total number of possibilities maintained by the algorithm per
node is less than 50 with high confidence. While we will not show
the results here, we also tracked the average number of possibilities
kept per node as network size increased while holding average de-
gree constant at 6, and found that this quantity remained constant
over the entire range tested.
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Figure 10: Histogram of maximum number of possible posi-
tions of each node kept by the Sweeps algorithm at different
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Intermediate densities around the above-mentioned transition be-
tween many small globally rigid clusters and a single globally rigid
component again prove the most challenging for the algorithm. At
this density, even though we sweep on a uniquely localizable com-
ponent, there are sometimes a few shells over which several bilat-
erations take place consecutively without any redundant edges to
eliminate possibilities. In Figure 10, we see further verification of
the efficiency of Sweeps. For the most difficult density of around
average degree 6, 90% of nodes never have more than 8 possibili-
ties. Less than 0.5% ever have more than 256 possible positions.
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Figure 11: Numbers of nodes localizable, Sweeps localized, tri-
lateration localized, and finitely localized vs. average network
connectivity in random networks deployed around an opaque
obstacle.

We also run our simulations on anisotropic networks in which
250 nodes are randomly deployed in a ring around a large opaque
rectangular obstacle which occupies one-half of the deployment
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Figure 12: Ratios of the number of nodes localized to the num-
ber of nodes that is theoretically possible to localize. Even in
the presence of a large obstacle, Sweeps consistently localizes a
high percentage of localizable nodes.

area. The results on the extent of Sweeps localization and its com-
plexity are very much similar to the random case. Some of these
results are shown in Figures 11 and 12.

5.2 Sweeps in Regularly Deployed Networks
In this section, we consider localization on regularly deployed

networks. Random deployment can have unpredictable spatial cov-
erage and localizability due to local non-uniformity in node place-
ment.

In order to study localization on regular networks, we implement
a mobility control rule that allows us to eliminate empty regions in
the network and achieve a target average node degree. We initially
deploy nodes randomly at a high density and then evolve the net-
work to achieve the target average node degree uniformly. The
details of the mobility scheme are specified in Appendix B. The
standard deviation in node degree after mobility control is consis-
tently less than half of that of a network randomly deployed across
the same region.
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Figure 13: Numbers of nodes localizable, Sweeps localized, tri-
lateration localized, and finitely localized vs. average network
connectivity in regular networks.

One might think that regular networks would be straightforward
to localize, but this turns out not to be the case. For instance, at low
density, the near-symmetries which appear can make localization
more difficult for global optimization approaches by making local
minima more likely. On uniquely localizable unions of wheel net-
works (a honeycomb pattern), SDP localization often outputs a flip
configuration even with no noise present in the distance measure-
ments. As we saw before and will soon see again, sequential ap-
proaches based on trilateration networks are also likely ineffective
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on sparse regularly deployed networks, especially wheel networks.
We see in Figure 13 that at varying regular network density, the
proportion of localizable nodes which are trilaterable is very low
even at high density, while Sweeps is again effective.
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ber of nodes that is theoretically possible to localize in regu-
lar networks. Sweeps performs particularly well on these net-
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The performance gap between our algorithm and that of trilater-
ation on regular networks is highlighted in Figure 14. We observe
that Sweeps is still effective, while the performance of trilateration
is extremely poor. If we compare these results with those for ran-
dom networks in Figure 8, we can see that Sweeps is more effec-
tive in regular networks, while trilateration-based approaches and
global optimization are less effective in this setting.

5.3 Sweeps with Noisy Distance Measurements
Finally, we evaluate the performance of the version of our Sweeps

algorithm adapted for noisy distance measurements. We add zero-
mean Gaussian noise with standard deviation of 1, 5, and 15% of
the sensing range to all distance measurements. 2 The number of
shells upon which our algorithm successfully localizes nodes de-
pends on the magnitude of the distance errors. We have found that
the localization out to five shells is robust to flip configurations at
the noise levels tested.
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Figure 15: Cumulative proportion of nodes with less than given
localization error for a random deployment of 50 nodes over an
L-shaped region.

In evaluation on those networks upon which global optimization
approaches tend to do poorly, we find that Sweeps remains effec-
tive. On non-convex deployments where MDS struggles, Sweeps
2We do not consider the case in which there may be severe outliers
in distance measurements. This is a challenging problem that has
begun to be investigated by Berger et al. [6].
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Figure 16: Cumulative proportion of nodes with less than given
localization error for a 26-node uniquely localizable union of
wheel networks.

computes good position estimates, as shown in Figure 15. Recent
improvements to MDS [24] improve the estimation of the complete
distance matrix, but do so by bootstrapping from anchor positions.
Sweeps requires no anchors, and we have simulated the anchor-free
case. On regular deployments where SDP usually produces a flip
configuration, Sweeps also succeeds, as shown in Figure 16.
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Figure 17: Cumulative proportion of nodes with less than given
localization error using Sweeps, MDS, and SDP.

Finally, we simulate Sweeps on random networks of 100 nodes
and 5 anchors at an average degree of 8, with 5% Gaussian noise
in all distance measurements. We then start a sweep at each an-
chor and limit the depth of the sweep to five in order to avoid the
possibility of large flip errors. We find this approach effective, as
localized nodes have lower estimation errors on average than nodes
localized using MDS [37] or SDP [7], as shown in Figure 17. This
is partly due to the fact that Sweeps localizes only localizable nodes
and avoids large errors due to unrecognized flip configurations.

6. RELATED WORK
Network localization is an active research field (e.g., [5, 9, 10,

18, 19, 20, 23, 24, 25, 33, 38]). The previous approaches can be
roughly classified into two types. The first type is called coarse-
grained or range free localization. The focus of this paper is on
the second type—fine-grained localization. Thus, we review only
previous work on fine-grained localization (e.g., [1, 7, 8, 11, 13,
21, 28, 29, 30, 31, 32, 34, 35, 36, 39]). Eren et al. studied the theo-
retical conditions for fine-grained localization in [14, 3, 17]. These
conditions are applied in various settings. For instance, in [32], the
authors proposed an algorithm using mobility to obtain distance
measurements which result in globally rigid constraint structures.
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Many fine-grained localization algorithms are based on global
optimization. In particular, Biswas et al. applied semidefinite pro-
gramming (SDP) to fine-grained localization [8, 7]. Their algo-
rithms are effective in relatively dense over-constrained networks.
Specifically, their algorithms require that Ω(n2) pairs of nodes know
their relative distances, where n is the number of sensor nodes in
the network. In sparse networks or networks with sparse subre-
gions, their algorithms may not be able to correctly localize. An
alternative to SDP is multidimensional scaling (MDS) (e.g., [21,
25, 36]). As we discussed in Section 1, MDS requires an initial
estimation of the complete distance matrix, which may be avail-
able only in dense networks. Neither SDP or MDS can identify all
positions.

The Sweeps algorithm belongs to the type of sequential local-
ization algorithms. Other sequential localization algorithms have
been proposed before (e.g., [28, 35]). In particular, in [28], Moore
et al. proposed a sequential localization algorithm based on trilat-
eration graphs under noisy distance measurements. However, their
algorithm is effective only in relatively dense networks, while our
Sweeps algorithm localizes a much larger class of network.

In prior work [15, 16], Fang et al. first proposed the idea of
sweeping through a bilateration network in a sequential fashion. In
their algorithm, possibly non-consistent combinations of node po-
sitions were used to compute further possibilities. In this paper we
improve computational complexity using consistent position com-
binations and shell sweeps, extend the idea to handle angle and
noisy measurements, and provide extensive evaluations.

7. CONCLUSION AND FUTURE WORK
Our work succeeds in provably localizing sparser networks. One

reason we believe this is an important contribution is that it ex-
tends, in practice, the class of networks for which feasible localiza-
tion algorithms are known to those with little more than the mini-
mum number of constraints necessary for any algorithm to succeed.
Since Sweeps is an incremental approach, it will be amenable to a
distributed implementation, but we are leaving this for future work.

We have also shown that our algorithm exhibits a synergy with
a scheme for coverage-optimizing controlled mobility, resulting in
a promising unified design for simultaneous spatial coverage, lo-
calizability optimization, and localization. We envision joint con-
trolled mobility-localization to be an eminently practical and ef-
fective network model with which to circumvent the inherent NP-
hardness of localization by altering network connectivity through
mobility so as to be efficiently localizable by a particular algorithm.
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APPENDIX

A. PROOFS OF LEMMA 1 AND LEMMA 2
Proof of Lemma 1:

1. Suppose v ∈ G(u, [w]). If v = u or v is adjacent to u, then
it is a direct consequence of how αpu is computed in Sweeps
that u ∈ D(αpu). So v ∈ D(αpu) when v = u.

Suppose v 	= u. This means in the kth sweep [w], we have a
path wi1 , . . . , wim from v to u. Since (pu, αpu) ∈ S(u, k),
this means there is a (pwim

, αpwim
) ∈ S(wim , k) such that

αpwim
is consistent with αpu and D(αpwim

) ⊂ D(αpu).
This is a direct consequence of how Sweeps computes S(u, k).
Similarly, (pwim

, αpwim
) ∈ S(wim , k) implies there exists

(pwim−1
, αpwim−1

) ∈ S(wim−1 , k) such that αpwim−1
is

consistent with αpwim
and D(αpwim−1

) ⊂ D(αpiwm
) ⊂

D(αpu). By repeating this argument for wim−2 , . . ., wi1 , v,
we get that there is (pv, αpv ) ∈ S(v, k) such that D(αpv ) ⊂
D(αpu). Since v ∈ D(αpv ), we have that v ∈ D(αpu).

2. Suppose nodes a and b are adjacent nodes in G(u, [w]). As
shown above, a, b ∈ D(αpu). If a, b ∈ S , then it is easy
to see that ‖ αpu(a) − αpu(b) ‖= dab. So suppose at
least one of a or b is not in S , and without loss of gener-
ality, suppose a precedes b in [w]. Hence, there is a path
wi1 = b, wi2 , . . . , wim from a = wi0 to u = wim+1 where
i0 < i1 < . . . < im < im+1.

For any (pb, αpb) ∈ S(b, k), it is straightforward to show that
a ∈ D(αpb) and ‖ αpb(a) − αpb(b) ‖= dab.

Using the same logic as in part 1, we have that there exist
(pwi1

, αpwi1
) ∈ S(wi1 , k), (pwi2

, αpwi2
) ∈ S(wi2 , k), . . .,

(pwim
, αpwim

) ∈ S(wim , k) such that αpwil
is consistent

with αpwil+1
for all l ∈ {1, . . . , m − 1}, and αpwim

is con-

sistent with αpu . Since wi1 = b, we have that ‖ αpwi1
(a) −

αpwi1
(b) ‖= dab. This and part 1 imply ‖ αpwim

(a) −
αpwim

(b) ‖= dab. Hence, we get ‖ αpu(a) − αpu(b) ‖=
dab.
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3. This is direct consequence of the Sweeps algorithm. �

Proof of Lemma 2:

1. Suppose x ∈ S

i∈{1,...,h} Ni(u). This implies x ∈ Ni(u)

for some i ∈ {1, . . . , h}. Hence x is either adjacent to u or to
some xi−1 ∈ Ni−1(u)−S . Similarly xi−1 is either adjacent
to u or to some xi−2 ∈ Ni−2(u) − S . And so on until we
get x1 ∈ N1(u) − S . So either x is adjacent to u or there is
a path xi−1, xi−2, . . . , x1 from x to u where xj ∈ V − S for
all j ∈ {1, . . . , i − 1}.
Suppose x is adjacent to u. Then x ∈ N1(u). Now suppose
x ∈ V has a path xm, xm−1, . . . , x1 to u where xj ∈ V −S ,
for all j ∈ {1, . . . , m}. By definition of path sets , x1 ∈
N1(u) since it is adjacent to u. Since x1 ∈ N1(u) − S , we
have that x2 ∈ S

i=1,2 Ni(u) since x1 and x2 are adjacent.
Suppose for some g ∈ {1, . . . , m − 1} that all xl, l ≤ g,
are in

S

i∈{1,...,h} Ni(u). Suppose xg ∈ Nig (u). Consider
xg+1. Since xg+1 is adjacent to xg and xg ∈ Nig (u) − S ,
we have that xg+1 ∈ Nig+1(u)∪Nig . . .∪N1. If ig+1 > h,
then by definition, u cannot have just h path sets. Hence,
ig+1 ≤ h and x ∈ S

i∈{1,...,h} Ni(u). By induction, all
xj ∈ S

i∈{1,...,h} Ni(u) for all j ∈ {1, . . . , m}. It follows
that x ∈ S

i∈{1,...,h} Ni(u) since x is adjacent to xm and
xm ∈ S

i∈{1,...,h} Ni(u) and xm /∈ S .

2. We showed above that
S

i∈{1,...,h} Ni(u) is equal to the set
of all nodes x ∈ V that is either adjacent to u or has a path
x1, . . . , xm to u where xi ∈ V −S , i ∈ {1, . . . , m}. Hence,
we just have to show that G(u, [c]) and

S

i∈{1,...,h} Ni(u) ∪
{u} contain the same nodes. Note that u ∈ G(u, [c]) by
definition.
Suppose x ∈ S

i∈{1,...,h} Ni(u). This implies x ∈ Nk(u)

for some k ∈ {1, . . . , h}. Hence, x is adjacent to u or some
xk−1 ∈ Nk−1(u)−S . That xk−1 ∈ Nk−1(u) implies xk−1

must be adjacent to u or to some xk−2 ∈ Nk−2(u) − S , and
so on.
If x is adjacent to u, then the index of x in [c] must pre-
cede that of u by construction of the complete sweep. Hence
x ∈ G(u, [c]). If x is not adjacent to u, then there is a path
xk−1, . . . , x1 from x to u where xi ∈ Ni(u) − S for all
i ∈ {1, . . . , k − 1}. By definition of the complete sweep, we
know that the indices assigned to nodes in Na(u) − S must
be greater than all the indices assigned to nodes in Nb(u)−S
if a < b, and the index assigned to u is greater than the in-
dex assigned to any node in

S

i∈{1,...,h} Ni(u). Therefore,
there is a path xk−1 = cik−1 , . . . , x1 = ci1 from x = cik

to u = ci0 where ik < ik−1 < ik−2 < . . . < i1 < i0. By
definition, x ∈ G(u, [c]).
Now suppose x ∈ G(u, [c]) and x 	= u. If x /∈ S , then it
follows from the definition of G(u, [c]) and part 1 above that
x ∈ S

i∈{1,...,h} Ni(u). Suppose x ∈ S . The localizability
of N implies that each x ∈ S must have a path to u that does
not include any other node in S . Hence, it follows from part
1 that x ∈ S

i∈{1,...,h} Ni(u). �

B. MOBILITY CONTROL SCHEME FOR
COVERAGE

Another motivation for studying localization algorithms for sparse
networks is the joint objective to improve the coverage of the net-
work where the coverage of a network is defined to be the union of
the coverage of each node in the network. A dense network may
be relatively easy to localize, but its coverage is reduced because

nodes are placed near to each other to guarantee the network’s den-
sity while they should spread out to improve the network’s cover-
age. To dynamically improve the network’s coverage, we propose
a simple but effective distributed method that guides each node’s
movements using only its distance measurements to its neighbors.

Consider a connected network of mobile agents each of which
has a sensor with sensing radius R. We say agent j is a neighbor
of agent i if agent j is within sensing range of agent i. Recently,
in studying the coordinated dispersion of groups of mobile agents,
one mobility control rule has been studied requiring that each robot
moves away from its nearest neighbor. Using the notion of gener-
alized gradient and tools from computational geometry and nons-
mooth analysis, it has been proven rigorously in [12] that this rule
can spread the agents out in a bounded area and each agent’s loca-
tion will converge exponentially fast to its equilibrium point. The
efficiency, robustness and scalability of this rule has been tested
using mobile robots [27]. This fully distributed rule cannot be di-
rectly used in the coverage control of mobile sensor networks due
to two reasons: (i) it is assumed in [12, 27] that each node knows
the exact location of its nearest neighbor all the time even when
all the nodes are in constant movement; and (ii) this rule ignores
consequences of breaking established links which may result in an
undesirable disconnected network.

We will first modify the above rule to make it independent of the
location information. Let ni(t) denote the number of neighbors of
node i at time t. For any node i, when it decides to move away from
its nearest neighbor after acquiring its current distance to its neigh-
bors, it moves in a random direction with a tentative small step and
measures its distances to its neighbors again. If its distance to its
nearest neighbor increases, it moves in its current direction with a
normal step; otherwise, it moves in the opposite direction with a
normal step. Note that in this way, each node is moving in a direc-
tion of the sub-gradient of its distance to its nearest neighbor once it
moves with a normal step. Note also that if node i is installed with a
compass that can tell in which directions its neighbors are located,
it can always know the exact gradient direction of the distance to
its nearest neighbor.

Now we will consider how to preserve the network connectivity.
This is achieved by two means. One is to keep each node updated
about the average connectivity of the network, denoted by n̄; and
the other is to keep the nodes on the boundary fixed if its number
of neighbors is below a predefined threshold. We will take the fol-
lowing conservative approach to make each node aware of the fact
that it may be on the boundary of the network. Let covi(t) denote
the local convex hull of agent i at time t which is the convex hull
of the positions of agent i and its neighbors at time t. It can be
proved [26] that if a node i is on the boundary, it must be a vertex
of covi(t). Furthermore, in most of the cases, if a node i is a vertex
of covi(t), it is possible for the node to find a direction in which it
moves away from all its neighbors. Note again that if node i is in-
stalled with a compass, it can know it is a vertex of covi(t) if there
exists a line passing through node i such that all its neighbors live
in the same half-plane. The mobility control law described above
is shown in Figure 18.

while n̄ > 3
if agent i is a vertex of covi(ti) and ni(ti) ≤ 3

Do not move.
else

Move away from the nearest neighbor.

Figure 18: The mobility control rule.
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