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Abstract 
 
Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules, 
which connect cell-surface receptor signals to intracellular processes. MAPKs regulate a 
range of cellular activities including cell proliferation, gene expression, apoptosis, cell 
differentiation and cytokine production. The MAPK superfamily consists of at least four 
families: extracellular signal-regulated kinase (ERK), p38 MAPK, Jun-NH2-terminal kinase 
(JNK), and ERK5. Each of these families exerts particular downstream effects, although 
interactions have been described.  
MAPK activity is present in the normal kidney. Moreover, in various types of renal disease, 
renal MAPK expression is increased. Interventions that provide renoprotection, such as ACE 
inhibition or statin therapy, may reduce renal MAPK expression, suggesting that increased 
renal MAPK expression is involved in the pathophysiology of renal damage. Studies using 
specific MAPK inhibitors have been used to further elucidate this role.  
This review gives an overview of available in vitro data on MAPK activation (focussed on 
renal cell types), and describes MAPK localization and possible functions in the normal and 
diseased kidney in man, and in experimental renal disease. Studies reporting the effect of 
conventional renoprotective intervention on renal MAPK expression are reviewed, as well as 
the available data on specific MAPK inhibition, both in the clinical and experimental setting. 
The available data appear to support the potential of MAPK inhibition as a novel intervention 
strategy in renal disease, but future clinical studies are needed to substantiate this 
assumption, and to establish its safety. 
 
 

Introduction 
 
Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules: 
enzymes that connect cell-surface receptor signals to intracellular effects such as gene 
modulation (1). They can covalently attach phosphate to the side chain of either serine or 
threonine amino acid of specific proteins inside cells. This process of phosphorylation results 
in changes in the enzymatic activity of the target protein, altering its interactions with other 
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proteins, its cellular location, or its degradability by proteases. Target proteins include other 
protein kinases, phospholipases, transcription factors, and cytoskeletal proteins (2). In this 
manner, MAPKs can regulate a range of cellular activities, including cell proliferation, gene 
expression, apoptosis, cell differentiation and cytokine production.  
The MAPK superfamily consists of at least four broad families, namely extracellular signal-
regulated kinase (ERK), p38 MAPK, Jun-NH2-terminal kinase (JNK), and ERK5 (or big MAPK 
1, BMK-1) (3-8). MAPKs regulate many cellular processes, from gene expression to cell 
death (9).  Thus, inappropriate MAPK activation could affect cellular function, and may result 
in cell death, and, ultimately, clinical disease. Whereas MAPK expression is altered in many 
types of disease, e.g. renal disease, it is not always clear whether MAPKs play a causal role 
in its initiation and progression. 
 

Figure 1. Overview of cellular MAPK activation 
Schematic representation of how a stimulus can result in MAPK activation (phosphorylation). In turn, 
MAPK activation can activate transcription factors or other factors, for example in the cytoplasm. This 
results in cellular actions, e.g. cytokine release, proliferation or apoptosis. Details of this figure are 
shown in Tables (1-4). See page 181 for full color image. 
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We will summarize current knowledge on the main functions of MAPKs, and focus on the 
relevance of these molecules to renal physiology and pathophysiology in vitro, in animal 
models and in man. Moreover, we will address recent developments in MAPK inhibition, both 
in the experimental and in the clinical setting. 
 
  

MAPK pathways: structure and functions 
 
General principles of MAPK pathways 
A schematic representation of the concept of MAPK signaling, including activation of 
downstream factors, and putative resulting cellular actions, is given in Figure 1. Figure 2 
shows an overview of the main extracellular stimuli that lead to MAPK activation, and a 
number of currently known responses to MAPK activation. Currently available data on MAPK-
activating stimuli relevant in renal cells are summarized in Table 1. As shown in this table, 
each of the MAPKs can be activated by a diverse and extensive number of stimuli, including 
growth factors, cytokines, and various aspecific stressors (irradiation, osmotic stress, 
oxidative stress etc).  
MAPK activation pathways consist of three basic components (“modules”), including MAPKs, 
MAPK kinases and MAPK kinase kinases, which are conserved from yeast to humans (Table 
2). MAPKs are activated by MAPK kinases (MAPKKs, MKKs, or MEKs). The MAPKKs are 
dual-specificity kinases that recognize and phosphorylate a Thr-X-Tyr motif in the activation 
loop of MAPK (10). MAPKKs can, in turn, be activated by MAPK kinase kinases (MAPKKKs, 
MKKKs or MEKKs) (11,12). MAPKs can be inhibited by negative feedback loops (e.g. ERK -> 
Raf1), and by protein kinase phosphatases. The latter include MKP1-7, PAC1, M3/6, VHR, 
B23 (13-17). These phosphatases can reverse MAPK activation by dephosphorylation at the 
Thr(P)-Glu-Tyr(P) activation motif (18). 
MAPK cascades can activate various other signaling pathways (Table 3) by activating 
transcription factors or effects on cytoplasmic proteins. Although function and relevance for 
the development of renal disease are yet unclear for many of the MAPK effectors, the 
downstream part of MAPK pathways are relevant in vivo, as demonstrated by MAPK 
inhibition in numerous animal models (addressed below).   
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Moreover, as shown in Table 4, MAPKs mediate multiple cellular actions, e.g. proliferation, 
apoptosis, and cell growth. Therefore, it is relevant to study mechanisms downstream of 
MAPK. Because of their specific properties, the various MAPK pathways will be separately 
addressed below. Cellular physiology of both yeast and mammalian MAPK pathways is 
extensively reviewed by Widmann et al in ref (19). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Overview of factors and processes that are up- and downstream of MAPK activation 
Extracellular stress, including hyperglycaemia, oxidative stress and growth factors all contribute to 
MAPK activation. This in turn may lead to the activation of further growth factors and production of 
cytokines, increased extracellular matrix (ECM) accumulation, proliferation or apoptosis. 
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The ERK pathway 
 
Table 1 shows that in renal cells, a large number of stimuli can activate ERK. In most renal 
cell types, growth factors are important activators of ERK. However, also a broad number of 
other factors including high glucose, NO, LPS, and mechanical stress are ERK activators. 
ERK1/2 can be activated by different types of receptors, including receptor tyrosine kinases 
and G protein-coupled receptors (Table 2), see also ref (19-21). In the MAPK cascade, ERKs 
are activated by MAP/ERK Kinase 1 (MEK1) and MEK2, which are in turn activated by the 
Ras/Raf pathway. ERK1/2 can phosphorylate Raf1, inhibiting its activity (22). In this manner, 
the ERK pathway shows a classical negative feedback loop. Moreover, ERK can be 
inactivated by protein kinase phosphatases. MAPK phosphatase (MKP)-2, 3, and 4 are 
probably the protein kinase phosphatases most selective for ERK, although other 
phosphatases including MKP-1 and PAC1 also inactivate ERK, but in a less selective manner 
(16,17,23).  
Effectors of activated ERK mainly include transcription factors (e.g. Elk-1, Ets 1, STATs), but 
also cytoplasmic proteins (see Table 3). As for MAPKKKs (see above), there is evidence of 
cross-reactivity in downstream MAPK pathways, for example Elk-1, which can be activated by 
ERK, p38, and JNK (24-26). ERK signaling has been implicated in mitogenesis and cell 
differentiation. ERK1/2 stimulates DNA synthesis through phosphorylation of carbamoyl 
phosphate synthase, a rate-limiting enzyme in pyrimidine nucleotide biosynthesis (27). 
Moreover, the ERKs can promote cell-cycle progression by inactivating MYT1, a cell-cycle 
inhibitory kinase, but arrest meiotic cells at metaphase II by activating a cytostatic factor (28-
30). Via activator protein-1 (AP-1) and cyclin D1 induction, ERKs can also stimulate cell 
proliferation indirectly (31). Furthermore, ERK activation results in eicosanoid production, and 
is therefore involved in the synthesis of prostaglandins and leukotrienes, in the presence of 
inducible cyclo-oxygenase-2 (32). 

 

Table 1. Stimuli inducing MAPK activation in renal cells in vitro (previous page) 
Detailed overview of a number of stimuli that can activate MAPKs. Activation of MAPKs is indicated per 
stimulus, the cell type in which activation has been described is also mentioned. Bold data represent 
stimuli that can activate more than one MAPK. Cell types: E = endothelial cells, M = mesangial cells, P 
= podocytes, T = tubular epithelial cells, V = vascular smooth muscle cells. 
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The JNK pathway 
 
Cellular stress forms the most important activator of JNK, also known as stress-activated 
protein kinase (SAPK). The processes by which the various types of stress result in activation 
of JNK are unclear as the exact stress sensors and their regulation mechanisms remain 
merely unidentified. There is a diverse number of other factors that can activate JNK including 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. MAPK activation cascades 
Schematic representation of MAPK activation by its kinases and kinase kinases. Also, the respective 
receptors that lead to its activation are shown per MAPK pathway.  
TCR = T cell receptor, BCR = B cell receptor, GPCRs = G-protein coupled receptors, TKRs = tyrosine 
kinase receptors, EGF-R = epithelial growth factor receptor, PDGF-R = platelet-derived growth factor 
receptor, MEKK = MKKK = MAPK kinase kinase, MEK = MKK = MAPK kinase, TNF-R = tumor 
necrosis factor-receptor, IgE-R = immunoglobulin E-receptor. 
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growth factors, cytokines and apoptotic factors (Table 1). JNKs undergo MKK-mediated dual 
phosphorylation on threonine and tyrosine of the Thr-X-Tyr activation motif. As shown in 
Table 2, MKK4 and MKK7 are the MKKs specific for JNK activation. JNK can be inactivated 
by various aspecific protein kinase dephosphatases, and selectively by M3/6 (16,33). 
Moreover, JNK activation can be inhibited by JIP-1 and NF-kappaB (34,35). 
 
 

  ERK JNK p38 ERK5 
     

Transcription factors (directly)    
 Elk-1 Elk-1 Elk-1 MEFC2 
 ATF-2 ATF-2 ATF-2  
 SAP-1  c-Jun SAP-1  
 STATs  p53 c-Jun  
 GATA4 DPC4 MEF2C  
 Ets1  NFAT4 Chop  
 c-Myc  NF-kappaB? Max  
 Tal    
 P300/CBP     
 Myb (inhibition)    
 UBF    
          
          

Cytoplasmic proteins    
 p90rsk S6 kinase Unknown MSK 1/2 c-Jun (via MEFC2) 
   c-Jun (via p90rsk)    CREB  
   c-Fos (via p90rsk)    NF-kappaB  
   AP-1 (via p90rsk)    ATF1  
 cytosolic phospholipase A2    Histone H3  
 MAP-1,-2,-4, Tau  MNK  
 EGF receptor    elF4E  
 Sos  MAPKAPK-2/3  
 Raf1 (inhibition)    HSP-27  
 Mek1 (inhibition)    TTP  
     SRF  
   PRAK  
     
          

Table 3. Downstream activation of transcription factors and other proteins by MAPKs 
Substrates of MAPKs are shown, including transcription factors and cytoplasmic proteins. Bold factors 
indicate factors that can be activated by more than one MAPK. For JNK, only transcription factors are 
known at this time. Indentation represents expression or activation by the previously mentioned factor, 
e.g. ERK can activate transcription factors c-Jun, c-Fos, and AP-1 via activation of the cytoplasmic 
p90RSK S6 kinase. 
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Thus far, only transcription factors are known substrates of JNK activation (listed in Table 3). 
JNK binds to and phosphorylates the DNA binding protein c-Jun and increases its 
transcriptional activity, without affecting DNA binding (36). c-Jun is a component of the AP-1 
transcription complex, which is an important regulator of gene expression. AP-1 contributes to 
the control of many cytokine genes and is activated in response to environmental stress, 
radiation, and growth factors - all stimuli that activate JNKs (2). JNK can induce apoptosis, 
probably by activation of transcription factors like c-Jun and DPC4, although the exact 
mechanisms are unclear (19,37). JNK activation may be relevant in maintaining the integrity 
of the cytoskeleton, as shown in intestinal epithelial cells (38). 
 
 

ERK JNK p38 ERK5 

Eicosanoid 
production  Apoptosis Cell growth 

Endothelial 
function 

  Arachidonic acid 
Microtubule 
assembly   Alpha-skeletal actin Vascular integrity 

    PGs, leukotrienes Insuline resistance   Sarcomeric organisation  
ECM production Cytokine production Cytokine production:  
  TGF-beta 
production   IL-12, RANTES   IL-1, IL-2, IL-6,  
Cell proliferation Cell proliferation   TNF-alpha  
  CPS  Apoptosis  
  MYT1 (inhibition)    Fas-induced apoptosis  
  Cyclin D1  Cell proliferation  
    IL-7  
  Others  
    COX-2  
    iNOS  
    VCAM-1   
    ANP/BNP gene induction  

 

Table 4. Processes mediated by MAPK activation 
This table provides an overview of MAPK-specific downstream cellular effects.  
ECM = extracellular matrix, CPS = carbamoyl phosphate synthase, RANTES = Regulated on 
Activation Normal T-cells Expressed and Secreted, COX-2 = cyclo-oxygenase-2, iNOS = inducible NO 
synthase, VCAM-1 = vascular cell adhesion molecule-1, ANP = atrial natriuretic peptide, BNP = brain 
natriuretic peptide. 
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The p38 pathway 
 
Table 1 shows a number of stimuli that are able to activate p38, however, many more studies 
have been done to identify p38-stimulating factors, almost all in vitro; as reviewed recently 
(also in non-renal cells) by Ono et al(39). Stress factors have been demonstrated to be 
important p38 stimuli in vitro, but inflammatory cytokines and growth factors are also 
important p38 MAPK activators (Table 1) (40,41). Apparently, p38 plays a role in inflammation 
and cell growth and development. Indeed, p38 is abundantly expressed during rat kidney 
growth and nephrogenesis(42). All four p38 MAPK isoforms are activated by MKK3, whereas 

MKK6 preferentially activates p38α, γ, and δ isoforms (Table 2). Activation of p38 MAPK is 

preferentially inhibited by MKP-1, MKP-5, MKP-7 and M3/6, where the MKPs only inactivate 

p38α and p38β (13,16,33,42).  
Effectors of p38 include both transcription factors (ATF-2, Elk-1, Chop, Max, MEF2C) and 
enzymes (e.g. MAPKAP kinase-2 and -3) (43). Moreover, p38 activation stabilizes certain 
mRNA strains (for example COX-2) (44,45). By selective inhibition, it has been elucidated that 
p38 regulates many different genes expressing cytokines, transcription factors, and cell 
surface receptors. Downstream effects of p38 include inflammation: production of 

proinflammatory cytokines (e.g. IL-1β, TNF-α and IL-6), modulation of extracellular matrix, 
expression of intracellular enzymes such as iNOS, and the production of adhesion molecules 
such as VCAM-1 (46-48). The role of p38 in apoptosis is not clear; it is dependent on cell type 
and stimulus. In tubular epithelial cells, angiotensin II induces apoptosis via p38 (49). MKK3 
and MKK6 knockouts resulted in reduced p38 activation and increased tumorigenesis, 
suggesting an important role in cellular proliferation (50). Indeed, through cyclin D1 
expression, p38 is involved cell cycle progression and proliferation (51). Cells arrested in M 
phase demonstrate p38 activation (52). Finally, p38 MAPK plays a role in hypertrophy and 
cell differentiation in a number of cell types (53,54).  
 
The ERK5 pathway 
 
The ERK5 (also known as big MAPK1, BMK1) pathway is by far the least known mammalian 
MAPK pathway. ERK5 and MEK5 (its upstream kinase) are activated by MEKK2 or MEKK3, 
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as shown in Table 2 (55-57). A recent review on ERK5 supplies an overview of its activators; 

these include mainly stress signals, and a number of growth factors (EGF, NGF, VEGF) (58). 

Moreover, it has been demonstrated that in renal glomerular mesangium, high glucose 
activates ERK5 both in vivo and in vitro (59). The activation of ERK5 induces its translocation 
to the nucleus, where it can activate transcription factors including MEF2C, inducing c-Jun 
expression (60). Genetic ablation of ERK5 in mice leads to embryonic lethality, however 
Hayashi et al created a ERK5 conditional mutation in mice in which disruption of the ERK5 
gene was under the control of the inducible Mx1-Cre transgene. The authors concluded that 
ERK5 is essential for endothelial function and for maintaining blood vessel integrity (61). 

 
 
MAPK activation in the rat kidney 
 
MAPKs in the healthy rat kidney 
 
In the normal adult rat kidney, ERK is expressed in the distal tubules, collecting ducts, and 
podocytes. Phosphorylated ERK has been demonstrated in occasional distal tubules and 
collecting ducts of normal rats (62). In healthy adult rats, JNK is abundantly present and 
located in tubular cells and podocytes (42). Stambe et al describe phosphorylated JNK in the 
glomerulus of normal rats, specifically in podocytes and epithelial cells of Bowman’s capsule; 
moreover, most of the cortical tubuli contain pJNK-positive epithelial cells (63). Stambe et al 
describe that pp38-positive cells can be found at the same locations as pJNK, however, two 
other papers report that in the normal rat kidney, there is neither unphosphorylated nor active 
p38 present in the normal adult rat kidney (62-64). Interestingly, p38 activation is involved in 
COX-2 production in the renal macula densa in response to changes in tubular sodium 
concentration (65). These findings underline the relevance of MAPK signaling in renal 
physiology. 
As mentioned, MAP kinases play an important role in numerous pivotal biological processes 
such as proliferation, differentiation, extracellular matrix production, and apoptosis. Recent 
studies reported that during rat renal development, when cell turnover is high, p38 and ERK 
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are over-expressed and highly activated, whereas pJNK is slightly detectable in embryos 
(64). Oppositely, in the adult kidney, where cell turnover is only 0.01%, expression of p38 and 
ERK is low, while JNK is abundantly present and activated (66). Exposure of rat metanephroi 
cultured from 15-day-old embryos to the ERK 1/2 and p38 inhibitors PD98059 and 
SB203580, respectively, demonstrates that growth and nephrogenesis require p38, while 
ERK is important in tubulo-nephrogenesis (67).    
 

 Activated MAPK Time of increased 
expression 

Effect of specific blockade Ref 

           
     

Glomerulonephritis    
 p38 Early (2 hrs post-induction) Reduced UP, glomerular neutrophil 

accumulation, MCP-1 
[63,89] 

 ERK Later (> 6 days) Reduced # of mitotic figures, total # 
of glomerular cells 

[74] 

 JNK Later 75% reduced UP, 70% reduced 
glomerular cell proliferation 

[92] 

     

Diabetic nephropathy    
 p38 Early, decline after 4 

months 
Unknown [76,225,247] 

 ERK Unknown Unknown [75,214] 
     

Hypertensive renal damage   
 p38 Unknown Reduced glomerular desmin, 

interstitial SMA expression, MME 
[102] 

 ERK >7 wks in dTGR rats Reduced glomerular desmin, 
interstitial SMA expression 

[80,102] 

 JNK >10 wk high sodium diet Unknown [79,80] 
     

Unilateral ureteral obstruction   
 p38 6 hrs - >7 days post-ligation Reduced interstitial fibrosis and 

collagen IV  
[88] 

 ERK peaks at <30 min, 4 and 7 d Unknown [248] 
     

Remnant kidney    
 p38 9 wks Increased UP, tubular dilation, 

infiltration of ED-1+ cells, 
proliferation, tubulointerstitial fibrosis 

[93] 

Table 5. Overview of in vivo data on MAPK activation and effects of pharmacological inhibition 
in experimental renal disease 
Overview of currently available data on MAPK activation in experimental renal disease and the 
reported effect of specific pharmacological MAPK blockade. UP = proteinuria, SMA = smooth muscle 
actin, MME = mesangial matrix expansion. 
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Together, these findings support the concept that ERK and p38 are involved in cell growth, 
proliferation, and differentiation. It is likely that JNK, known to play a role in apoptosis and 
responses to extracellular stress, plays a role in maintaining cellular homeostasis in the 
(adult) physiological situation. 
Many of the stimuli that are able to activate the MAPK pathways have been implicated in 
renal disease (reviewed in (68-71)). Moreover, many of the MAPK substrates are associated 
with renal disease. However, little is known about the exact functions and the relevance of 
these pathways in vivo. Nevertheless, a number of studies in experimental renal disease 
support a role for MAPK in renal disease. 

 
 
MAPKs in experimental renal disease 
 
MAPK activation has been demonstrated in numerous models of experimental renal disease. 
Moreover, specific MAPK inhibitors have been administered to animals in order to specifically 
study their effect in a given model. An overview of recent findings is presented in Table 5; 
renal expression and activation of MAPKs in a number of models of renal damage as well as 
effects of pharmacological intervention will be addressed in this paragraph. 
 
Renal expression and activation 

Glomerulonephritis. In anti-glomerular basement membrane (GBM) glomerulonephritis and 
anti-Thy 1.1 experimental model of mesangioproliferative glomerulonephritis, ERK 1/2 and 
JNK are activated during the later proliferative stage of the disease, whereas p38 is activated 
early  (2 hours post anti-Thy 1.1. antibody injection) in the disease (72-74).  More recent 
studies have shown that in inflammatory renal diseases, such as crescentic 
glomerulonephritis, a marked increase in p38 activation is observed in glomerular endothelial 
cells and neutrophils as early as 3 hours after the induction of the disease (63).  In 
progressive anti-GBM disease, p38 and JNK are activated within podocytes, glomerular 
endothelial cells and infiltrating macrophages, highlighting the importance of these signaling 
molecules in inflammation (63). 
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Diabetic nephropathy. In the glomeruli of streptozocin-induced diabetic rats, a model of type I 
diabetes, ERK 1/2 activation is increased (75).  This increase in ERK 1/2 activation is thought 
to regulate cellular growth.  Hyperosmolarity and oxidative stress are features of diabetic 
nephropathy; this has led investigators to postulate that p38 mediates some of the 
complications of diabetic nephropathy.  Indeed, activation of p38 has been observed in the 
glomeruli of early diabetic rats (76).  One and two months post-streptozotocin, p38 activity is 
increased in the glomeruli of diabetic rats compared to controls, however, this decreased to 
control levels following four months of diabetes.  The same pattern of activity was observed 
for the upstream kinase activators of p38, MKK3/6 (76).  Although it was observed that during 
the same time course there was an increase in extracellular matrix and hypercellularity, the 
investigators were not able to conclude that there was a clear association between p38 
activation and features of diabetic nephropathy. Studies have also been conducted in models 
of Type II diabetes, including the db/db mouse and the Otsuka Long Evans Tokushima Fatty 
(OLETF) rats (59,77).  An upregulation in ERK 1/2 and ERK5 has been observed in the 
glomeruli of the diabetic rats, suggesting a role in mesangial cell proliferation (59,77).  
In diabetic nephropathy, early tubulointerstitial disease is a predictor of renal function (78).  
Although all MAPK family members are present in distal and collecting tubules of control rats, 
an increase in activation of p38 is observed in streptozotocin induced diabetic rats (62). Fujita 
and colleagues demonstrated that in streptozotocin diabetic rats, ERK 1/2 and p38 were 
activated in the tubules and that p38 co-localized with TGF-ß (62), however, it can not be 
concluded that there was a relationship between the two, as the investigators did not inhibit 
MAPK activation. 
 
Hypertension. An increase in dietary salt intake as well as hypertension leads to the activation 
of MAPK family members within the glomerulus (79-81). Moreover, immunohistochemical 
analysis of ERK 1/2 in the hypertensive Ren2 rat has confirmed its presence in the 
glomerulus (82), demonstrating that a number of hypertension-associated external stimuli 
activate the MAPK family in vivo.  
 
Although the studies mentioned so far have shown an increase in MAPK activation, the 
implication of this increase is not clearly known. Furthermore, the exact stimuli for MAPK 
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activation may vary between the different diseases. For example, in vitro studies have 
reported p38 activation in mouse mesangial cells stimulated with TGF-ß (83), while mesangial 
cells treated with high glucose concentrations activate ERK 1/2 which in turn leads to 
increased TGF-ß stimulation (84). Thus, in mesangial cells MAPK may be involved in a 
vicious cycle resulting in accumulation of extracellular matrix proteins such as collagen and 
fibronectin, contributing to renal fibrosis (85).  Inhibition of growth factors, such as EGF, 
normalizes MAPK activation in the renal cortex and in turn reduces collagen I expression 
(86). Together, the available studies demonstrate an increase in MAPK activation in various 
renal diseases, suggesting that MAPKs may play a pivotal role in transducing information 
from the extracellular region to the intracellular compartment, resulting in the activation of 
further growth factors and molecules that contribute to renal pathology.  
 
MAPK inhibition. To establish a pathological role for a given factor, one must demonstrate, 
according to the modified Koch’s Postulates, that blockade of the factor would attenuate the 
manifestations of the disease (87).  The advantage of using experimental animal models is 
the ability to test inhibitors of the MAPK family and to examine their role in renal disease.   
In the non-inflammatory model of unilateral ureteric obstruction, Stambe et al reported that 
p38 activity is increased as early as 6 hours post-ligation and continues for at least 7 days 
(88).  Using the specific p38 inhibitor NPC31169, which inhibits phosphorylated p38 from 
phosphorylating down stream targets such as activated transcription factor 2 (ATF2), there 
was a reduction in interstitial fibrosis and collagen IV protein and mRNA.  However, there was 
no effect on TGF-ß, suggesting that the activation of extracellular matrix in this experimental 
model of renal disease is not mediated by TGF-ß (88), although in vitro studies provided 
evidence that the activation of TGF-ß and its effects on extracellular matrix proteins is through 
ERK (84,85).   
In the anti-GBM glomerulonephritis model of experimental crescentric glomerulonephritis, 
blockade of p38 with NPC31145 or FR167653 reduced proteinuria, glomerular neutrophil 
accumulation (89) and monocyte chemoattractant protein-1 (90), suggesting that p38 is 
important in inflammatory renal diseases, and that its blockade may be a useful target for 
therapy.  In addition, in the hypertensive stroke prone rats on a high salt and fat diet, 
glomerular hypertrophy, tubulointerstitial changes and urinary albumin excretion were 
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attenuated with the p38 inhibitor SB239063 (91). In a recent study by Ikezumi et al, utilising 
an acute model of macrophage-mediated renal injury, JNK inhibition with SP600125 was 
associated with a reduction in proteinuria and macrophage proliferation, suggesting that 
macrophage accumulation may be mediated by JNK (92). 
However, a recent study in the remnant kidney model (93), using the p38 inhibitor NPC31169 
for 9 weeks at 100 mg/kd/day, shows that MAPK inhibition was associated with increased 
proteinuria, tubular dilation, infiltration of ED-1 positive cells, proliferation and tubulointerstitial 
fibrosis.  Furthermore, ERK1/2 expression was increased with p38 blockade, suggesting that 
there is cross-talk between the intracellular pathways in renal disease (93).  The authors 
suggested that the lack of renoprotection, as opposed to the renoprotective effects in anti-
GBM nephritis, may indicate that inhibition of p38 is beneficial mainly in inflammatory 
diseases where the level of pro-inflammatory cytokines is high, while the remnant model is 
characterized by a low level of pro-inflammatory cytokines.  Yet, the beneficial effects in other 
non-inflammatory models such as unilateral ureteric obstruction (88) and stroke-prone rats 
(91) indicate that a prominent inflammatory component is not a prerequisite for a therapeutic 
effect of MAPK inhibition. 
Taken together, the available data indicate that p38 and ERK1/2 blockade can provide 
renoprotection in various renal conditions. Apparently, however, MAPK inhibition is not 
uniformly renoprotective but can also aggravate renal damage. This argues against a too 
straightforward application of MAPK inhibition in renal damage, but rather emphasizes the 
need for better understanding of the complex role of MAPK in renal damage in order to 
delineate the therapeutic potential of MAPK modulation. 
 
 
Renin-Angiotensin-Aldosterone System and Renal MAPK Expression 
  
Angiotensin II (AngII) has a key role in the pathophysiology of a number or renal diseases. 
The most successful approach to treating progressive renal diseases includes angiotensin 
converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) as reported in 
numerous in vitro, animal and clinical studies(94-96), although more specific intervention may 
be appropriate (97).  The beneficial effects relate to their efficacy in not only reducing blood 
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pressure and proteinuria, but also inhibiting the non-hemodynamic functions of AngII.  AngII 
binding to its G-protein coupled receptor activates a number of intracellular signaling 
molecules, including MAPK family members. 
As shown in Figure (3), AngII activates ERK, JNK and p38 in rat mesangial cells, resulting in 
hypertrophy (ERK), proliferation (JNK), and TGF-beta production (p38) (98-100). In tubular 
epithelial cells, AngII can activate the same MAPKs, however, p38 activation results in 
apoptosis in these cells (49). This indicates that effects of MAPK activation by AngII may be 
cell type-specific. Together, these data implicate that MAPK activation by AngII may be 
relevant in the pathophysiology of renal damage. Furthermore, p38 is able to stimulate 
angiotensin II gene expression, in turn leading to the increase in pro-fibrotic growth factors 
and cellular hypertrophy (101), suggesting that the interaction between MAPK and 
angiotensin II has the potential to elicit a vicious cycle relevant to renal damage. 

 

 
Figure 3. MAPK-mediated effects of angiotensin II in renal mesangial and tubular epithelial cells  
Schematic representation of MAPK activation by angiotensin II in mesangial cells and tubular epithelial 
cells. This illustrates that cellular responses of MAPK activation may be cell type-specific. 
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Importantly, inhibition of either p38 or ERK ameliorated angiotensin II-mediated renal damage 
in homozygous Ren2 rats (102). This provides proof of principle that MAPK inhibition has the 
potential to ameliorate angiotensin II-induced renal damage in vivo, which may turn out highly 
relevant, considering the important role of angiotensin II in progressive renal disease. 
The effect of renin-angiotensin-aldosterone-system(RAAS)-blockade on MAPK activation in 
renal disease has only recently been investigated.  In the streptozotocin-induced model of 
diabetes, the effect of ACEi on ERK 1/2 has been investigated in the glomerulus, and it was 
reported that ACEi reduced ERK 1/2 phosphorylation (103).  Studies by Hamaguchi et al 
provided in vivo evidence that angiotensin II infusion led to the activation of ERK 1/2 and JNK 
(79). Furthermore, ARB or inhibition of ERK 1/2 blocked the angiotensin II induced stimulation 

of collagen 1 α gene in renal cortical slices (104).  In a recent study, Nishiyama and 

colleagues examined the effect of ARB on the activities of ERK 1/2, JNK and ERK5 in Dahl 
salt-sensitive rats fed a high salt diet (105). ARB treatment reduced urinary protein excretion 
and collagen accumulation, without affecting blood pressure, highlighting the non-
hemodynamic role of angiotensin II.  In the salt sensitive rats fed a high salt diet, ERK 1/2, 
JNK and ERK5 were activated in the kidney cortex.  The activation of these MAPK molecules 
were normalized with ARB (105).  The results of this study suggest that effects on MAPK 
pathways may partly mediate the renoprotective effects of ARB.       
It is important to note that, in spite of their proven efficacy, ACEi or ARB only partially reduce 
the progression of chronic renal damage. In fact, in many patients renal function loss 
continues despite apparently adequate RAAS-blockade, which prompts for the development 
of new therapies. A recent prospective study into the renal mechanisms of resistance to 
renoprotective therapy in adriamycin-induced renal damage in rats revealed that the extent of 
pre-fibrotic renal damage and its associated macrophage infiltration present at onset of 
therapy were negative predictors of the antiproteinuric benefit of RAAS-blockade (106). This 
suggests that specific interference in pathways involved in macrophage influx and 
fibrogenesis may have the potential to overcome resistance to the renoprotective effects of 
RAAS-blockade. Considering the involvement of MAPK in these processes, in this respect, 
MAPK modulation would be a relevant strategy to investigate. 
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MAPK activation in man 
 
MAPK activation in the normal human kidney 
 
In the healthy adult human kidney, immunostaining revealed pp38 (activated p38) in some 
glomerular visceral (podocytes) and parietal epithelial cells, in a minority of tubular epithelial 
cells, and occasionally in peritubular interstitial cells (107,108). In human embryonic kidneys 
(gestational ages 19-34 wks) however, the activated isoform pp38 cannot be detected (109).  
 
             

     p38    ERK      JNK  

Disease glom tub interst  glom tub interst         glom   tub interst Ref  

             
TMD = = =  = =      [108,110] 
MCD + +++ =  = =      [108,110] 
ATN            ++   ++ [111] 
GN ++ = =         [108] 
Cresc GN ++           [113] 
PIGN +++ +++ =         [108] 
IgA +++ +++ =         [108] 
Vasculitis +++ +++ +++  + =      [108,110] 
SLE +++ +++ +++  = =      [108,110] 
FGS ++ = =  = =      [108,110] 
DN + ++ +++  +       [107,114] 
 

Table 6. MAPK activation in human renal disease 
Overview of available data on MAPK activation in human renal disease. All indicated changes are 
relative to controls. Legend: = no change, + 2-4 times increased, ++ 4-6 times increased, +++ >6 times 
increased. TMD = thin membrane disease, MCD = minimal change disease, ATN = acute tubular 
necrosis, MGN = membraneous glomerulonephritis, cresc GN = crescentic glomerulonephritis, PIGN = 
postinfectious glomerulonephritis, SLE = systemic lupus erythematosis, FGS = focal 
glomerulosclerosis, DN = diabetic nephropathy. All indicated differences are significant (p<0.05). Blank 
fields indicate unavailable data. 
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This is in contrast with findings in the rat that show abundant p38 activation in renal 
development (64). pERK, in the normal human kidney, is almost completely restricted to 
some collecting duct cells (110). In the embryonic stage, pERK can be detected in epithelial 
cells in distal tubules and in collecting duct cells (109). The localisation of activated JNK in the 
healthy human kidney has only been described in one recent study showing pJNK expression 
in the tubulointerstitium (111). Embryonic kidneys (19-34 wks) reveal faintly positive staining 
for pJNK in distal tubulus and collecting ducts (109). The differences in MAPK activation 
between humans and rats may suggest separate functions of MAPKs in both species, 
although the amount of data on MAPK activation in human kidney development is only 
minimal to date. 
 
 
MAPK activation in human renal disease 
 
Multiple studies report increased MAPK activation in various renal diseases, suggesting a role 
for MAPKs in the pathophysiology of human renal disease (Table (6)). Limited data is 
available on the relationship between altered renal MAPK expression and the severity of renal 
function impairment or proteinuria. 
Glomerulonephritis (GN). Human GN is characterized by infiltration of inflammatory cells, 
including T-cells and macrophages. Influx of inflammatory cells correlates with renal function 
and histopathologic lesions (78,112). In GN, activation of p38 MAPK in intrinsic renal cells 
and in infiltrating leukocytes correlates with renal dysfunction and histopathology (108). An 
increased number of pp38 positive glomerular cells has been observed in both 
nonproliferative (minimal change disease (MCD), membranous glomerulonephritis (MGN)) 
and proliferative (IgA, systemic lupus erythematosis (SLE), vasculitis) GN, although there is 
greater activation of p38 in proliferative than in non-proliferative GN (108). Furthermore, in 
proliferative GN, there is increased p38 activation in all tubular segments, as opposed to non-
proliferative GN (108,113). Unlike p38, controversy exists as to whether ERK or JNK 
activation occurs in human glomerulonephritis. Makaki et al report that ERK activation does 
not occur in thin membrane disease (TMD), MCD, or SLE, while in patients with vasculitis, 
there is increased glomerular ERK activation in the glomerular tuft and in crescents (110). 
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Diabetic nephropathy (DN). In human DN, increased glomerular activation of both ERK and 
p38 has been described (107,114). Interestingly, Toyoda et al described an inverse 
relationship between glomerular (mainly mesangial and epithelial) ERK activation and 
mesangial matrix expansion in DN, indicating that ERK activation mainly plays a role in the 
early stage of tissue damage in DN (114). This may be of interest for prevention strategies. 
For p38 activation, such a correlation has never been studied in man, but studies in diabetic 
animals indicate increasing activation up to 8 months after streptozotocin injection(107). 
Moreover, activated p38 has been found in accumulating interstitial macrophages and 
fibroblasts in kidneys of patients with type 2 diabetes, suggesting involvement of p38 
activation in inflammation in DN. However, the authors could not correlate p38 activation to 
proteinuria or renal function, probably due to a small number of biopsies (107).  
Renal dysplasia. In dysplastic epithelia of the human kidney (both pre- and postnatal), pp38 is 
strongly expressed, in contrast to normal prenatal kidneys, where p38 is not activated at all 
(109). Moreover, dysplastic epithelia stained exclusively positive for ERK and pERK. 
Surprisingly, pJNK, which was present in tubular epithelia of normal kidneys, could hardly be 
detected in dysplastic renal epithelia (109), suggesting that proliferation is the key mediator of 
this disease. Indeed, the authors propose that the activation of p38 and ERK may mediate 
hyperproliferation of dysplastic tubules resulting in cyst formation, whereas the concomitant 
down-regulation of JNK expression may be the cause or the result of an undifferentiated state 
of dysplastic epithelia (109). 
Acute tubular necrosis (ATN). To our knowledge, there is only one paper on JNK activation in 
human renal disease, showing that there is indeed increased JNK activation in the 
tubulointerstitium of patients with acute tubular necrosis (ATN), where it might induce 
apoptosis (111). There are no data on the role of other MAPK in human ATN. 
 
 
MAPK inhibition in human subjects 
 
There is limited experience with MAPK inhibition in human disease. Recently, a review paper 
addressed current standings in pharmacological intervention in MAPK signaling (115). To our 
knowledge, no studies on MAPK inhibition in human renal disease have yet been done. 



Mitogen activated protein kinase signaling in the kidney: target for intervention? 
 

 41

However, studies on MAPK inhibition in other human disorders, such as endotoxemia, may 
give an indication of the therapeutic potential of MAPK inhibition. Fijen et al were the first to 
give an oral p38 inhibitor, RWJ 67657, to human subjects and demonstrated strong (>90%) 

dose-dependent inhibition of plasma TNF-α, IL-6, and IL-8 responses, and neutrophil and 
endothelial cell activation in human endotoxemia (116). Branger et al also demonstrated 

strong inhibition of TNF-α, IL-6, IL-10, and IL-1RA using the p38 inhibitor BIRB 796 BS in 
human endotoxemia (117). This p38 inhibitor dose-dependently ameliorated coagulation, 
fibrinolysis, and endothelial cell activation in human endotoxemia (118). Regan et al selected 
BIRB 796 as a clinical candidate for the treatment of inflammatory diseases for its significant 

improvements in binding affinity, cellular activity, and in vivo reduction of TNF-α production 
and arthritis severity (117,119,120). This provides further evidence that MAPK is important in 
diseases characterized by inflammation and hypercellularity. 
At the moment, BIRB 796 (doramapimod) is in clinical trials for the treatment of psoriasis 
(phase III), rheumatoid arthritis and Crohn’s disease (both phase IIb) (121). The p38 inhibitor 
VX-702 is currently in clinical trials for treatment of acute coronary syndromes (phase IIa) 
(121). To our knowledge, there are no publications describing the use of specific ERK- or 
JNK-inhibitors in human subjects. Moreover, there is yet no data on MAPK inhibition in 
human renal disease, there is a new field of powerful pharmacological intervention to be 
explored. 
 
 
Possible side effects of MAPK inhibitors 
 
Little is known about potential side effects of MAPK inhibition in patients. At least one group 
of p38 inhibitors, the pyridinylimidazoles (SK&F 86002 and SB 203580), not only efficiently 
inhibit proinflammatory cytokine synthesis, they also potently inhibit human liver P450 
isozymes (122-124). Inhibition of human cytochrome P450 can potentially cause drug-drug 
interactions or lead to other hepatic changes such as P450 enzyme induction. In 10- and 14-
day dose-ranging toxicological studies in rats using SK&F 86002 and SB203580, liver weight 
increased, and significant elevations of hepatic P450 enzymes were demonstrated (122,125). 
However, the newer second generation p38 MAPK inhibitors – the pyrimidine analogs of the 
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pyridinylimidazole class of p38 inhibitors – have reduced effects on cytochrome P450, as well 
as an increased oral activity (122). In the studies using RWJ-7457, there was no apparent 
drug toxicity, based on clinical findings and standard hematological and biochemical tests 
(116,126). Moreover, this inhibitor has been shown to have acceptable safety and 
pharmacokinetics in a single oral dose study in healthy men (127). 
It can be considered remarkable that p38 inhibitors apparently are relatively well tolerated in 
spite of the broad spectrum of physiological functions of MAPKs. Possibly, due to redundant 
MAPK pathways, inhibition of one MAPK elicits activation of other MAPKs, resulting in 
alternative activation cascades. Activation of other MAPK pathways upon specific MAPK 
blockade has indeed been described experimentally, both in vitro and in animals, however is 
it not clear whether the net effect is always beneficial (93,128,129). Another explanation may 
be that in a diseased organ, MAPKs become “overactivated”, so that inhibition has relatively 
more effect at the target tissue or organ than elsewhere in the body. The latter can be 
expected to result in a more favorable profile in terms of therapeutic window. It is also 
possible that both phenomena occur; but obviously, much more data on the safety of MAPK 
inhibition in human renal diseases are needed. 
 
  

Conclusions and future directions 
 
MAPKs play an important role in various crucial cell processes like proliferation, inflammation, 
and apoptosis. Whereas current insight in the complex MAPK interrelations is still limited, 
particularly considering the apparent aspecificity in some parts of their signaling cascades as 
opposed to specificity in other parts, nevertheless intervention in MAPK pathways afforded 
increasing insight in the role of MAPK in renal disease. Studies by MAPK intervention support 
a pathogenetic role of MAPKs in various experimental renal conditions characterized by 
inflammation, fibrosis and apoptosis, and moreover, demonstrated the renoprotective 
potential of MAPK inhibition in these conditions. Importantly, the  deleterious effect of MAPK 
inhibition in remnant kidney, a model characterized by hypertrophy, indicates that the specific 
type of renal damage is relevant to the eventual effect of MAPK inhibition.  Data from renal 
biopsies in man have shown upregulation of MAPKs in a variety of renal conditions, 
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suggesting involvement in human renal disease as well, and may provide a new target for 
intervention. 
Several important issues should be addressed in order to explore the potential of MAPKs as a 
novel intervention strategy in renal disease. It would be important to establish the renal 
conditions that can specifically benefit from MAPK inhibition, and to delineate the role of 
specifically modulating the different MAPK families in the various renal conditions. Safety 
would be particularly important to consider, in view of the ubiquitous expression of MAPKs 
throughout organs and cell-types, and the interaction between the different MAPK pathways.    
So far, no studies on MAPK inhibition in renal disease in man have been conducted. Yet, 
clinical data on the use of MAPK inhibitors in other human conditions show that the use of 
MAPK inhibition is feasible in man. Animal data suggest that MAPK inhibition may be of use 
in acute inflammatory renal disorders, and in chronic conditions characterized by fibrosis. 
Considering the current role of RAAS-blockade as first line of therapy in chronic progressive 
renal function loss disease – and the interactions between angiotensin II and MAPK signaling, 
it might be useful to study the possible role of MAPK inhibition as an adjunct to RAAS 
blockade.   
Finally, although most studies on MAPK inhibition in renal disease are promising, it is obvious 
that there is still much to be learned about the complex regulation of MAPK pathways. 
Combining information from different lines of research in pharmacology, physiology, cellular 
biology, and clinical medicine is pivotal to obtain a more complete and balanced concept of 
MAPK function, and to delineate the opportunities for its role as a target for therapy. 
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